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ABSTRACT

MATHEMATICS BEHIND GOOGLE’S PAGERANK ALGORITHM

BRIAN MOOR

AUGUST 2018

Google has become a name synonymous with web searching, to the point

where Merriam Webster defines google as “verb: to use the Google search en-

gine to obtain information about (someone or something) on the World Wide

Web.” Google, Inc. was founded in 1998, and quickly became the leader of

Internet search engines. With its use of the algorithm called PageRank, it re-

trieved search results that were much more relevant to the interests of its users.

The PageRank algorithm works on the basic theory that the more important and

useful a page is, the more other pages will link to it. Therefore, a page that

has many other pages linking to it is more important, and will appear higher in

the search results. This proved much more effective than competing search

engines at the time, many of which were still searching primarily by keywords,

something that was very easily abused. Since the introduction of the PageRank

algorithm, there has been many efforts towards the improvement and optimiza-

tion of the mathematics behind it. There have also been much work to apply

the PageRank algorithm to other fields and areas of research. These include

determining the relative importance of authors in published in scientific journals,

finding potential interactions in proteins, and determining the relative importance

of various species in a food web. This thesis will explore the history and math-

ematics behind the PageRank algorithm, and the optimizations and expanded

uses it has found over the years.
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CHAPTER I

INTRODUCTION

After Google was founded in 1999, it quickly became the leader of Internet

search engines. With the introduction of the PageRank algorithm, it changed

how web search providers found the search results for their users. The PageR-

ank algorithm works by giving individual web pages a rank, determined by the

number of links that are pointed towards the page. The more websites that link

to a site, the more valuable the content of that site is considered, and the higher

its rank. Some pages are more important than others, so the value of the links

to other websites is determined by the rank of the page it comes from. Google

included a number representing the PageRank of a webpage on its Google Tool-

bar when it launched in 2000. This put the PageRank in the public eye and

caused many to focus on how to manipulate the number to increase their web

traffic. While the PageRank algorithm was a major innovation for the search

engines of the Internet, it also has found use in other areas. This paper will

take a deep look into the PageRank algorithm, the methods it contains, and the

other places where it can be used. It will examine the background mathematics

necessary for the understanding of the algorithm, and walk through an example

system building up to the PageRank algorithm.
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CHAPTER II

BACKGROUND MATHEMATICS

2.1 Graph Theory

One of the essential foundations necessary for representing the Internet net-

work is graph theory. Graph theory is the study of graphs, mathematical struc-

tures that model pairwise relations between objects. The first paper that shows

graph theory was the ”Seven Bridges of Königsberg” by Euler (1759). The

Königsberg problem involved trying to find a path that traveled each of the seven

bridges connecting four landmasses, crossing each bridge only once. There

Euler (1759) laid the groundwork for the field by reducing the bridge problem

to a graph, where the landmasses were vertices and the bridges were edges.

Graphs may be made up of vertices and edges, where vertices are points on

the graph and the edges are the lines that connect them. An undirected graph

makes no distinctions of the direction of an edge between two vertices; while in

a directed graph, edges have directions.

A graph is made up of two sets, a set of vertices, V , and a set of pairs of

vertices, the edges, E. The undirected graph in Figure 2.1 can be written as:

V (G) = {A,B,C,D,E, F}

E(G) = {(A,B), (A,C), (A,D), (B,D), (C,D), (C,E), (D,E), (D,F ), (E,F )}

(II.1)
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Figure 2.1: Undirected and Directed Graph

The directed graph model in Figure 2.1 can be written as:

V (G) ={A,B,C,D,E, F}

E(G) ={(A,B), (A,C), (A,D), (B,A), (B,D), (C,A), (C,D),

(C,E), (D,B), (D,C), (D,E), (E,C), (E,F ), (F,D)}

(II.2)

Since the edges are directed in this graph, the edges such as (A,B) and (B,A)

are distinct and separate. Graphs have been used in many fields and for many

purposes, from modeling atomic structures to modeling traffic networks. They

have also been useful in computer science, and are an effective method of mod-

eling the structure of the Internet network.

2.1.1 Notation

The notation and mathematics we will use in this paper are explained here.

All matrices are n × n, and vectors are n × 1, and all matrix entries are real

numbers. The transpose of a vector v is the 1 × n vector vT . The vector e is a

3



column vector of all ones. PR(A) is the PageRank of the page A, the damping

factor is d, conventionally defined by Brin and Page (1998) as 0.85, and the

number of pages linked is N .

2.2 Application to the Internet

The importance of graph theory to the Internet is in how it is modeled. The

Internet is made up of many webpages, each containing information on its page.

