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ABSTRACT 

GREGORY GENGO 

LEVERAGING COMMONLY USED ADMISSION CRITERIA TO IDENTIFY 
TRADITIONALLY OVERLOOKED APPLICANTS 

MAY 2021 

Universities have long had criteria that must be met in order to be admitted to the 

institution. The purpose of admissions criteria is to determine students who are well 

suited to begin their academic journey at the university level. The threshold level that 

these criteria must meet varies across the university landscape, but most, if not all, 

universities have some commonality with regard to the actual criteria that they require for 

consideration. In the course of this study, there was no significant literature that 

addressed holistically how the threshold levels, against which applicants are measured, 

were determined. Therefore, this study’s goal was to determine a statistical framework 

for which any university can determine these levels to better identify applicants that are 

likely to be successful as students. A logistic regression model was built using an 

innovative dependent variable, to predict the probability of an applicant accruing a 

specific number of semester credit hours in a given time period, the specifics of which is 

discussed throughout this study. Because of the predictive accuracy, this model can serve 

as a framework for predicting the likely success of an applicant as a student. 
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CHAPTER I 

INTRODUCTION 

Introduction 

While the impact of the COVID-19 pandemic caused a significant decrease in the 

number of first-time postsecondary student enrollment in the fall of 2020, there are still 

over 2 million of these students estimated to have enrolled across the United States for 

that semester (National Student Clearinghouse Research Center, 2020). Each of these 

students had to submit an application to the institution of their choice. In some cases, a 

student will apply to multiple institutions. At each institution, these applications must be 

processed before a decision can be made about whether or not to accept or deny a 

student’s application.  

Admission criteria vary at different institutions. Each institution establishes the 

requirements to determine their own population’s readiness. They set their criteria, for 

what is assumed some vetted internal process that gives them insights into what it takes 

to succeed at their respective institution. However, research for this study did not find 

found any descriptions of this internal process as it relates to the overall admission of 

applicants without regard for specific majors when searching the literature. In general, 

there are common elements used to determine admission across many institutions. For 

example, the prescribed admissions criteria for Texas Woman's University (TWU) relies 

fundamentally on three variables: an applicant’s high school grade point average (GPA), 

an applicant’s high school class rank, and entrance assessment scores (ACT or SAT) 
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submitted by the applicant (Texas Woman's University, 2020). However, not all 

institutions utilize the variables in the same way. For example, it has become more 

popular for institutions to omit the entrance assessment scores, and focus more on 

utilizing fewer variables, like high school GPA, in an effort to increase diversity of their 

incoming student population (Zwick, 2019). 

 The Carnegie Classification of institutions of higher education classifies doctoral 

granting universities based on their level of research activity. For these institutions, 

Carnegie has three classification: R1, which indicates very high research activity; R2, 

which indicates high research activity; and D/PU, which includes all other doctoral and 

professional universities. Given that there are three different classifications within this 

group, it stands to reason that the admissions criteria would vary across the different 

classifications as well. It may be the case, for example, that the admissions criteria at an 

R1 university are generally higher than those of other universities that have a lower 

research oriented Carnegie Classification. 

 A sample of different admissions criteria cutoffs, including one of TWU’s local 

competitors and one of TWU’s peer group institutions as defined by the Texas Higher 

Education Coordinating Board (THECB; Texas Woman's University, 2021) are shown in 

Table 1.1.  
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Table 1.1 

A Comparison of Admission Requirements for Texas Woman’s University and Select 
Peers 

Institution High School 
Class Rank SAT 2016 ACT Carnegie 

Classification 

Texas Woman’s 
University Top 50% 1080 21 D/PU 

Texas A&M 
Kingsville Top 50% 910 17 R2 

University of 
North Texas Top 50% 1130 23 R1 

 

Examining the different criteria, while controlling for high school class rank, 

Table 1.1 shows that variability exists among the various institutions. For example, the 

University of North Texas (UNT), a school with an R1 Carnegie Classification, has the 

highest entrance assessment requirement as would be expected. TWU, with a D/PU 

Carnegie Classification, has the next highest entrance assessment requirement. Texas 

A&M – Kingsville, with an R2 Carnegie Classification, has the lowest entrance 

assessment requirement. Although there are clear increments of research activity that 

specify higher or lower levels of Carnegie Classification, this type of consistent rank 

order cutoffs with admission criteria is absent and in fact seems to indicate an arbitrary 

determination for how schools actually set their entrance requirements. Accordingly, this 

research establishes a more structured process of determining admissions criteria that 

connects to student “success” in a way to be described subsequently. 
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Exploratory Analysis 

Exploratory data analysis of TWU First Time in College (FTIC) students that 

were in a group designated as Early Admit Nursing (EANUR) at the time of admission 

and went on to successfully transition into a Nursing program, consistently show they had 

higher high school GPAs and class rank, when compared to TWU’s minimum 

requirements, at the time of admission. Comparing the relevant metrics of this population 

to the overall TWU admission criteria in Table 1.1, these applicants have an average rank 

of top 11% versus the required top 50%, an average high school GPA of 3.8 versus the 

required 2.0, and an average entrance assessment score of 1211 versus the required 1080. 

