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ABSTRACT 

CYNTHIA ANN HITT 

OPTIMAL CONTROL THEORY APPLIED TO A COOPERATIVE GAME 

BETWEE A MANUFACTURER AND A RETAILER 

MAY2006 

In this work, we consider a process of production, storage and sales of a perishable 

consum r good as a cooperative game between a manufacturer and a retailer. Both parties 

want to choose such a strategy ( optimal production plan, optimal reselling plan, etc.) that will 

maximize their cumulative profits. The problem is reduced to the maximizing of the 

corre ponding functionals of profit and solved with the use of the Optimal Control Theory. 

omputer programs are written in MAPLE in order to demonstrate and confirm our analytical 

re ults. 
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CHAPTER I 

INTRODUCTION 

Global economic competition combined with advancing manufacturing technologies has 

created a need for dynamical models, simulating complex economic conditions. With the 

increasingly available mathematical software and computer memory capability the models are 

not just theoretical but practical. Most of the economic models can be created with differential 

equations. fter describing the microeconomic situation with differential equations, the 

system will have many different solutions, depending on the various input parameters. 

Optimally we want to control the system, to make it applicable to our specific situation and 

result in practical, usable solutions (outputs). 

conomic problems can be addressed with the use of dynamic optimization modeling. 

Optimal ( or be t choice) use of resources, production rate, at a point of time over time, 

involves both static and dynamic optimization. The choice between less production now and 

more production later can be classified as a dynamic optimization problem. If the optimal 

tatic conditions are determined we might automatically want to apply those to a dynamic 

situation, believing that it would be optimal for that case as well. This is not necessarily the 

case. 
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Different statically optimal models trace out different paths, not all of which are 

dynamically optimal. Pontryagin's Maximum Principal, which is the major principal of Optimal 

Control Theory, is an important tool of dynamic optimization. Optimal Control involves 

choosing among all the" admissible control variables u( t) , the one which will bring a dynamic 

sys tem from some initial state x(t 0 ) at time 10 to some terminal state x(T), at some 

terminal time T , in such a way as to impart a maximum or minimum to a certain objective 

functional which is also called a performance index~'[l]. 

The state of a dynamic system is a collection of numbers x(t) = (x 1(t),x2 (t), ... ,x,,(t)) 

which, once specified at time t = t O , are determined for all times t ~ t Oby the choice of the 

control vector u(t) = (u 1 (t), ... ,u,(t)). The numbers xi(t) (1 ~ i ~ n) are coordinates. 

Similarly, u(t) is an r-control vector. [2] 

The state at time t of a system is represented by a system of differential equations, which is 

known as the dynamic system. For example: 

x(t) = J[x(t), u(t), t] 

The control variables for the dynamic systems are those which obey the various restrictions 

imposed by the physical conditions of the problem. If u( t) is a function of time only, we 

have an open-loop control. An example of an open loop control is the setting of a washing 

machine or dishwasher in which each cycle is of a given time. If u( t) is a function of some 

state variables, for example: u(t) = u[x( t), t], it is a closed loop control. A thermostat 

control, which is a function of the room temperature, is a closed loop control. [2] 
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Control variables must be chosen in order to maximize or minimize some functional: 

T 

J = J /0 (x, u,t)dt • max 
l o 

In this work, we will be using game theory and optimal control theory in order to develop 

and investigate a realistic and practical model of the process of production, storage and sales of 

a peri hable consumer good. Since optimal control theory has as its objective the maximization 

of profit or the minimization of the cost of an economic or physical process, we can summarize 

our work a follows: 

1. Write a mathematical representation of the process to be controlled. 

2. Define and state the physical constraints of the model. 

3. pecify what performance criterion will be optimal. 

4. olv the closed loop control problem analytically and numerically. 

5. Write computer programs in order to demonstrate results of the investigation. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

Optimal control theory is a recent development for solving various problems in 

ngineering and economics. Calculus of variation was useful for optimization, but when a 

bounded control wa added, it could not be applied. In 1959 Pontryagin published a work 

outlining the theory later referred to as the Maximum Principal; this principal became the 

ba is of th optimal control theory. Optimal control theory is being used in many applied 

mathematics and economic areas. [3] 

am theory foundations were first developed by John von Neumann, who in 1928 

prov d the basic MiniMax theorem, and with the publication in 1944 of the Theory of Games and 

Economic Behavior, the field was established. John von Neumann, a mathematician, collaborated 

with economist Oskar Morgenstern to write The Theory of Games and Economic Behavior. In the 

book they tated:'We hope, however, to obtain a real understanding of the problem of 

exchange by studying it from an altogether different angle; this is, from the perspective of a 

'game of trategy'~' Morton D. Davis in his book [4] , states~'the uniqueness of game theory 

problems are that there are others present who are making decisions in accordance with their 

own wishes, and they must be taken into account. While you (as one player) are trying to 

figure out what they are doing, they will be trying to figure out what you are doing'. In a Fortune 

magazine article John McDonald (1970), writing about executive decision making, 
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noted that game theory is'hniquely qualified to make sense of the forces at worlf and 

described how it could be'i:elated .. to the strategies of some actual corporations caught up in 

conglomerate warfare'. He saw airline competition, product diversification, and conglomerate 

absorption as fertile areas in which to use game theory. In the business world it is also used to 

deri e optimal pricing and competitive bidding strategies and to make investment decisions. 