Each page may also contain links to other pages. This can be modeled using

graph theory, where each page is a vertex, and the edges between each vertex

are equivalent to the links from one page to another. This can be modeled as

such:

Figure 2.2: Model Internet

This model of a simplified set of webpages shows a graph of directed edges,

representing pages and the outgoing links between them. This simplified model

of the Internet is easily expandable and is useful for describing the methods

used in the PageRank algorithm. This model can be represented in matrix form

where:
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Sij =

1 if pj links to pi

0 otherwise
(II.3)

For the model Internet network in Figure 2.2, the matrix is:

S =



0 1 1 1 0 0

1 0 0 1 0 0

1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 0 0 1

0 0 0 1 0 0


(II.4)

It is also useful to model it as:

Sij =

1/lpj if pj links to pi

0 otherwise
, (II.5)

Where lpj is equal to the number of outgoing links on page pj. The matrix for

the model Internet network in Figure 2.2 is then:

S =



0 1/3 1/3 1/3 0 0

1/2 0 0 1/2 0 0

1/3 0 0 1/3 1/3 0

0 1/3 0 0 1/3 1/3

0 0 1/2 0 0 1/2

0 0 0 1 0 0


(II.6)

This is also a row-stochastic matrix, which is shown in Section 2.3.
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2.3 Markov Chains

A row-stochastic matrix is a non-negative n×nmatrix where each row sums

to 1. It is important here for its use in Markov chains. A Markov chain is a

stochastic process that satisfies the Markov property, a memoryless property

where the probability of future behavior is independent of past behavior (Meyer,

2000). The Internet network matrix can also be defined by using the transition

probability:

Sij = P (Xt = pj|Xt−1 = pi) (II.7)

where each entry can be described as the odds that a web surfer would follow

a link to page pj, given that they were on page pi. Since: S = [Sij], then S is a

transition matrix.

With a transition matrix S we can then find a probability distribution vector p,

a non-negative vector where:

pT = (p1 p2 ... pn) such that
∑
k

pk = 1 (II.8)

In a Markov chain, the kth step probability distribution vector is:

pT (k) = (p1(k) p2(k) ... pn(k)), k = 1, 2, ..., where pj(k) = P (Xk = Sj) (II.9)

Where pj(k) is the probability of being on page pj on the kth step, and the intitial

distribution vector :

pT (0) = (p1(0) p2(0) ... pn(0)), where pj(0) = P (X0 = Sj) (II.10)
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is the probability that the Markov chain starts in Sj. These vectors can be used

with the Internet network matrix to show the likelihood of being on an individual

page pj.

It is important to be able to describe the kth step distribution for the given

initial distribution vector pT (0). Using elementary probability laws, it is easy to

determine that pT (1) = pT (0)S. Because a Markov chain has no memory, then

pT (2) = pT (1)S, which acts as if pT (1) was the initial distribution. Continuing on

in this manner with substitution reveals that:

pT (k) = pT (k − 1)S = pT (k − 2)S2 = ... = pT (0)Sk

pT (k) = pT (0)Sk

(II.11)

Where pij in S is the probability of moving from page pi to page pj in k steps.

Because the matrix S is a stochastic matrix and λ1 = 1 is the dominant

eigenvalue of S, the eigensystem:

πTS = πT , π ≥ 0, πTe = 1 (II.12)

has a unique solution π, called the stationary distribution vector. The vector

π is the dominant left eigenvector corresponding to λ1. The ith component πi

represents the percentage of being on page i. With the Internet network matrix,

this is useful for determining the likelihood of being on a webpage by following

links, and is an essential part of the PageRank algorithm, discussed more in

Section 3.2.

7



2.3.1 Stochastic Matrices

There are several properties that can be known from a stochastic matrix.

The spectral radius of a matrix is defined as:

ρ(A) = max
λϵσ(A)

|λ|, (II.13)

Where σ(A) is the set of distinct eigenvalues of the matrix. The infinite norm of

a matrix is defined as:

||A||∞ = max
i

∑
j

|aij|, (II.14)

The norm creates an upper bound on ρ(A), so it is also true that:

ρ(A) ≤ ||A|| (II.15)

All stochastic matrices have a row sum of 1, therefore ||A||∞ = 1. Equivalently,

Ae = e, where e is a vector of all ones. So for all stochastic matrices, there is

the associated eigenpair (1,e), and therefore:

1 ≤ ρ(A) ≤ ||A||∞ = 1 ⇒ ρ(A) = 1. (II.16)

We can show this to be true for the matrix for the model network given in II.6.

The eigenvalues for S are:

λ1 = 1, λ2 = 1/3, λ3 =
−
√
7− 1

6
, λ4 =

√
7− 1

6
. (II.17)

The dominant eigenvalue, where |λi| > |λj| for all j, is λ1 = 1. The eigenvectors

for S are:
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v1 =



1

1

1

1

1

1


v2 =



−17
9

−7
3

1
9

1
3

5
3

1


v3 =



√
7+1
3

−1

−
√
7−1
3

0

1

0


v4 =



−
√
7+1
3

−1
√
7−1
3

0

1

0


(II.18)

The eigenvector corresponding to the dominant eigenvalue, v1, is the domi-

nant eigenvector, which is shown to be positive. Since λ1 = 1 and v1 = e, it can

be seen that the stochastic matrix S has the eigenpair (1,e).