In these examples, notice that applicants who apply for TWU’s most competitive second 

admit program have higher cutoff admission criteria than the minimum standards. Figure 

1.1 illustrates these higher standards for EANUR applicants by plotting admission factors 

in a two dimensional graph, with an applicant’s GPA as the x-axis and SAT score as the 

y-axis. The EANUR admitted applicants points are plotted (maroon stars) along with the 

same scores for all other TWU admitted applicants (blue circles). Applicants who were 

admitted as EANUR are clustered at the higher end of both axes. 
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Figure 1.1 

A Comparison of All EANUR Admitted Applicants (maroon stars) vs All Other TWU 
FTIC Admitted Applicants (blue circles). 

 

 The yellow outlined area shown in Figure 1.1 above establishes the concept of a 

two dimensional zone, which presumes that an applicant’s Euclidean positioning in such 

a zone indicates a higher expected performance that would meet the criteria for TWU’s 

very competitive second admit nursing program. Accordingly, this concept extends to the 

hypothesis that there are subsets of zones for which the expected performance outcomes 

of the applicants, in their respective zones, would have significant variations of “success” 

across different zones. This speaks to the concept of determining clusters/zones that have 
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homogenized performance outcomes that from a set theoretic perspective create a 

partition of the Euclidean space defined by two commonly used factors or dimensions in 

admission processing.  

To determine zones in the Euclidean space, a performance outcome or dependent 

variable was associated to zones created by the independent variables that define the 

Euclidean space. Since a university student’s success in terms of graduation is inherently 

linked to accumulation of university semester credits hours, this study will be utilizing 

accumulated hours over a relevant time period to define the dependent variable. This 

dependent variable looks beyond persistence of a student. Instead, this dependent variable 

includes successful accumulated semester credit hours over a time period that is 

fundamentally influenced by persistence. This approach creates a more enhanced 

dependent variable that includes aspects of potential investment and financial 

sustainability in applicant recruitment. By considering semester credit hours in the 

development of the dependent variable, this research is now incorporating a significant 

revenue source for any university. Thus, a university can potentially determine 

sustainable investments by identifying the expected cumulative credit hours over time of 

applicant recruitment. To determine this type of dependent variable, historical data on 

applicants that were admitted and enrolled at TWU from an FTIC student route was used 

to calculate a cutoff score, C, of accumulated credit hours that discriminates between 

persisting and non-persisting over a specified time period. Utilizing the prescribed cutoff, 

C, “success” for each student will be defined by a dichotomous variable, y, which 
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indicates whether or not a student accumulates at least the prescribed cumulative cutoff 

hours or not. Specifically, for a specified time period, 

1 if a student's cumulative semester credit hours is greater than or equal to 
0 if a student's cumulative semester credit hours is less than 

Cy
C


=


 

By utilizing currently established admissions criteria, this study identifies multiple 

zones such that any group of students in a zone will have an expected rate or proportion 

of y = 1 that will be different from students in other identified zones.  

Thus, this study sought to answer the questions: 1) By leveraging commonly used 

admission criteria, can “performance zones” be identified based on accumulated hours of 

TWU students after a prescribed time period? 2) Are there significant differences in 

proportions of success, y = 1, within each performance zone? 

 In order to answer these questions, the objectives of this research are as follows: 

1) Utilize a statistical procedure, like Youden’s index, to determine an overall cutoff 

point of the accumulated hours, within a specified timeframe, that distinguishes 

between y = 1 (“success”) and y = 0 (“not-success”). 

2) Use the cutoff point as the dependent variable to create student performance zones 

by means of a classifying algorithm. 

3) Using cross validation and chi-square analysis, determine if there are significant 

differences in the proportions of success within each zone as well as examine the 

descriptive statistics of the zones. 

 The data for this study was provided by the TWU Institutional Research & Data 

Management (IRDM) Department and consisted of a de-identified dataset of TWU FTIC 
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fall undergraduate applicants over a 5–7 year period. All data analysis were conducted 

using SAS statistical software. 