[1, 4] Coop rative game theory developed with the player's results being different from the 

traditional goal of many common games. With traditional games there is a winner and a loser, 

or a p rson who does not gain as much as the winner. In some games the winner's success is 

based on a dir ct ratio with the loss of the other player. In cooperative games with two or 

more play rs, the players do not compete against each other, but work together to a stated 

goal. n xampl of a cooperative game in a recreational setting is called 'stand-up'. A group 

of player itti.ng down in a circle, facing outward, with their arms linked, attempt to stand up. 

The players will ach have to cooperate and help each other to achieve their goal. An example 

of a cooperative game in a business environment would be the success of a failing business. 

The financial recovery of Chrysler Motor Company from bankruptcy with Lee Iacocca as the 

chairman in th 197(Js is a good example of every team player working for the success of the 

company. The players in a cooperative game, as the name suggests, cooperate with each other 

for the success of both or all parties. The players working together strive to a common goal 

that benefits all the parties involved. [4] 

Optimal control theory is finding a chosen set of controls, so as to maximize or minimize 

an objective that has been chosen. Ponder the example of a fish stock from the book of 

Robert Shone [3] :''Consider a fish stock which has some natural rate of growth and which is 
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harve ted. Too much harvesting could endanger the survival of the fish, too little and profits 

are forgone. Of course, harvesting takes place over time. The obvious question is: \vhat is the 

best harvesting rate, i.e., what is the optimal harvesting?' The answer to this question requires 

an optimal path or trqjectory to be identified. 'Best itself requires us to specify a criterion by which 

to choo e between alternate paths. Some policy implies there is a means to influence 

(control) the situation~' There are a number of ways to solve such a control problem: calculus 

of variation , dynamic programming and optimal control theory are the most common. 

In thi paper we will use optimal control theory and the Maximum Principle developed by 

Lev Pontryagin [1] to investigate a microeconomic control model. For instance, the model of 

production, storage and sales of a consumer good, proposed and completely investigated by 

Dr. Ellina Grigorieva [5, 6], is very complex and interesting and can be chosen as our basic 

model: 

x1 (t) = -n P (Y - x 2 (t))x, (t) + u(t), t e [O,T] 

x2 (t) = n P (Y - x 2 (t))xi (t)- k1 x 2 (t) 

x3 (t) = pn P (Y - x 2 (t))x, (t)- k2x, (t)- u(t) 

Xi (0) = x~ ;?: 0, x 2 (0) = x~ ~ 0, x 3 (0) = x~ ;?: 0 

(2. 1) 

where Xi, x
2

, and x 3 are variables and T, Y, k,, k2 , n P and pare constant parameters. 

They mean the following: 

x 
1 

( t) represents the amount of a consumer good on the market, 

x 2 (t) represents the quantity of the good unused in consumers' homes, 

x 3 (t) represents the profit, 

u(t) represents the rate of production, 
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kl represents the speed of consumption, 

k2 repre ents cost of storing a unit of unsold good per unit of time, 

Y represents potential demand, 

t represents time, 

T repre ents the end of the time interval 

p represents the price, 

n P represents the coefficient of the rate of sales of the consumer good. 

However, in thi model (2.1) the author did not consider the important role of the 

cu tomer, who buys the manufacturers product. Paraev in his recent paper [7] includes a 

customer in the model and assumes that the customer gets a profit from buying and reselling 

the product. What kind of profit? The customer can use the good as a supply for his own 

production activity or he can just resell it at the higher price. Then the customer can choose 

such a buying and reselling policy that maximizes his cumulative profit. Thus, both 

manufacturer and the customer (buyer) want to maximize their profits. We understand that 

th ir actions d pend on each other. Therefore, we have a cooperative game situation. Let us 

ee how Paraev modified model (2.1): 

{
~(t) = u(t) - P, 

y(t) = pl -P2 

Here u(t) is the rate of production, 

P, = x( t)v( t) is the rate of purchasing the good. 

v(t) the coefficient of purchasing the good, 

P2 = y(t)w(t)is the rate of reselling the good, 

7 
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w(t) the coefficient of reselling the good. 

Paraev solved the two-aiteria optimal control problem for model (2.2) and obtained the 

optimal solution. He found such solutions when both players have positive profit. Otherwise, 

one of the two will not"participate in the game'. 

However, hi model (2. 2), which describes a perishable good, is too simple. In fact, 

p rishable goods can be spoiled either in the manufacturers or in the retailer's storage, with rate 

of spoilage, q. This additional condition makes the problem more complex but also more 

realistic. Our model, which is a combination of models (2.1) and (2.2), will be described in the 

following chapter. 
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CHAPTER III 

MODEL 

T he model investigated in this paper will involve a manufacturer, which produces, stores, 

and sells a perishable consumer product, and a retailer, who buys the manufacturers product 

and resells it to the third party. 

We will find parameters of the model at which both a manufacturing company and the 

reseller obtain their maximum profit. By having both players with the same goal and using the 

same manufactured item, we can see the application of the cooperative game theory in effect. 

Both the manufacturer and the reseller depend on each other. The manufacturer needs 

someone to buy his product at a profit and the reseller needs a product he can resell, also for a 

profit. Of course, if the item is not manufactured, then the reseller cannot make his profit and 

the manufacturer will not have his factory without a product. 

The con um r product in this model might be a food item or a medication, both of which 

have an allotted shelf life. Our consumer could have several of this product in his possession 

that would indicate that he does not need to purchase this item until his supply is consumed. 