9



CHAPTER III

GOOGLE’S PAGERANK ALGORITHM

3.1 Background

In 1995, Brin and Page met at Stanford University, where Brin showed Page

around when he was considering attending graduate school there (How we

started and where we are today, n.d.). By the next year, Brin and Page had

formed a partnership working on a program called BackRub, a search engine

that used links to determine the importance of pages on the World Wide Web.

This was later renamed as Google™, and in 1998, Brin and Page founded the

company Google, Inc. The original algorithm and method for the Google search

engine was named PageRank. PageRank was described in a paper published

by Brin and Page (Brin & Page, 1998; Brin, Page, Motwani, & Winograd, 1999).

There, Brin and Page detailed the algorithm and justified the process by hypoth-

esizing a web surfer who would start on a random page and click on links until

they were bored and started on another random page. Over the years since Brin

and Page’s first publication, there has been much exploration and optimization

of their work. This paper will look at that and the history of Google and the

algorithm it uses.

3.2 PageRank Algorithm

In their 1998 paper, Brin and Page gave the algorithm for finding the PageR-

ank as:

PR(A) = (1− d) + d

[
PR(T1)

L(T1)
+ ...+

PR(Tn)

L(Tn)

]
, (III.1)
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where they find the PageRank (PR) of page A, by taking the the PageRank of all

pages that link to A, defined here as T , divided by the number of outgoing links

on each page, defined as L. The parameter d is a dampening factor, which can

be set from between 0 and 1, given as 0.85 in their paper. It is meant to simulate

the number of links that a random surfer will follow before they go to a random,

unlinked page.

Brin and Page (1998) also claimed that the PageRanks formed a probability

distribution over all web pages, so that the sum of all of them would be 1. This

is not the case with the algorithm they gave, so it must be modified as such:

PR(A) = (1− d)

N
+ d

[
PR(T1)

L(T1)
+ ...+

PR(Tn)

L(Tn)

]
, (III.2)

Where N is the total number of pages in the network. With this modification it

then forms a probability distribution. By performing a number of iterations of the

algorithm, the PageRanks of all pages in the network can be determined. This

can be written generally as:

PR(ai) =
(1− d)

N
+ d

∑
aj∈G(ai)

PR(aj)
L(aj)

, (III.3)

Where ai is a webpage, and aj is a page with an outgoing link to ai.

As shown in Section 2.2, the link matrix can be defined by:

Hij =

1/lpj if pj links to pi

0 otherwise
, (III.4)

Where lpj is equal to the number of outgoing links on page pj.

The PageRanks for the model network are shown in Figure 2.2. Giving each

page a starting PageRank value of 1
N
, then iterating the algorithm until the dif-
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ference between two iterations is less than an arbitrary small value, e:

PR =



1/6

1/6

1/6

1/6

1/6

1/6


, H =



0 1/3 1/3 1/3 0 0

1/2 0 0 1/2 0 0

1/3 0 0 1/3 1/3 0

0 1/3 0 0 1/3 1/3

0 0 1/2 0 0 1/2

0 0 0 1 0 0


, (III.5)

After the differences are less than e:

PR =



0.1203

0.1441

0.1203

0.3000

0.1441

0.1712


(III.6)

Here, the sum of all PageRanks equals 1. However, there are instances where

this approach does not work.

3.2.1 Dangling Nodes

The structure of the Internet network is not as neat as the example we have

given. Onemajor issue for the process we have shown so far is when awebpage

has no outgoing links. If the outgoing link from webpage F is removed,

12



Figure 3.2: Dangling Node

then the matrix for the model becomes:

H =



0 1/3 1/3 1/3 0 0

1/2 0 0 1/2 0 0

1/3 0 0 1/3 1/3 0

0 1/3 0 0 1/3 1/3

0 0 1/2 0 0 1/2

0 0 0 0 0 0


, (III.7)

PR =



0.0807

0.0772

0.0807

0.1035

0.0772

0.0871


(III.8)

It is clear that the sum of the PageRanks does not equal 1. This is because

the webpage F is a dangling node, a webpage with incoming links but no outgo-

13



ing links. In a follow up paper in 1999, Brin, Page, Motwani, andWinograd stated

that they removed all dangling nodes before calculating PageRank. There have

been several fixes for dangling nodes since then, which is explored more in Sec-

tion 4.2. One simple one was replacing the zero row for the dangling node in

the link matrix with a row where each entry is 1
N
, effectively creating a link from

the dangling node to every other page in the network.

Figure 3.2: Dangling Node Fix

Taking D as a column vector that identifies dangling nodes, and a uniform

row vector w = ( 1
N

1
N
... 1

N
),

M = H+ Dw, (III.9)

14



Recalculating III.5,

PR =



1/6

1/6

1/6

1/6

1/6

1/6


, M =



0 1/3 1/3 1/3 0 0

1/2 0 0 1/2 0 0

1/3 0 0 1/3 1/3 0

0 1/3 0 0 1/3 1/3

0 0 1/2 0 0 1/2

1/6 1/6 1/6 1/6 1/6 1/6


, (III.10)

And calculating the PageRank from that,

PR =



0.1593

0.1524

0.1593

0.2044

0.1524

0.1721


(III.11)

Here, the PageRanks sum to 1.