Significance of Study 

 In a climate of student enrollment growth, universities have a competitive interest 

in helping recruit students that will be successful by virtue of accumulating university 

semester credit hours towards their degree. In addition, it is important for universities to 

recognize and possibly invest in potentially highly productive students that may have 

been overlooked by standard admission evaluation criteria. This could be particularly 

relevant and insightful for a growing demographic population, like is seen in Texas that 

are increasingly minority and are first-generation applicants. Given these pressures, 

finding applicants whose investment proposition may be overlooked at the time of 

admission but yet have potential to be productive students by virtue of their identified 

performance zone is vitally important. Currently, there is a lot of variation in admissions 

criteria and no documented process for establishing various performance zones of 

“success” utilizing basic admissions criteria. This study seeks to establish a structured 

process that can be utilized to help target and competitively recruit applicants that have 

desirable expected performance outcomes. 
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CHAPTER II 

LITERATURE REVIEW 

Introduction 

The idea that universities have requirements that must be met in order to be 

granted admission is not unusual, or unexpected. In fact, there is a long history of 

universities having admission criteria that must be met before being admitted. The 

earliest study found regarding the subject of university admission criteria was the work of 

Edwin Broome, “A Historical and Critical Discussion of College Admission 

Requirements,” published in 1903. In this work, Broome researched and described more 

than 150 years of college admissions requirements, starting with those of Harvard 

University in 1642. The requirements in place at all major American universities during 

this time period were an examination of a student’s character, background, and 

proficiency in reading Latin and Greek. Toward the end of the 18th century, a working 

knowledge of arithmetic was added (Broome, 1903). After World War II, university 

entrance requirements started becoming more uniform (Beale, 1970). Based on a meta-

analysis by Beale (1970), it was during this time that universities tended to admit students 

on the basis of six major factors: high school graduation, a minimum number of specific 

courses taken in high school, high school class rank, some form of entrance assessment 

test scores, a personal interview, and the recommendation of the principal. This looks 

much closer to the requirements that many universities require to be submitted with an 

application as of this study. 
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It is not difficult to see that there is a similarity of Harvard’s early position of 

assessing a student’s proficiency in reading Latin and Greek and a working knowledge of 

mathematics to a modern assessment of a student’s proficiencies in high school, 

measured broadly as GPA. However, with the continued and steady increase of 

applications, universities are having to look beyond the question of “do you meet the 

minimum standards” and instead ask, “is this a good fit for both parties.” One example of 

this increase can be found by comparing Harvard’s first graduating class, which had nine 

students (The Crimson, 1890), to last year’s graduating class, in which they conferred 

over 8,000 degrees and certificates (Harvard University Fact Book, 2020).  

The ultimate goal, of both the student and the university that admits them, is to 

graduate. Many university administrators look at student persistence as an indicator or 

intermediate step towards this ultimate goal of student success (Levitz et al., 1999). 

Towards this end, the purpose of having admissions criteria is for each respective 

university’s admission office to evaluate an applicant’s likely preparedness to 

successfully navigate the course work required to earn a degree at that institution (Marsh 

et al., 2008). Thus, it can be said that student success truly begins from the point at which 

decisions are made, that is, at the time of admission. 

However, in searching for literature related to this topic, it was difficult finding 

anything that approaches the establishment of admission criteria from a holistic point of 

view. Most studies that have addressed the relationship between admissions criteria and 

academic performance focus on specialized programs such as Nursing, Dental, and 

Medical programs. For instance, Yousafzai and Jamil (2019) found that among nursing 
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students, “…rigorous admissions criteria can predict academic performance…” (p. 1), as 

measured by cumulative GPA. Salvatori (2001) conducted a meta-analysis of health 

professions literature and found that pre-admissions GPA was the best overall predictor 

of academic performance among admissions criteria. Additionally, this relationship 

overwhelmingly extends across all health care professions. No literature was found that 

documented a methodology to establish similar admissions criteria holistically across all 

undergraduate applicants, regardless of program, for any university. 

Predictive Analytics in Institutional Research 

The first published statistical study in American higher education is attributed to 

Frederick Barnard, the president of Columbia University in 1866 (Rice et al., 2011). 

While this study employed descriptive statistics that analyzed the enrollments of 10 

universities that Columbia identified as competitors at the time, statistical analysis in this 

field has only increased in usage and complexity. It was around the 1960s that predictive 

statistics seems to first been formally employed to address specific topics, such as 

predicting enrollment.  