The unconsumed product will inhibit the reseller from selling that item to that consumer. This 

could mean that the retailer will have the product in his possession and have to pay for storage. 

That would reduce the retailer's profit. 
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We are exploring our model as a cooperative game, which means that the manufacturing 

and retailing event must be a win-win' outcome. The manufacturer will want to produce the 

right amount of the product in order for him to be selling it at the lowest price. The reseller 

will want to sell the right amount in order for him to buy the product at the lowest price and 

th n re ell at a profit. What if the manufacturer makes one item a day for 5 days and sells 

each at a very high price. The reseller must buy at a high price and only has 5 items to resell at 

this high pric . The reseller will only be selling to potentially 5 people, who are willing or 

wanting to pay this high amount. 

Will th manufacturing plant be able to continue in business if it only produces 5 of this 

item a we k? Will the utilities, taxes, lease, benefits, wages, profit sharing, and capital 

improvements be able to be realized from producing 5 items a week? From the reseller's point 

of vi w, if he has only five items a week to purchase from the manufacturer, does that supply 

enough item to resell in order to make enough profit to purchase more inventory ? The 

re eller will have some of the same expenses as the manufacturer: lease, utilities, taxes, benefits, 

wage , profit haring, and also a much larger marketing expense. Will the 5 items produced 

each week b able to sustain each company? 
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Our model may be described as: 

Model 

!
x(t) = -v(t)x(t)- q. x(t) + u(t) 

y(t): v(t)x(t) -_w(t)y(t)- q · y(t) 

x(O)-x0 ,y(O)-y0 , x 0 ,y0 >0 (3.1) 

x( t) repre ents the amount of manufactured items at time t, and x(0) is its initial condition. 

y(t) repre ents the amount of retailer sales at time t, and y(0) is its initial condition. 

u( t) r pre ents the rate of production of manufactured items per unit of time. 

v(t) r present the rate of purchasing a unit of the good by reseller from the manufacturer. 

w(t) repre ents the rate of reselling a unit of the good to the third party. 

c I r pr sent the amount the manufacturer sells his item for-manufacturer's price. 

c 2 r present the amount the retailer sells the item for-retailer's price 

repr ents th cost of storage of 1 unit of the manufactured item; this amount is paid by the 

manufactur r on an item he has not sold to the reseller. 

k2 represent the cost of storage of 1 unit for the reseller; this amount is paid for by the 

reseller on an item he has not sold yet. 

q repre ent the spoilage coefficient; this is for items that the manufacturer or the reseller has 

not sold and that need to be destroyed or disposed of as they are expired. 

t represent time, t E [o, T] 

T is the end of the whole planning period of time in which we want to maximize profit. The 

units for time can be days, weeks or months. 

11 



The main objective is to choose such controls u(t)- production rate, v(t)- rate of 

purchasing, and w(t)- rate of reselling, that will maximize profits for the manufacturer and the 

reseller. The manufacturing rate of production of items, rate of purchasing, and the rate of 

reselling will be our control parameters. 

The rate of change of the manufacturers profit can be written as 

i 1 = c 1 v(t)x(t)- k 1x(t)- u(t). 

The first term is the revenue; the next two terms are costs, which are subtracted from the 

re enu . he manufacturer's revenue is the price multiplied by the rate of goods produced 

times th number of items manufactured. The manufacturer's costs are the storage costs per 

item and the cost of production. 

The equation below is the rate of change of the retailer's profit: 

i 2 = c2 w(t)y(t) - c1 v(t)x(t)- k 2y(t). 

The fir t term is the revenue; the next two terms are the costs, which are subtracted from the 

r venue. 

Both parties want to choose such a strategy ( optimal production plan, optimal buying and 

r lling plan, etc.) that will maximize their cumulative profits. The goal of the manufacturer 

T T 

is to maximize his profit: max Jz 1dt = J(c 1 v(t)x(t)-k 1x(t)- u(t))dt. 
0 0 

T 

Z1 (T)- z 1 (0) = J(c 1 v(t)x(t)-k 1x(t)- u(t))dt, 
0 

which is equivalent to maximizing the following functional: 

T 

J 1 = J(c 1 v(t)x(t)- k1x(t)- u(t))it • "~~fr) (3.2) 
0 
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The goal of the buyer is to maximize his cumulative profits or the following functional: 

T 

J 2 = J(c2 w(t)y(t)- c, v(t)x(t)- k 2 y(t)}dt • max 
0 w(·),v(·)ED(T) 

(3.3) 

Here D(T) is the control set, such that D(T) is the set of all Lebesgue1 measurable functions 

u(t), v(t), and w(t) satisfying the following inequalities : 

0 ~ u(t) ~ u0 , 0 ~ v(t) ~ v0 and O ~ w(t) ~ w0 . (3.4) 

ince all the control parameters are bounded functions, we will need to apply optimal control 

theory to olve the problems stated above. The problem can be classified as a 'cooperative 

game problerrl' or'lwo criteria optimal control problerrl'. 

The Main Problem can be summarized as: 

For a manufacturer: Select such control u,. (t), t e [o, T], that would maximize J 1 • 

For the retailer or reseller: Choose such controls v,. (t), w,. (t), t e [O,T] that would 

maximize functional J 2 . 

In order to olve it, we have to discuss the following: 

If u( t) = 0, then J 1 = J 2 = 0 (the good is not produced) 

If u(t) -:t:- 0, but v(t) = 0 (the good is not purchased), then J 1 < 0, J 2 = 0. 