In matrix notation (Wills, 2007), the Google matrix can be created with the

equation:

G = d ∗M+ (1− d)e ∗ v (III.12)

Where e is a column vector of ones, and v is the personalization vector, a row

probability distribution vector which is normally given as v = ( 1
N

1
N
... 1

N
). The

PageRank algorithm can then be written in matrix notation as:

[rk]T = [rk−1]T ∗G where k = 1, 2, ..., (III.13)

15



Which is calculated where [r0]T = v, and continued until ||rk − rk−1|| < e, where

e is an arbitrarily small number. In Section 2.3, it is shown how to find π, the sta-

tionary distribution vector, which would be the same when ||rk − rk−1|| = 0. For

the PageRank algorithm, an exact solution is not necessary, and can be pro-

hibitively expensive to compute. These are the algorithms and methods used

by Brin and Page in their original papers. Other approaches and optimizations

of the methods are explored in Chapter IV.
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CHAPTER IV

USES IN WEB SEARCHES

4.1 Google’s Changes

Google has launched many updates over the years in a constant attempt to

combat spam and make sure that their search results show the most relevant

sites (Wall, 2009-2017). On December 1, 2000, Google introduced the PageR-

ank Toolbar, an update that added several search features to a toolbar on the

browser. One important part of the update was the addition of a display of the

PageRank of the site, which brought the PageRank number into the public eye.

Google has done many minor updates over the years that were not doc-

umented for the public, but major ones have been. After a series of uncon-

firmed updates, Google put out the Florida update, which drastically changed

the PageRanks of many webpages, mostly cracking down on some deceptive

tactics to adjust PageRank. After that came the Brandy update, with a massive

index expansion, synonym expansion, and increased attention to anchor text.

The next major update was actually a collective effort with Google, Yahoo!, and

Microsoft introducing the nofollow attribute, which could be added to links in

webpages to show they were not approved by the page and not to be counted

in the PageRanking. This helped deal with spamming of links in comments and

forums. In June of 2005, Google introduced the Personalized Search, which

integrated a user’s search history into their search results.

Over the next few years, Google put out updates Jagger, Big Daddy, Vince,

and Mayday, with mostly minor changes. Caffeine, an update in June of 2010,

introduced major changes and integration of crawling and indexing, resulting

in a fresher index. Several more updates rolled out until February 2010 with
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the Panda update, which cracked down on content farms and pages with high

amounts of ads. More updates followed, with Venice integrating more local

search data, Penguin adjusting more spam factors, Exact-Match Domain Up-

date which changed how it handled exact match domains, and the Payday

Loan update, which focused on spammy sites such as payday loans and porn.

The update Hummingbird in August 2013 was a core algorithm update, and

then Pigeon updated how it handled local results. In April 2013, Google re-

leased the Mobile-Friendly Update, which separated mobile rankings for web-

sites with mobile friendly sites, and then the Quality update was a core algorithm

change. In October 2015, Google announced that they had had an update called

RankBrain, which incorporated machine learning into the algorithm. There have

been many other minor updates to Google as it continues to improve its service.

Google has put much work into improving their search engine, a large part of

which was combating spam and other methods of search engine manipulation.

Other changes have addressed improving the precision of the results in regards

to the search terms used, or in regards to the location of the searcher. Through-

out all of these updates, the PageRank algorithm has remained an important

part of the search engine.

4.2 Optimization of PageRank

The PageRank algorithm is an effective method for ranking importance in a

link-based structure. However, it can have many issues, including a high com-

putational cost in large structures, and its vulnerabilities to manipulations. There

has been much work investigating these issues.
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4.2.1 Performance Improvements

In their 2007 paper, Wills explored the use of the power method to compute

the PageRank vector. The convergence rate for the power method depends

only on the damping factor, d. While the power method is easily used in smaller

systems, the Google matrix for the entire Internet network contains more than

25 billion rows and columns. Therefore, it is not feasible to compute an exact

solution, but to approximate the PageRank.

As shown in equation III.13, the PageRank r can be calculated with the power

method. However, with the large size of the Google matrix G, it becomes com-

putationally expensive to calculate it this way. Wills shows that the equation can

be broken down in a way that is cheaper to calculate. By taking III.12 and III.9,

and replacing it into III.13, we obtain:

[rk]T = [rk−1]T (d(H+ Dw) + (1− d)ev)

= d[rk−1]TH+ d([rk−1]TD)w+ (1− d)([rk−1]Te)v

= d[rk−1]TH+ d([rk−1]TD)w+ (1− d)v

(IV.1)

Where [rk−1]T ∗ e = 1, because [rk−1]T is a probability vector, which sums to 1.

The formula is the sum of three vectors, with the only vector-matrix multiplication

being with H. Since the H matrix has more zero elements than G, it is cheaper

to calculate.