Since then, predictive analytics has only become more commonplace, but usually 

when looking at student success, the focus is on retention and persistence while modeling 

behaviors of the students after they have been admitted and enrolled. Most work in 

applying predictive analytics to student recruitment seem to focus more on identifying 

which students will apply, to prioritize contact and recruitment efforts, than which 

students will graduate (Eduventures, 2013). 
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In reviewing previous research and presentations by colleagues, a conference 

presentation was found that discussed the use of admission criteria, specifically 

application high school GPA (AP_GPA) and SAT scores, to create an “admission grid” 

that might lend insight into which students would be better performers once admitted 

(Langston et al., 2018). That research attempted to employ a moneyball approach to 

determine a “sweet spot” of student admission criteria that would allow the university to 

“attract, retain, and graduate undervalued students who persist with power.” For those 

unfamiliar with the term, Moneyball was a book published in 2003 by Michael Lewis 

chronicling the Oakland Athletics baseball team’s focus on using analytics to evaluate 

and identify players that would produce results on a competitively smaller budget when 

compared to the rest of their peers. To this end, this research is an extension of this 

moneyball approach that will be able to determine zones of performance, or production, 

from which recruitment can be focused while having a basic understanding of return on 

investment (ROI). 

Additionally, through another research project, I became aware of a statistical 

approach primarily used in the medical field that is used to determine cutoff values: 

Youden’s index. Youden first proposed this “index of performance” in 1950 (Hsieh & 

Turnbull, 1996), and it has been used in a variety of different medical research when 

attempting to determine an optimal cutoff point. For instance, it has been used in 

assessing cognitive screening instruments (Larner, 2015) as well as interpreting various 

diagnostic tests (Davidson, 2002). Youden’s index was employed as the starting point to 



13 
 

determine the dependent variable mentioned in Chapter 1 and will discuss it in more 

detail in a subsequent chapter.  

The goal of this study was to develop a holistic approach that will utilize what is 

known about applicants at the time of decision making. In the pursuit of this goal, this 

study used various statistical techniques, including but not limited to logistic regression, 

and these techniques were implemented by using SAS software. 
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CHAPTER III 

THE LOGISTIC REGRESSION MODEL 

Introduction 

This chapter introduces the notation for the concept of determining performance 

zones in a two dimensional Euclidean space determined by two commonly used 

admission variables. Utilizing logistic regression, this research associated a dependent 

variable to admissions variables or independent variables that define the Euclidean space. 

On the basis of the dependent variable, this study was able to create rank ordered 

performance zones within the two dimensional space defined by the admission criteria. 

Since university student success in terms of graduation is inherently linked to 

accumulation of university semester credits hours, this research utilized accumulated 

hours over a relevant time period to define the dependent variable.  

The dependent variable created goes beyond persistence of a student over a 

specified time period. Instead, this dependent variable includes successful accumulated 

semester credit hours over a time period that is fundamentally influenced by persistence. 

To illustrate this concept, let t represent a period of time after a student’s initial 

enrollment for which the tracking of accumulated hours will be determined. For example, 

suppose the goal was to track a student over a time period, t, of one academic year. 

Suppose this admitted applicant enrolls at TWU and successfully completes 12 hours in 

the fall semester, 15 hours in the following spring semester, and 3 hours in the summer. 

This student during this time period t, one academic year, will have accumulated 30 total 
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semester credit hours. It is worth noting here that if a student makes an F in a course 

during this time period or takes a course that does not count toward earning a degree, like 

a developmental course, these hours will not contribute to their total accumulated 

semester credit hours over this time period. This aspect of the dependent variable is 

important because it creates a higher standard to track students towards the ultimate goal, 

which is graduation.  

To graduate within any time period, students will need to accumulate hours that 

count toward their degree, and in Texas, the amount of accumulated semester credit hours 

needs to be at least 120 in total to obtain an undergraduate baccalaureate degree. By 

considering semester credit hours in the development of the dependent variable, this 

research is now incorporating a significant revenue source for any university. 

Accordingly, this approach creates a more enhanced dependent variable that includes 

aspects of potential investment and financial sustainability in applicant recruitment. Not 

only does this provide the university with a sustainable revenue source, but by targeting 

applicants who are likely to succeed, the goal is to hopefully reduce the potential for 

students to be burdened with debt without them graduating. This represents a potentially 

more holistic approach to the admission of applicants that is good for the university in 

terms of return on investment but also inherently beneficial to the student. 