We ay that the solution to the main problem exists if and only if J 1 > 0, J 2 > 0. 

Therefore, fir t we need to solve two auxiliary problems in order to find control variables that 

will maximize J 2 and J 1 . 

1 Lebesgue measure is a piecewise continuous function in which we assume the existence of the finite limits at a point 

f discontinuity. 
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Auxiliary Problem 1 can be summarized as: if v(t) -:I:- 0 is given, find such a function 

u(t), t E (0, T], at which functional J 1 is maximum. 

Auxiliary Problem 2 can be stated as: If u(t) -:I:- 0 is given, find such functions, 

v(t), w(t), t E [O,T], for which functional J 2 is maximum. 

inc each functional is linear in control and each control is compact, a solution for both 

auxiliary problems will exist. (See Lee and Markus [8] or [2]) 

The customer has no control over the manufactureis production rates just as the 

manufacturer has no control over the decision to purchase by the consumer. The optimum 

production rate would allow the price to be attractive for the consumer and benefit both of the 

coop rative game players. This, in turn, would positively influence the consumer to purchase, 

l ading back to a benefit for the other cooperative player, the manufacturer. The cycle could 

continue to the mutual benefit of both parties. 
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CHAPTER IV 

PROPERTIES OF THE MODEL 

In order to olve optimal control problems stated in the previous section, we need to 

inve tigate properties of the variables of our system. 

Theorem 1. Let u(·), v(·), and w(·) E D(T) be some control functions. Then there 

exists a solution (x(t),y(t))of system (3.1) corresponding to all controls defined on the 

closed interval [0, T], that satisfy the following inequalities: 

x(t) > 0, y(t) > 0, t e [0, T] (4.1) 

Proof part 1: Let us consider the first equation of system (3.1): 

x(t) = -(v(t) + q)x(t) + u(t) x(O) = x 0 , x 0 > 0 

ing the method of a parameter variation [9], first we will solve the homogeneous equation. 

L t µ(t) = v(t) + q. Then we can rewrite equation (3.1) as: 

dx - = - µ(t) · x(t) + u(t) 
dt 

dx - = -µ(t)dt 
X 

In/x/ = - J µ(t)dt +Inc 
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I I 
- Jµ(t)dt 

x = ce 

( ) C( ) 
-I µ(t)dt 

xt = t •e (4.3) 

'( ) C'( ) -J µ(t)dt C( ) ( ( )) -J µ(t)dt x t = t ·e + t • -µt e (4.4) 

ow substitute equations (4.2) and (4.3) into equation (4.4), resulting in the following: 

, - Jµ(t)dt ( ) - Jµ(t)dt - Jµ(t)dt 
C(t)·e +C(t)· -µ(t) e =-µ(t)·C(t)·e +u(t) (4.5) 

fter reducing the equation we are left with: C'(t) · e -J µ(t)dt = u(t). Multiplying both sides 

I µ(t)dt 
of the equation by e , we obtain 

C '( ) ( ) I µ(t)dt t = u t · e 

I I µ(t)dt 
C(t)= u(t)·e dt+c 0 

[ 

t qs+ 1 v(; )d; l - qt - f v(; )d; 
x(t) = x 0 + J e 

O 

u(s }.1s · e 0 

0 

ow we prove that x( t) > 0 , with another method [9]. 

x'(t) = -µ(t)x(t) + u(t) 

x'(t) + µ(t)x(t) = u(t) 

Multiply each side by integrating factor. 

- e O x(t) = e O u(t) 
d [ qt+ f v(; )d; l qt+ f v(; )d; 

dt 
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qt+ f v(~ )d~ t qs+ j v(~ )d~ 

e O x(t) - x 0 = Je O u(s)ds 
0 

-qr- f v(q)dq [ t qs+ j v(~ )d~ l 
x(t)=e " x 0 + fe " \fu(•),v(·) x(t)>O, te[O,T] 

Part 2: Let us prove thaty{t) > 0. Consider taking the second equation of system (3.1). 

{
y(t) = -(w(t + q))y(t) + v(t) · x(t) 

y(O)=Yo, Yo >0 

y(t) + (w(t) + q) y(t) = v(t)x(t) 

d ( J (w(t}+q)dt ( )) f(w(t)+q)dt () {) - e •yt =e vtxt 
dt 

d [ q(t)+ J w(;)d; l qt+ J w(;}l; 

- e O 
• y(t) = e O v(t)x(t) 

dt 

I O S 

qt+ f wk )d~ q·O f w(; )d; t qs+ f w(; )d; 
e O y(t) - e O 

• y(O) = Je O 
• v(s)x(s)ds 

0 

f ,. 

qt+ f w(~ }1;, I qs+ f w(; )d(~) 

e O y(t) - y(O) = Je O 
• v(s)x(s)ds 

0 

f • 

qt+ f w(; )d~ t qs+ f w(~ )d; 

e O 
• y(t) = Je O 

• v(s)x(s)ds + y(O) 
0 

- qt - J w(; )d; [ t qs+ f w(; )d; l 
y(t) = e • • y(O) + f e • · v(s)x(s)d5 
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- qt-f w(~ )d~ [ t qs+ f w(~ )d(~) l 
y(t) = e • y(O) + Je • • v(s)x(s)d(s) 

Therefore, x(t) > 0, y(t) > 0 '\;/ u(·), v(·) and w(·) t e [O,T]. The theorem is proven.• 
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CHAPTER V 

OLVI G OPTIMAL CONTROL PROBLEM FOR A RETAILER 

Our main problem was for the manufacturer and reseller to have their profits maximized. 