Wills also looked at the termination criteria of the power method. Themethod

we have shown so far is to use the power method until ||rk−rk−1|| < e. While this

is effective for finding the PageRanks, if the only interest is in providing a ranking

to the webpages, it may be easier to solve only until a useful ranking can be ob-

tained. For this, instead of a termination criteria being when ||rk−rk−1|| < e, they

instead measure the correlation between the rankings in successive iteration,

measured as the Kendall’s τ coefficient.
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The Kendall’s τ coefficient is a way to measure the correlation between two

list rankings. τ is defined as:

τ =
1− 2s

1
2
n(n− 1)

(IV.2)

Where s, Kendall’s distance, is the number of different elements in the lists of

ordered pairs in two rankings of n items. When τ = 0, then the two lists are

identical.

There are issues with the different ranked approximations. Wills listed sev-

eral problems, where correct ranking could occur in one iteration and be de-

stroyed in the next, instances where small residual norm does not guarantee a

correct ranking, instances where τ = 0 does not guarantee a correct ranking,

and instances where the correct ranking occurs much earlier than the termi-

nation criteria. Wills created their own criteria for the ranking of the elements,

described by them in theorem 4.5 and 4.7 (2007). Wills used these theorems to

produce a computationally efficient criterion for ranking PageRank.

4.2.2 Combating Manipulation

Since the original PageRank algorithm, dealing with manipulation by web-

pages has been a major issue. This has been a problem mostly through spam,

or the insertion of large numbers of links to point to a page in an attempt to inflate

their PageRank number artificially.

In their 2003 paper, Haveliwala and Kamvar showed how the second eigen-

value of the Google matrix could be used to detect spam, as well as speed up

PageRank computation. They show that for the web hyperlink matrix that the

second eigenvalue λ2 = c, where c is the damping number used in the PageR-

ank algorithm. This can be useful to make PageRank computations faster by

not having to compute λ2. It can also help identify spam sites. The eigenvec-
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tors that correspond to λ2 = c are associated with subgraphs of the web link

graph which may have incoming edges but no outgoing edges, a structure often

generated by link spammers to increase their rank.

In their 2015 paper, Sangers and van Gijzen built on that to show how one

could deal with link spamming using the eigenvectors related to the second

eigenvalue of the Google Matrix. They found that a set of states S is a closed

subset of the Google matrix G only if i ∈ S and j /∈ S, then that implies that

pij = 0. In other words, that there are no outgoing connections from the subset

to the rest of the web. S is an irreducible closed subset if there is no proper sub-

set of S that is a closed subset. Irreducible closed subsets correspond to the

structures built by link spammers to hoard PageRank. The eigenvectors corre-

sponding to the second eigenvalues of the Google matrix have a non-zero value

corresponding to the irreducible closed subsets and a zero in other nodes. One

solution proposed by them was to utilize the personalization vector v to lower

the PageRank of suspected pages, by giving a small value in the correspond-

ing node. This personalization vector allows for adjustments to the PageRank

values without changing the basic formula.

4.3 Other Search Engines

Google was built using the PageRank to weigh web pages in relevance to

searches. Google uses PageRank in combination with weighing the text and

contents of the page, link text, and even capitalization of words to determine

relevance of the page to the search terms. Other search services also started

using similar methods to rank web pages for searches. This paper explores

more of the variations that other services may use, and how Google may have

changed what they have done in the past 20 years (Facts about Google and

Competition, n.d.).
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One of the earliest search engines was Archie, created in 1990 by Em-

tage. This was basically a database of web file names with a regular expression

matcher to serve user queries. In 1993 came Jumpstation, a search engine that

crawled the Internet for page titles and headers, and returned them for simple

search matches. Webcrawler was released in April of 1994, the first engine to

allow users to search for any word in the webpage. Lycos soon followed in July

of 1994, with ranked relevance retrieval, prefix matching, and word proximity

bonuses in their search, as well as a large catalog. Altavista came on Decem-

ber of 1995, one of the first to allow natural language queries. May of 1996

saw the release of the HotBot search site. In April of 1997, Ask Jeeves was

launched as a natural language search engine; using human editors to match

search queries, and ranked results based on popularity. At this time is when

Google entered the scene, becoming one of the major search engines. Ya-

hoo! used Google as its search engine provider until 2003, when they started

using their own search engine, from all of the companies they had acquired.

MSN was launched in 1998, owned by Microsoft, which used the Hotbot search

engine until 2005, when they developed their own. In 2009, they changed its

name to Bing. In July of 2009, Microsoft and Yahoo! announced that the Ya-

hoo! search engine would be powered by Bing. Many of the search sites have

shut down or been bought out by others, leaving it now with Google at the lead,

with 1,800,000,000 monthly visitors, followed by Bing at 500,000,000, Yahoo!

at 490,000,000, and Ask Jeeves at 300,000,000 as of July 2017 ”Top 15 Most

Popular Search Engines June 2017”.
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CHAPTER V

USES IN CITATION NETWORKS

5.1 Measurement of Author Impact

One of the areas that the PageRank algorithm has been most extensively

studied is in citation networks. The measurements of a researcher’s productivity

for many years have mostly been by the number of publications that they have

released. In 1972, Garfield proposed for scientific journals a measurement of

their impact on the scientific community. Their impact factor was measured by

taking the average of the number of citations that a journal received in the past

two years. This was done in an attempt to curtail the large number of what

was seen as unnecessary journals at the time. It has later been adapted to use

for individuals to measure their scientific worth, taking the average number of

citations they received across all of their published work.