Using notation to facilitate this discussion, P = {1,2,…,N} represents the finite 

population of size N of all TWU FTIC applicants that provide admission criteria values 

(i.e., the independent variable values). Using set theory notation, the magnitude of P is 

represented by |P| =N, where |.| is the magnitude (i.e., the number of elements) of a given 
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set.  C represents a threshold or cutoff score of accumulated credit hours in time t. The 

specifics of how C is determined is discussed in more detail in the subsequent chapter, 

but for now assume C is some fixed integer value. Using C, the dependent variable is 

defined, for each applicant i ∈ P, as:  

i

1 if a student's cumulative semester credit hours is greater than or equal to C
y =

0 if a student's cumulative semester credit hours is less than C




 (3.1) 

 
Admissions criteria has minimal standards for which any student meeting or 

exceeding that standard is admitted. For the purposes of this research, the specific interest 

is in knowing the proportion of applicants that will have yi = 1, which indicates success in 

this study. Specifically, the proportion of success for population P was defined as 

 

 1

N

i
i

y

N
π ==

∑
 (3.2)  

 
 To introduce the concept of performance zones, the elements of P were 

partitioned into k zones, such that:  

 

 1 2 ... kP P P P= ∪ ∪ ∪  (3.3) 

 

where Pj  represents a subset of indices from P, such that j l∩ =∅P P , where j ≠ l and j 

and l are integer values between 1 and k. Let |Pj| = nj represent the magnitude of Pj for 
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j=1,2,…,k. Given Equation 3.3 and since j l∩ =∅P P , j ≠ l, this implies N = 

|P1|+|P2|+…+|Pk| = n1 + n2 + … + nk.   

Utilizing the partition P represented by Equation 3.3, and utilizing the concept of 

Equation 3.2, a relative proportion of success for each successive zone can be established 

as    

 

 
1j

j

i
i

ij
j ij

y
y

n n
π ∈

∈

 
= =  

 

∑
∑P

P
. (3.4) 

 

Equation 3.4 represents the relative proportion of applicants that would exceed the cutoff 

threshold determined by C.   

To determine the zones that define Equation 3.3, a probability pi, 0 ≤ pi  ≤ 1, that 

represents the probability that yi = 1, will be associated to each value yi. The value (1 - pi) 

represents the probability that yi = 0.  Each response, yi, follows a Bernoulli distribution 

with the probability mass function: 

 

1( | ) ( ) (1 )i iy y
i i i if y p p p −= −  

 

By definition, the mean and variance of the Bernoulli distribution are 

 

 ( )
iy i iE y pµ = =  (3.5) 
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and 

 

 2 (1 )σ = −
iy i ip p  (3.6) 

 

respectively. Equation 3.5 represents the expected value of yi and Equation 3.6 is the 

associated variance for the random variable yi. Utilizing Equation 3.5, the expected value 

or estimate of Equation 3.4 becomes 

 

 
1 1ˆ ( ) ( )

j j

i ij j
j ji i

E E y p
n n

π π
∈ ∈

   
= = =   

   
∑ ∑

P P
. (3.7) 

 

Equation 3.7 was how the performance outcome of each zone represented by the 

partitions in Equation 3.3 was measured. 

Logistic Regression 

This study used logistic regression to associate the dependent variable defined in 

Equation 3.1 with two independent variables that are commonly used to make decisions 

at the time of admission. In particular, XAP_GPAj represents the application GPA and 

XAP_Rankj represents the application class rank corresponding to each applicant i ∈ P. This 

study focused on these two independent variables because entrance assessment scores, 

such as SAT or ACT, are not well populated fields, meaning that obtaining this type of 

data from applicants is not always reliable. In the dataset of all completed applications, 
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that is, an application about which a decision can be made, 87.51% had both a high 

school GPA and a high school class rank. Compare this to the 45.85% of applications that 

had both a high school GPA and an entrance assessment score.  For definitional purposes, 

it is important to note that AP_GPA is a TWU unweighted calculation on a 4.0 scale and 

includes an applicant’s grades, from their official high school transcripts, in English, 

mathematics, science, social studies, and academic electives. Also consider that major 

universities, such as the University of Texas, are suspending their requirements for 

entrance assessment scores through at least the fall 2022 semester due to the ongoing 

impact of the COVID-19 pandemic (McGee, 2021), while some entire university 

systems, such as the University of California system, are phasing out the use of these 

tests entirely (Hubler, 2020). 