For J 1 and J 2 to have the highest profits, we need to choose control variables for the 

manufacturer and for the retailer that will allow J 1 and J 2 to approach maximums. We will 

fir t solv our two auxiliary problems in order to find values of our control variables. First we 

will maximize J 2 . 

5.1 Hamiltonian and Adjoint System 

Let u solve Problem 2 stated in chapter III. Find values of control variables v( t ), w( t), 

-
so that J 2 is maximized. Let (x(t),y(t)) be the optimal trajectory and (v(t), w(t)) be the 

corresponding optimal controls. Applying the Pontryagin Maximum Principle, we will obtain 

th following Hamiltonian: 

H 2 = f// 1 (t) · x(t) + If/ 2 (t) · y(t) + j 2 (t) 

Here f//1 ( t) and If/ 2 ( t) are adjoint variables. 

Then replacing x and y from system (3.1) and j 2 (t) from (3.3), 

H 2 can be rewritten as : 

(5.1) 
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or in the form (5.2) below: 

H 2 = v(t) [- x(t) •'If, (t) + x(t) • 'If 2 (t)-c, x(t)]+ w(t)[- y(l)l/f 2 (t) + c2 y(t)] 
(5.2) 

-qx(t) • 1/f 1 (t)-qy(t) • 'If 2 (t)- k 2 y(t) 

Obviou ly, Riis linear in both controls, v(t) and w(t), and control set D(T) is a compact 

et. Then the solution to the optimal control Problem 2 exists. [2, 8] 

By definition: 

-8H 
'l/1 (t) = ax 2 

. ( -8H2 
'I' 2 t) = ay , 

th n differentiating (5.1): 

8H 2 -- - - VIII + VIII - q III - C V ax - 'f' I 'f'2 'f' I I 

and denoting v , w as optimal controls, we obtain the adjoint system: 

l
'l/1 (/) = ~(/)f//1 (t) -~ (/)1/f 2 (t) + qi/fl(/)+ Cl~(/) 

lj/2 (1) = w (t)f//2 (1) + ql/f2 (t) - c2 w (t)+k2 

1/f I (T) =0, f// 2 (T) = 0 

20 
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and introduce switching functions as: 

ow (5.2) can also be rewritten as : 

ince x(t) > 0 and y(t) > 0 , (stated by Theorem 1) we can use new switching functions: 

Switching functions determine the behavior of optimal controls. It follows from the 

-

Pontryagin Maximum Principal that the optimal controls v(t) and w(t) can be written as: 

LV (t) > 0 

L)t) = 0 

Lv(t) < 0 

Lw(t) > 0 

Lw(t) = 0 

Lw(t) < 0 

21 
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(5.5) 
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-
If Lv (t) > 0 , then v(t) must take its maximum value, that is, v0 . If Lv (t) = 0, then 

~(t) can take any value from [O, v O] (this is a case of singular control). If Lv (t) < 0, then 

-

v(t) takes its minimum value, that is, v = 0. To illustrate how switching function Lv (t) might 

-
influence optimal control v(t), an example is provided below. 

Do Not­
ftu-c.1h~e 

Do not purchase 

Figure 5.1 Switching Function Lv (t) 

f urchase 

Therefore, we need to investigate the behavior of the functions of switching ( Lv (t) and 

Lw (t) ). Next, using the adjoint system (5.3) we will obtain the system of differential 

equations for Lv (t) and Lw (t) using a similar approach to that used in [5]. 
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The adjoint system (5.3) can be rewritten as: 

ltf/1 =- v(t) · Lv (t) + q f// 1 (t) 

rj/2 =- w(t) · Lw (t) + qfj/2 (t) + k2 

Let u find the following derivative: 

Th goal is to get the equation for the switching function. 

In order to find the boundary conditions for Lv ( t) and Lw (t) ,we will replace t by T. Since 

1//1 (T) = f// 2 (T) = 0 , then 

LV (T) = -(1//1 (T)-1//2 (T) + ci) = -c1 

Lw(T) = -(1//2 (T)-C2 )= C2 

ow we hav a system for switching functions. (This is a two point boundary value problem 

for the functions of switching. [10]) 

Lv(t) = (~(t) + q)Lv(t)- w(t)Lw(t) + (qc 1 + k2 ) 

Lw (t) = (w(t) + q )Lw (t) - (qc2 + k2 ) 

Lv(T) =-cl, Lw(T) = C2 

Let u consider the second equation from (5.7): 

i w (t) = ( w(t) + q)Lw (t)- (qc 2 + k2 ) 

Since this equation is linear in Lw ( t) , we can state the following Lemma. 

23 
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Lemma 1. The switching function Lw (t) '¢ 0 on any nonzero subinterval A e [o, T]. 

Proof. We will prove it by contradiction. Let Lw (t) = 0 on some A e [o, T]. Recall the 

If Lw (t) = 0 , then Lw(t) = 0 in A. 0 = -(qc2 + k2 ) and -(qc2 + ki)< 0. This is a false 

statem ent and hence we obtain the contradiction. The Lemma 1 is proven. • 

Since it follows from Lemma 1 that Lw ( t) does not contain any segment A on which 

Lw (t) = 0 ( ee figure 5.2) , then optimal control w(t) does not have singular segments and 

w(t) is a piecewise constant function [11], and (5.6) can be rewritten as: 

- {w 0 , w(t) = 
0, 

Lw(t) > 0 

Lw(t) < 0 

0 

Figure 5.2 Switching Function Lw (t) 
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Though Lw ( t) cannot be zero on any nonzero finite interval, it can be zero at some points of 

[O, T] (see Figure 5.3 below). 