In order to determine the impact of those publications, it is common to mea-

sure the number of times that each work has been cited. This has been used

for various procedures such as hiring, promoting, or awarding grants, but it also

has faced criticism. While a paper may have a large number of citations, it may

be only due to how well-known the work is, while another work may have a sig-

nificant influence in the field but is only referenced by a handful of other papers.

By applying the PageRank algorithm to the process, it can be used to measure

the relative importance of papers and their authors, where even almost forgotten

papers that influenced later important works can be shown for their value.

Another method was proposed by Hirsch in his 2005 paper. The Hirsch in-

dex or h-index is a number to characterize the scientific impact of a researcher.

The h-index is the maximum value of the author’s h number of publications that
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have h citations. With this method, the h-index only changes if the number of

citations a new publication receives is higher than the previous h-index value

of the author. Hirsch showed that with this method, the physicist Nobel prize

winners of the last 20 years had larger than average h-index numbers.

5.2 Potential Improvements

In their paper, Chen, Xie, Maslov, and Redner (2007) used the PageRank

algorithm to assess the relative importance of papers beyond citation count,

measured as their Google number. They attempt to take into account the effect

of an important paper citing another, and lessen the effect of papers with large

citation counts. With a simple replacement of each paper for a webpage, and

each citation for an outgoing link, the PageRank algorithm is used to ranks the

importance of papers. They took the damping number d = 0.5, with the justifi-

cation that by the second reference, you would be likely to find a paper that was

referenced by both the original and referenced papers.

In Chen et al.’s (2007) findings, they found that using the PageRank algo-

rithm resulted in similar results compared to citation count for most papers, but

that in several cases, papers appeared with high Google numbers that had rel-

atively low citation counts. Many of those papers were easily recognized as

seminal publications. One in particular was noteworthy for having an extremely

low citation rank for its Google number, The Theory of Complex Spectra by J. C.

Slater. This paper introduced the determinant form for the many-body spectra,

which is so well known that few papers bother to cite the original work. This is

one of the cases where the referenced paper was brought up in the rankings

by the relative importance of papers that cite it. It is a case for the use of the

PageRank algorithm to give importance beyond a simple citation count.
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Yan and Ding (2010) explored more with the algorithm by applying it to co-

authorship network analysis in the informetrics community. Yan and Ding (2010)

worked to measure both the authors’ academic impact via citation count, as well

as their community impact, via co-authorship of papers. By measuring their

community impact, Yan and Ding sought to quantify an author’s social capital.

Yan and Ding extended PageRank by integrating both the community impact

through co-authorship and their academic impact through citations.

For a co-authorship network, a node represents an author, edges repre-

sent the coauthor relation, and the weight of each edge is the number of co-

authorships between each author. Through Yan and Ding’s modification of the

PageRank algorithm, they obtained the formula:

PR_W (p) = (1− d)
CC(p)∑N

j=1 CC(pj)
+ d

k∑
i=1

PR_W (pi)

C(pi)
(V.1)

The main adjustment in this equation is the substitution of 1
N
, where N is the

number of nodes in the network, with CC(p)∑N
j=1 CC(pj)

, where CC(p) is the number

of citations pointing to the author p, and
∑N

j=1CC(pj) is the citation count of

all nodes in the network. This weighs the algorithm toward authors with higher

citation counts. By adjusting the damping number d, Yan and Ding adjust the

weight given to the citation ranking versus the weight given to the coauthorship

value.

Since Yan and Ding incorporated citation count into their algorithm, it was

not a suitable criterion for evaluating their findings. Instead, Yan and Ding com-

pared the results of their algorithm’s rankings of authors to the program commit-

tee (PC) membership data for 12 International Society for Scientometrics and

Informetrics (ISSI) conferences and by comparing how many had received the

Derek de Solla Price Award. Yan and Ding found that the PR_W algorithm was
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able to rank award winners at the top of the list accurately, and outperformed

both the standard PR and the h-index.

5.3 Contrary Findings

In a 2014 study by Fiala, Šubelj, Žitnik, and Bajec (2015), they took three

large datasets of papers in the computer science fields and analyzed them us-

ing a variety of different ranking methods. Fiala et al. (2015) compared 12 dif-

ferent methods, including citation count, in-degree, where they only count one

citation from each author, and HITS, a method similar to PageRank. Fiala et al.