This study used logistic regression to connect the independent variables (XAP_GPA, 

XAP_Rank) indirectly to yi, Equation 3.1. Using the notation derived above, for each 

applicant i ∈ P, associate the independent variables to pi, which probability yi = 1, with 

the following equation  

 

 0 1 _ 2 _) ln( )
i ii i AP GPA AP Ranklogit(p odds x xβ β β= = + +  (3.8) 

 

where β0 is an intercept term, β1 is the coefficient for the independent variable application 

GPA (XAP_GPA ), β2 is the coefficient for the independent variable application rank 

(XAP_Rank ) and  
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𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝑝𝑝𝑖𝑖=1
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 𝑝𝑝𝑖𝑖=0

=  𝑝𝑝𝑖𝑖
1−𝑝𝑝𝑖𝑖

. 

 

The odds equation above can be rewritten with some algebra as 

 

 
1

i
i
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odds

=
+

. (3.9) 

 

Using Equation 3.9, it is worth noting that mathematically, 
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. (3.10) 

Thus, Equation 3.10 shows how to formally utilize the admission criterion through 

logistic regression to estimate Equation 3.8, which allows us to measure the performance 

outcome of each zone. 

Summary 

 We have now developed the mathematical framework for the analysis used in this 

study. The next chapter will introduce the logic associated with how to determine the 

cutoff value, C, for the dependent variable, Equation 3.1. Once the cutoff is determined, 

we will show the results of the logistic regression that estimate the parameters, 

coefficients and intercept, of Equation 3.8. 
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CHAPTER IV 

THE DEPENDENT VARIABLE AND BUILDING THE MODEL 

Introduction 

This chapter introduces the logic associated with the creation of the cutoff value, 

C, for the dependent variable. In addition to meeting the minimum cutoff score, this 

research was also are interested in students who persist at TWU after 2 years, which we 

define in this study as P2. From research by Hamner et al. (2019), P2 has shown a strong 

correlation to graduation, which is, of course, the ultimate goal. Accordingly, we define 

time period, t, for this study, as 2 years. After development of this innovative dependent 

variable, we built a predictive model from historical data called the training dataset that 

identifies an applicant’s likeliness to “succeed” or meet the desired cutoff score, C, by t = 

2 academic years. In particular, this training dataset allows us to determine the parameter 

estimates of Equation 3.8 that we can associate to applicants at the time admission 

decisions are being made using commonly available admission variables: application 

high school GPA and application high school class rank. Accurately projecting these 

students will provide a formal structure for determining admissions criteria that will 

identify applicants as good candidates for not only admission but also potential 

investment. Thus, utilizing the outcome of Equation 3.8 will allow us to determine rank 

ordered performance zones as defined by Equation 3.7 that can be utilized to direct an 

institution’s targeting initiatives, to increase enrollment yield on the basis of return on 

investment. Finally, to illustrate the predictive accuracy of the model developed from the 
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training dataset, a cross-validation on a testing dataset, which is a set of applicant data not 

used to determine the coefficients for Equation 3.8, was used.  

The Dependent Variable 

By introducing the concept of a cutoff score and tying it to a dichotomous 

outcome, such as P2 in this case, we automatically create a decision-making framework 

for determining an appropriate cutoff score. A common type of decision making 

framework in statistics, can be illustrated through hypothesis testing of a given null, H0, 

and alternative hypothesis, Ha. In hypothesis testing, for example, a decision is made to 

either reject the H0 or fail to reject the H0. For conceptual simplicity, the decision to fail 

to reject the H0 is represented as “Accepting H0” and the decision to reject H0 as 

“Accepting Ha.” The outcomes of a hypothesis decision-making process can generically 

be viewed through a classification table like Table 4.1 below.  

Table 4.1 

Hypothesis Testing Classification 

  Assume 
  H0 True Ha True 

Decide Fail to Reject H0 (Accepting H0) Correct Decision Error 
Reject H0 (Accepting Ha) Error Correct Decision 

 
Similarly, this study utilized components of the classification table to illustrate 

how to determine the cutoff score, C. The components of the classification table we 

utilize will introduce concepts such as true positive, false positive, false negative, and 

true negative. More specifically, these terms within the study are defined as follows: 

• True Positive – the number of students that met the minimum cutoff score 

while persisting for 2 years. 
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• False Positive – the number of students that met the minimum cutoff score but 

did not persist for 2 years. 

• False Negative – the number of students that did not meet the minimum cutoff 

score but did persist after 2 years. 

• True Negative – the number of students that did not meet the minimum cutoff 

score and did not persist for 2 years. 

Additionally, these terms are displayed in the classification table, Table 4.2, below. 