Figure 5.3 Sign Change of Lw (t) 

In order to find optimal control w(t) given by (5.8), we need to know how many times 

Lw (t) change its sign on [O, T]. 

ow we can state the following: 

Lemma 2. Lw(t) has no switchings on [O,T ]. 

Proof. t moment t=0 let Lw (0) > 0. Then control w(0) = W 0 . Also assume that 

t = 1: (switching time), Lw(1:) = 0. Then at the moment of switching, t = 1: 

i.e., Lw (t) is monotonically decreasing and cannot change its sign any more, so Lw (T) must be 

negative . On the other hand, looking at the boundary condition, Lw (T) = C 2 > 0 , such a 

situation is not possible. Therefore, if Lw (0) > 0, then switching cannot occur and there is no 

switching. 
25 



Let us assume that Lw(O) < Oand that switching occurs at t = T; i.e., Lw(T)= 0, and 

This case must be eliminated as impossible because of the boundary condition. • 

T 

Figure 5.4 One Zero of Lw (t) 

T 

......aa-=-- ~ - ~ -4--

Figure 5.5 Switching at T 
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Therefore, Lw (t) > 0 for any t E (0, T], and can be illustrated by the graph below. 

- --+- ----+------ - +- -~ ~ -
0 

Figure 5.6 Switching Function Lw (t) 

ext, the optimal control w( t) is: 

w(t) = w0 , t e [O,T] . (5.9) 

The retailer must resell at the same rate during the entire time interval. 
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wl 

L w t , 

--+-+--+--~~-
0 

Figure 5.7 w(t) = w0 Constant positive function 

5.2 Finding Switching Function Lw (t) Analytically 

We will now solve the second equation from (5.7): 

T 

sing equation (5.9), it can be rewritten as Lw(t) = (w0 + q)Lw(t)-(qc2 + k2)). 
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T 

e -(wo+q)T C2 -e-(wo+q)tLW(t) = -(qc2 +k2) Je-(wo+q)sds 

t 

e -<wo+q)(T-t)c2 - qc2 + k2 e-(wo+q)(T-t) + qc2 + k2 = Lw(t) 
Wo+q Wo+q 

Lw(t) = c2q+k2 + C2Wo -k2 e-(wo+q)(T-t) 
Wo +q Wo +q (5.10) 

L w(t) 

0 

--t- -+- -~ ~ - ~ ~- -
T 

Figure 5.8 Lw (t) > 0 and C2 = Positive Constant 
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5.3 Finding Switching Function Lv(t) and Optimal Control ~(t) 

ext we will study Lv (t) and optimal control ~(t). We will consider two cases. 

Then from (5.10) we obtain that Lw(t) = c 2q + k 2 

Wo +q 

Lw(t) = C2q+c2Wo 
Wo +q 

ext we can rewrite the first equation in (5.7) as : 

. -
Lv (t) = (v(t) + q)Lv (t) -c2 w0 + (qc 1 + c2 w0) or 

. -
Lv(t) = (v(t) + q)L)t) + qc 1 

Thus we obtain the boundary Cauchy problem [12] for Lv (t): 

ext we can state: 

Lemma 3. Lv ( t) cannot be zero on any finite subinterval I). e [o, T]. 

Proof. We will prove it by contradiction. Let Lv (t) = 0 on some interval I). e [o, T]: 

0 = O+qc 1 > 0 

However, 0 :# ( qc 
1 
+ k 

2
) . This is a false statement and hence we obtain the contradiction. 

The lemma is proven.• 
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-
The optimal control v(t) is a piecewise constant function, such that 

- {V0 ,Lv(t)>0 
v(t) = 

0, Lv(t) < 0 

Proposition 1. If c2 w0 - k2 = 0, then Lv (t) does not have any zero on [o, T]. 

Proof: At moment t = 0, letLv (0) > 0. Then control v(O) = v0 , so let t = r (switching 

time), Lv ( r) = 0 at the moment of switching 

Lv ( r) = ( v( r) + q )Lv ( r) + qc 1 

Lv(r) = qc, • Lv(r) >O. 

Looking at boundary condition Lv (t) = -c2 < 0, such a case is not possible. Therefore, 

Lv (0) > 0 cannot occur according to the boundary condition. 

(5.11) 

ext, we assume that at t = 0, Lv (0) < 0 . Then control v(O) = 0. If t = r is the time of 

switching, then again Lv ( r) = 0 at the moment of switching, and relationships (5.11) hold. 

gain this case cannot occur because of the boundary condition Lv (T) = -c 1 < 0 . Therefore, 

in case 1, the switching function Lv (t) < 0 on [o, T] and therefore the optimal control 

~(t) is ~(t) = 0 on [o, T]. • 

Therefore, if c
2 
w

0 
- k

2 
= 0 (case 1) or k2 = C2 W 0 on [0,T], then v(t) = 0 and as it 

stated before w = w
0 

on [0,T]. (The retailer does not purchase but sells only.) 
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{
i, (t): ( ~(t) + q) L, (t)- P(t) 

Lv(t) - -cl 

Wo 
f,J= - - <1 

Wo +q 

(5.12) 

(5.13) 

(5.14) 

otice that P(t) has at most one zero (as exponential, monotonically decreasing function) 

Proposition 2: In case 2 Lv (t) has at most two zeros. 