(2015) also compared the standard PageRank algorithm and alterations of the

algorithm, using various methods to weigh it, taking into account the number of

citations, collaborations, and common publications between authors. Fiala et

al. (2015) used a modified version of the PageRank algorithm:

PR(u) =
(1− d)

|V |
+ d

∑
(v,u)∈E

PR(v)Ω (V.2)

where Ω = σv,k/
∑

(v,j)ϵE wv,j, and

σv,k =
wv,k

(cv,k + 1)/(bv,k + 1)
∑

(v,j)∈E wv,j

(V.3)

where V is the set of authors, E is the set of edges, and w, b, and c are coeffi-

cients used to produce a weight for each citation. The coefficients are defined

where w is the number of citations between authors, c is the number of collabo-

rations between authors, and b is the number of common publications between

them. By adjusting the values of those coefficients, Fiala et al. (2015) obtained a

variety of algorithms to work with. Fiala et al. (2015) compared the results from

their rankings to the editorial board membership of prestigious journals. After

analyzing their data sets for each variation, they concluded that the PageRank
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method and all of its variations did not outperform citation counts. The method

that they found to return the most accurate results was the in-degree citation

count, which outperformed not just the PageRank algorithms, but also the nor-

mal citation count.

While many of the earlier studies on the application of the PageRank algo-

rithm show potential in its use for citation networks, this study shows it to not be

a clear improvement. Many different factors must be taken into account, and

what may work for one field of study may not for another. Although there are

certain situations where the PageRank algorithm produces results the citation

count cannot, the work necessary to use PageRank for citation networks is not

insubstantial, especially compared to the normal citation network.
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CHAPTER VI

OTHER APPLICATIONS OF PAGERANK

6.1 NFL Rankings

The PageRank algorithm has been applied to other fields as well. Zack,

Lamb, and Ball (2012) applied it in an effort to rank NFL teams accurately. Zack

et al. (2012) applied what they refer to as the GEM method, which uses the

margin of victory between two teams to weigh the link between them. If teams

play multiple times, then the sum of points won by is weighted on the outgoing

link from each victorious team. By using this method, Zack et al. (2012) build

the hyperlink matrix:

Mij =

1/
∑n

m=1(vim − vjm) if vi is greater than vj

0 otherwise, or if n = 0
(VI.1)

Where v is the score from each team in their games, and n is the number of

games between teams. Zack et al. (2012) then did the same thing for total

yardage, turnovers, and time of possession, with the score rankings noted as

GEM 1 and the composite as GEM 2. They compared them using a Kendall

rank correlation, defined as τ = (nc − nd)/(n(n− 1)/2), where nc is the number

of concordant pairs and nd is the number of discordant pairs in the rankings.

After Zack et al. (2012) removed the least-correlated statistic, they found that

they achieved a Kendall rating of τ = 0.60. The method Zack et al. (2012) used

had room for variability and could be adjusted for use with other sports as well.
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6.2 Food Webs

Allesina and Pascual (2009) used the PageRank algorithm tomeasure species

relative importance for co-extinction. In their 2009 paper, Allesina and Pas-

cual sought to analyze complex ecological networks in an attempt to determine

the importance of individual species in the food web. A food web can be cre-

ated by taking nodes as different species in the environment and the directed

edges as the transfer of energy from one species to another, most often by being

eaten. One difference between this and the basic PageRank is that importance

is flipped, so that a species is important if it points to, or in other words is eaten

by, an important species. Food webs are also do not make an irreducible matrix,

but a damping factor is unrealistic, since food cannot randomly ”jump” around

a food web. Allesina and Pascual (2009) dealt with this by adding a special

node, a ”root,” which stood for the food source of all of the primary producers in

the food web. Every node also had a link from itself to the root, which signified

the intrinsic loss of matter of a species, which builds into detritus and is recy-

cled into the food web. By applying these modifications, the food web becomes

irreducible.

For testing, Allesina and Pascual (2009) performed in-silico extinction ex-

periments. Each step Allesina and Pascual (2009) removed a single species

and recorded the number of secondary extinctions. There were several algo-

rithms used to determine the species removed. The PageRank algorithm was

used to remove the species with the highest PageRank at each step. Allesina

and Pascual (2009) also measured the effects of the removal of the species

with the highest number of connections, and the removal of species according

to their closeness centrality, where nodes are considered highly central if they

have a short distance to many nodes. Also measured was the betweenness

centrality, where a node has high betweenness if it lies on the shortest path of
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many couples of nodes, and removal according to dominators, where one node

is dominated by another if every path from the root to itself contains the other,

so that if the other goes extinct then it must as well.

Allesina and Pascual (2009) applied these algorithms to 12 published food

webs. To compare these results, they programmed a genetic algorithm to find

the best possible sequence with an evolutionary search, which has been shown

to be effective although computationally expensive. Compared to the genetic

algorithm, most of the methods did not perform well. The majority did not match

the effectiveness of the genetic algorithm. Of the ones that were comparable,

the removal procedure based on dominators only did as well 2/3 of the time, but

the PageRank algorithm matched the genetic algorithm 11 out of 12 times.

In an attempt to further improve the PageRank method, Allesina and Pas-

cual (2009) reclassified some of the links in the food web as either ”redundant”

or ”functional” based upon their effects on secondary extinctions. By remov-

ing the redundant connections, Allesina and Pascual (2009) built a simplified

food web that was just as robust as the original. When the PageRank algo-

rithm was tested with this, the results matched the genetic algorithm. With this,

Allesina and Pascual (2009) were able to provide an effective algorithm to rank

species importance in the food web, and show that it was much more effective

that counting the number of connections.