Table 4.2 

Frequency Classification  

  P2 
  Yes No 
Meet minimum 
Cutoff Score, C 

Yes True Positive False Positive 
No False Negative True Negative 

 

Table 4.2 represents the classification table where the rows are determined by the 

dichotomous outcome of a student either meeting the minimum cutoff score, ‘Yes’, or 

failure to meet the minimum cutoff score, ‘No’. The associated columns of the Table 4.2 

are determined by the dichotomous outcome of the student either persisting after 2 years, 

P2 =‘Yes’ or failing to persist after 2 years, P2 = ‘No.’ In general, the cutoff score, C, 

will be evaluated by the effect it has on the distribution of true positives and true 

negatives, which will also have an effect on the false negative and false positive 

components of classification Table 4.2.  
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Youden’s Index 

Through previous research, Hamner et al. (2019) considered Youden’s index or 

Youden’s J statistic for evaluating grade cutoff scores to determine gateway courses. 

Similarly, we now explore Youden’s index to understand how its structure will affect 

selection of a cutoff score, C, for this study. Youden’s index is calculated by  

J = Sensitivity + Specificity – 1 

where, using the definitions of the components in Table 4.2, Sensitivity and Specificity are 

defined by 

True Positives
True Positives + False Negatives

=Sensitivity  

and 

True Negatives
True Negatives + False Positives

=Specificity .  

To create a probability classification table we define the following definitions from the 

components of Table 4.2. 

False Negatives   = 
False Negatives + True Positives

False Negative Error  

and 

False Positives
False Positives + True Negatives

False Positive Error = . 

It is worth noting that mathematically Sensitivity + False Negative Error = 1 and 

Specificity + False Positive Error = 1. Utilizing the above probability definitions, we 

create Table 4.3 below.  
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Table 4.3 

Probability Classification 

  P2 
  Yes No 
Meet minimum 
Cutoff Score, C 

Yes Sensitivity False Positive Error 
No False Negative Error Specificity 

  1 1 
 
Due to the mathematical constraints of the column’s probabilities summing to 1 in 

Table 4.2, we note that Youden’s index, J, can have a maximum value of 1 when the 

false negative error and false positive error are zero. In general, Youden’s index, has a 

maximum value when both sensitivity and specificity, combined, produce the largest 

value of J. This suggest that Youden’s index does not weight, in terms of importance, 

sensitivity over specificity, but rather simply considers whatever combination of both 

yields the largest value. That is to say, sensitivity and specificity are considered equally 

important in Youden’s index. Thus, Youden’s index will select a cutoff, C, that provides 

the maximum value of J regardless of a particular sensitivity or specificity value. The 

value C that maximizes J is typically referred to as the optimal cutoff score because it 

optimizes the differentiating ability of P2 in this research, for example, when equal 

weight is given to sensitivity and specificity (Ruopp et al., 2008).  

Utilizing Youden’s index, a baseline approach to determine a cutoff score, C, was 

operationalized using the training dataset. For this study, the training dataset contains all 

FTIC applicants that applied to TWU for any fall semester between 2014 and 2016. To 

explore a possible cutoff score from this training dataset, this study focused on applicants 

that matriculated to TWU. From this training data, this research observed all accumulated 
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semester credit hours for these students over time period t = 2 academic years, which is a 

continuous variable we denote as SCH2, as well as a dichotomous outcome variable, P2, 

formally defined as  

1 if a student persists after  = 2
P2

0 if a student does not persist after  = 2


= 


t
t

. 

To automate this process this research notes the connection of Youden’s index, a 

function of Sensitivity and Specificity, to the receiver operating characteristic (ROC) 

curves commonly utilized to evaluate model fit in logistic regression ( Lawrence, 2020; 

Schisterman et al., 2005). The ROC curve is a two dimensional plot of Sensitivity (y-

axis) versus 1 − Specificity (x-axis) at all possible cutoff points, C, for SCH2. For a more 

extensive discussion on ROC curves, we refer the reader to Ahluwalia (2006). 

Accordingly, understanding the association of Youden’s index with ROC curves from 

logistic regression allowed us to write SAS code that automates finding the cutoff score, 

C, that maximizes J by assigning the logistic regression model’s dependent variable to P2 

and the model’s independent variable to SCH2. See Appendix A for the SAS code that 

automates this process. 

As a result of the SAS code and the training dataset, the initial baseline cutoff 

score considered that maximizes Youden’s index is C = 45 SCH2. Utilizing this cutoff 

score, we can fill in the components of Table 4.3 to generate Table 4.4 and Table 4.5, 

below.  