Proof: We will prove it by contradiction. Let us assume that O < 01 < 02 < 03 < T are three 

z ros of Lv (t). Lv (t) has at most two zeros. Integrating equation (5.12) we have 

- e O •L (t) =-e O ·P(t) 
d [ -J (v(~)+q)d~ l -J (v(~)+q)d~ 

dt V 

(5.15) 

which can be rewritten as 

d 
dt I (t) = h(t). 

I 

-qt-f v(~)d~ 

If 0i is a zero of Lv(t), then it will also be a zero of function /(t) = e O 
• Lv(t). 

32 



Figure 5.9 Three zeros 

I 

qt -f v(,;)d,; 

e O 
• Lv (t) = f ( t) 

1 o from Rolle's Theorem [13] we know that if a function is continuous and differentiable on 

(0, T), then there is always at least one zero of the derivative between two zeros of the 

func_tion. 
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y 0 

2 

Figure 5.10 Rolle's theorem 

Figure 5.11 Rolle's theorem applied to L v ( t) . 
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Since h(t) is the derivative of f(t), h(t) must have atleast 2 zeros at 04 and 05 on [O,T]. 

-qt-f v(~)d~ 

However, h(t) = -e · P(t) has at most one zero. We obtain the contradiction and 

the statement is proven. • 

-

Since Lv(t) has at most 2 zeros and satisfies (5.12), then v(t) can have one of the 

following forms: 

v(t) = 

V ( t) 
V ( t) = o 

0 T 

Figure 5.12 v(t) = 0 No switching 
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-
v(t) = 

-
v(t)= 

V't 

V (t) I 
I 

I 
+--t---~J -+--10 ----+/-~-

0 

0 

e T 

Figure 5.13. One Switching of v(t) 

0 

e e 

Figure 5.14 Two Switchings 
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-
otice, that v(t) always ends in 0, because of the boundary condition Lv (T) = -c1 < 0. 

Lemma 4. Switching function has at most one zero in [O, T]. 

- -

Proof. Let us assume that 0 E (0, T) is the last switching in v(t), and v(t) = 0 on ( 0, T). 

Then equation (5.12) on (0,T) will be rewritten as: 

{
i v(t): q 'Lv (t)- P(t) 

Lv(t) - -cl 

!!_(e - q1 • L (t))= -e - qt · P(t) 
dt V 

Integrating between t and T we obtain: 

T 

e - qT • Lv (T) - e - qt • Lv (t) = - Je-qs P(s)ds 
t 

T 

- e - qT · C1 - e - qt · Lv(t) = - f e - qs P(s)ds 
t 

T 

- e - q(T - t) . c
1 

- Lv (t) = -eqt · f e - qs P(s)ds 
t 

ubstituting P(t) from (5.13) we obtain: 

T 

LV (t) = - c le - q(T- t) + eqt f e - qs {p (c2 Wo - k2 )e-(wo +q)(T- s) + g;;(qc2 + k2 )- (qcl + k2) }ds 

t 

which after integration gives us the following: 

Replacing g;; from (5.14), we have 
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-we __ 0_2 e -(w0 +q)(T-t) + 
Wo +q 

Using p from (5.14) we will simplify the last three terms above: 

(w 0 - w0 -q)k2 w0c2 - k2q + c2 w0 + -Cl= ------C 
( w O + q )q w O + q w O + q 1 

Substituting the new expression back into the expression for Lv (t), we find 

Lv(t) = _ (C2Wo -k2) e - (wo+q)(T - t) + C2Wo -k2q -c. 
(wo+q) Wo+q 

or simplifying further, 

(5.15) 

We see that (5.15) satisfies the boundary condition from (5.12): (Lv (T) = -c 1 ) 

Moreover, function (5.15) is exponential and has at most one switching on [O, T]. • 

5.4. Case 2. Finding the Moment of Switching of Lv (t) 

Let t = 0 be the moment of switching on [O, T] . Then Lv ( 0) = 0 . Replacing t by 0 in 

(5.15) we can find the moment of switching: 
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e<wo+q)(0- T) = C2 Wo - k2 -c. Wo - clq 

C2Wo -k2 

e<wo+q)(0- T) = 1- c. (wo + q) 

C2Wo -k2 

We understand that in order for (5.17) to be valid, some restrictions on the value of the 

parameters must be imposed. We can see from (5.16) that if c2 w0 -k2 > 0 , and 

(wo + q) 
c 1 • ---- ~ 1 , then Lv ( t) has no switchings. Therefore, if 

C2Wo - k2 

(5.16) 

(5.17) 

(5.18) 

function Lv (t) < 0 for any t E [O, T]. Then v(t) = 0 on the entire time interval [O, T]. If 

(5.19) 

-
then also Lv (t) < 0 for any t E [0, T] and v(t) = 0 Vt E [O, T]. 

In all ca es different from (5.18) and (5.19), there is a switching on [O, T] ! 

Let us assume that t = 0 is the switching of function Lv (t) on [O,T]. Thus, the moment of 

switching 0 must be less than T and greater than O . If 0 < T , then the first term of (5.17) 

. . . C1(Wo +q) C1(Wo +q) 
must be negative, which can happen only 1£ 0 < 1 - ~--- < 1 or ---- > 0 . 