6.3 Protein Networks

Ivan and Gorlmusz (2011) applied the PageRank algorithm to protein inter-

action networks. Ivan and Gorlmusz (2011) demonstrated it on the metabolic

network data of the tuberculosis bacterium and the proteomics analysis of the

blood of melanoma patients. Ivan and Gorlmusz (2011) used the PageRank

algorithm, stating one of its best attributes being its stability, because the pro-
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tein interaction networks contained many false negative and positive interaction

edges. Ivan and Gorlmusz (2011) gave the stability estimation of PageRank as:

||p− p̂||1 ≤
2(1− c)

c

∑
j∈U

pj (VI.2)

Where the ith coordinate of vector p gives the PageRank of vertex i, and vector

p̂ gives the PageRank of the vertices after the edges with endpoints in set U

are changed. Therefore, if only the edges between the less important nodes

are changed, then the effects of the change on the PageRank remain low. This

was important because of the often unreliable mapping of less important protein

interactions.

Because the PageRank algorithmworks with a directed graph, Ivan andGorl-

musz (2011) used it with a metabolic graph, where nodes represent chemical

reactions and are connected with a directed edge if one reaction produces a

product that is used by another reaction. After computing the PageRank for the

metabolic graph ofMycobacterium tuberculosis, Ivan and Gorlmusz (2011) were

able to identify nodes that were of special interest. These nodes were chemical

reactions that had a PageRank that was larger than proportional to their degree,

which meant that in a random walk they are hit more often than others with the

same network degree. This means that, similar to how Chen et al. (2007) used

it to find lesser known but still very important scientific papers, Ivan and Gorl-

musz (2011) were able to identify important chemical reactions that did not have

a large number of links to other reactions.

Ivan and Gorlmusz (2011) also wanted to investigate protein-protein inter-

action (PPI) networks, which are undirected graph networks where the nodes

are proteins and the edges are interactions between them. Ivan and Gorlmusz

(2011) were able to use the personalized PageRank also developed by Brin et

al. (1999) to analyze the proteomics data of melanoma patients. By adjusting
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the damping factor, Ivan and Gorlmusz (2011) were able to personalize the al-

gorithm for 13 different proteins found in the study. Then Ivan and Gorlmusz

(2011) applied the personalized algorithm to the human PPI graph HPRD (Hu-

man Protein Reference Database). Ivan and Gorlmusz (2011) found that of the

proteins with the highest PageRank, 10 out of the 13 proteins that the algorithm

was personalized to appeared in the top 22, and another 10 had clear connec-

tions to cancer.

In a 2013 paper, Bánky, Iván, and Grolmusz introduced a new method that

would compensate for the weight that smaller degree nodes compared to larger

degree nodes, which are sometimes simply removed from the analysis to pre-

vent them from overwhelming the smaller nodes. Bánky et al. (2013) showed

that in undirected graphs, the PageRank of a node is proportional to its degree

if the personalization vector was proportional. The PageRank with a personal-

ization vector w such that:

w =

(
d(v1)

2|E|
,
d(v2)

2|E|
, ...,

d(vn)

2|E|

)T

, (VI.3)

Where d(vi) is the degree of vertex vi and |E| is the number of edges in the

graph, is equal to w for undirected graphs. This allowed Bánky et al. (2013) to

factor out the relative degreeness from each vertex.

In order to use a similar method for directed graphs, Bánky et al. (2013)

defined the personalization vector w:

w =

(
dr(v1)

|E|
,
dr(v2)

|E|
, ...,

dr(vn)

|E|

)T

, (VI.4)
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Where dr(v) is the number of directed edges pointed at vertex v. Then they

defined a ”revitalized personalized PageRank”, rPPR, where:

rPPR(v) = PageRank(v)
dr(v)

(VI.5)

Bánky et al. (2013) applied this method to several different metabolic net-

works, Mycobacterium tuberculosis, Plasmodium falciparum, and the MRSA

Staphylococcus aureus SAA strain. By only looking at the rPPR, and not any

of the known properties of the proteins aside from that, they were able to iden-

tify many protein targets that are also known to have proven biological interest.

The results gave higher scores to nodes with relatively high PageRanks com-

pared to their degrees. This can identify nodes of high importance and may

be promising new drug targets that are not hubs of the network. Using these

results, they hope to be able to identify new important targets for further inves-

tigation. With this method, Bánky et al. (2013) were confident that they would

be able to use the PageRank algorithm to help find low-degree nodes with high

intrinsic metabolic functionality. By using the personalized vector to factor out

nodes with high degrees, Bánky et al. (2013) were able to find the non-hub

nodes corresponding to essential reactions.
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CHAPTER VII

CONCLUSION

The PageRank algorithm had a significant impact on the Internet, and that

impact has extended to other fields as well. It has been shown to improve rank-

ing methods for many areas, such as author impacts, protein networks, and food

webs, and has the potential to improve many others. The PageRank algorithm

is a versatile enough method to be applied to many different situations, and can

be modified for more complex situations.
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