C2Wo-k2 C2Wo-k2 
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1- Cl (Wo + q) > e -T( wo +q) 

C2Wo -k2 

C1 (wo + q) - T(w +q) ---- <1-e 0 

C2Wo - k2 

5.5 Solution for Problems 1 and 2 and the Main Problem 

First, let us generalize our results for Problem 2. 

(5.20) 

1. Optimal control w(t) is always constant and takes the value w0 in [O, T]; that is, 

w(t) = w0 , t E [O, T]. (5.21) 

-

2. Optimal control v(t) may have no switchings or 1 switching. 

(5.22) 

-
v(t) = 0, (no switchings) t E [O, T] (5.23) 

b) If (5.24) 
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Then the optimal control has precisely 1 switching at t = 0 

v(t) = o, - {V 
0, 

t E [0, 0] 

t E (0, T] 

The moment of switching 0 is given by (5.17). 

(5.25) 

Dr. Grigorieva solved Problem 1 analytically and determined that in order to maximize the 

functional J 1 , the optimal control u(t) must have at most one switching at, E (0, 0) ( 0 is 

given by (5.17)) 

IE[O,,] 

t E [,, T] 

The moment of switching , can be found as: 

} + ~~ -e - q(T- 0)) 

,=0- - 1- -In 1+--q ____ _ 
Vo + q C1 -1 (vo - q + k1 J 

v0 +q c1 -1 

(5.26) 

(5.27) 

This would allow the manufacturer to change production rate at most once during the 

planning period. Since we have a two criteria optimal control problem or cooperative game, 

when both Problems 1 and 2 are solved, the optimal solution obtained in Problem 2 will be 

substituted into the optimal solution for Problem 1. This will give the optimal solution of 

the Main Problem. 
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CHAPTER VI 

COMPUTER MODELING 

The statements proved in the previous chapter allow us to write a computer program that 

solves our problem numerically. We know that only controls u(t) and v(t)with at most one 

switching can lead to the optimal solution in Problem 1 and Problem 2, respectively. Our 

computer program in MAPLE solves the Cauchy problem (3.1) for piecewise constant 

controls u(t) and v(t) , where the moments of switching 0 and '! for such controls change 

within the interval [O, T]. In this work we obtained numerical results for two cases: 

a) when conditions (5.22) are true and v(t) = 0 

b) when conditions (5.24) are true, and v(t) is a piecewise constant function given by 

formula (5.25). 

Below we present graphs for situation b) obtained for different values of parameters 

ci,c
2
,k.,k

2
,T,q,v

0
,w

0
, and u0 . Thus,let 0sus300, q=0.2, c1 =$3, c2 =$10, v0 =1, 

w0 =1, k1 = k 2 = 1 , T = 5days. 
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u ( t • 
I 

) 0 0 

I 
I 

t---1 t I- I 0 - ~ 

0 2 ) . 6 ) 

Figure 6.1 Manufacturer rate versus days 

We found that the optimal control for a manufacturer is to change the rate of production at 

the end of the third day, and the concurrent optimal control for the retailer is to purchase 

goods until the middle of the fourth day, ( 0 = 4.57 days) , and then stop buying the goods. 

ince w = w0 in [O,T], the retailer continues to sell at the maximum rate. Maximum profit is 

$700 for the manufacturer during the 5 day period. 

The graph for the manufacturer's profit obtained as a function of two switchings (Fig 6.3) 

certainly indicates that the functional of profit depends on only one parameter ( switching) as it 

was confirmed analytically. 
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V (t) 

- -t--- -1- t - 1--t -------- --
0 

600 

400 

200 

0 

2 ) 4 4.57 

Figure 6.2 Retailer purchases versus days 

Figure 6.3 Functional of the manufactureis profit versus tau1and tau2 
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Figure 6.4 Manufactureis profit versus time 
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Figure 6.5 Phase portrait of system 
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Figure 6.6 Optimal trajectories as functions of time 
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CHAPTER VII 

CONCLUSIONS 

Our results can be summarized as follows: 

1. We modeled a cooperative game between a manufacturer and retailer by a bilinear 

system of differential equations. 

2. We formulated a problem of profit maximization for both players using an optimal 

control problem and the Maximum Principle. 

3. Using knowledge of optimal control theory, mathematical analysis, and differential 

equations, we obtained the solution to our problem analytically. 

4. We investigated our control model for different values of the parameters. 

5. Generalizing our results, the following scenario of the optimal players' activity can be 

proposed: 

The manufacturer produces his consumer good during [O, T] at the maximum production 

rate, then does not produce on ( T, T) . The retailer starts buying the product at moment t=O 

and continues until t = 0 . We understand that on ( T, 0), the manufacturer does not produce 

anymore, but the retailer continues buying the product. Thus, on ( T, T] neither production 

nor buying occurs. However, in order to maximize his profit the buyer (retailer) must sell his 

product at the constant rate, w0 , during the entire time interval [0,T]. 
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Work on this project involved several things: 

1. How to model a microeconomic process by a system of differential equations. 

2. How to apply an optimal control problem and the Pontryagin Maximum Principal to 

solve a profit optimization problem. 

3. How to use the Rolle's and Lagrange theorems to do proofs in advanced study. 
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Figure 7.1 Optimal strategy for the manufacturer and the retailer 
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