 



27 
 

Table 4.4 

SCH2 ≥ C = 45, Frequency Classification 

SCH2 ≥ C = 45  P2  
  Yes No Total 

Meet minimum Cutoff Score, C 
Yes 1,820 310 2,130 
No 172 882 1,054 

Total 1,992 1,192 3,184 
 
Table 4.5 

SCH2 ≥ C = 45, Probability Classification 

SCH2 ≥ C = 45  P2 
  Yes No 

Meet minimum Cutoff Score, C 
Yes .914 .260 
No .086 .740 

Total 1 1 
 

From Table 4.5 and Table 4.3 we can evaluate the cutoff that was determined by 

Youden’s index. With equal weight given to both Sensitivity and Specificity, the cutoff 

value, C = 45 SCH2, that maximized J generated Sensitivity = .914 (91.4%) and 

Specificity = .740 (74.0%) for an index value of J = .654 (.914 + .740 – 1). As a 

consequence of this combination of Sensitivity and Specificity that maximized J, the 

resulting False Negative Error = .086 (8.6%) and False Positive Error = .260 (26.0%). 

Interestingly, this low False Negative Error in relation to the higher False Positive Error 

is likely the preferred relationship in the clinical or medical research community from 

which Youden’s index is prominently discussed (Larner, 2015).  

To conceptualize, consider utilizing Youden’s index to calibrate or find a cutoff 

value for a medical test that will discriminate between, for example, “cancer” or “no 

cancer.” Ideally, you want Sensitivity and Specificity to be 1 so that the errors are zero 
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and patients that test positive get appropriate medical attention. In the absence of a 

perfect test, consider the consequences of the respective errors. Suppose a patient tests 

positive for cancer and then the medical doctor immediately schedules for a follow-up 

procedure that indicates the patient does not, in fact, have cancer. This is an example of a 

false positive and the consequences of this error is inconvenience to the patient by 

requiring a follow-up medical procedure. However, suppose a patient tests negative for 

cancer but in fact has cancer, the potential consequences of this false negative is that the 

patient does not seek appropriate medical attention to deal with the cancer. With the 

potential health consequences associated with such high stakes medical testing, the 

calibration of such a test will focus on minimizing the false negative error and 

consequently boosting Sensitivity over Specificity. Keep in mind, however, that we are 

exploring an investment proposition in this study on all students that meet the minimum 

cutoff score, C, meaning we are considering investing in all students on Row = Yes. 

Subsequently, we have to evaluate the selection of the cutoff score for this research on 

the basis of the distribution of the classification table’s components as well. From Table 

4.3, if we were to accept Youden’s index cutoff value, C = 45 SCH2, then we are 

identifying 67% (2,130/3,184) of all matriculating students as a target for an investment 

commitment, which may not be realistic given finite monetary resources. This resource 

heavy commitment includes the 310 students that failed to persist after 2 years and that 

are no longer generating revenue for the university. Given the relative position of these 

students that are no longer persisting and the very large potential investment 

commitment, we are concerned with the false positive error of .260 (26.0%), because this 
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means that more than one quarter of all the students who do not persist after 2 years meet 

the Youden’s cutoff score. With limited financial resources for targeted student 

recruitment and the concern of return on investment (ROI), it is reasonable to conclude 

that a higher standard, in the form of a larger cutoff value C, should be considered that 

favors increased specificity and a reduced false positive error.  

Considering Youden’s cutoff selection, C = 45 SCH2, within the context of a 

merit-based investment towards the ultimate goal of graduation, it becomes evident that 

45 accumulated semester credit hours within 2 years is not a high standard. In fact, this 

would fail to meet the minimum standard required by the federal government for Pell 

recipients, which requires full-time enrollment for undergraduates seeking a college 

degree. In two academic years, a typical full-time student would accumulate a minimum 

of 48 SCH2 over the time period of interest. Considering that we are looking for a higher 

standard worthy of investment, we are going to require a higher standard beyond the 48 

SCH2 minimum of a full-time student, and use C = 52 SCH2 as the cutoff value (see 

Tables 4.6 and 4.7). At TWU, all FTIC students are required to take a 1 hour First-Year 

Experience Course, so essentially the one step beyond full-time amounts to one 

additional 3 hour course at TWU within 2 years.  

Table 4.6 

SCH2 ≥ C = 52 Frequency Classification 

SCH2 ≥ C = 52  P2  
  Yes No Total 

Meet minimum Cutoff Score, 
C 

Yes 1,375 182 1,557 
No 617 1,010 1,627 

Total 1,992 1,192 3,184 
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Table 4.7 

SCH2 ≥ C = 52 Percentage Classification 

SCH2 ≥ C = 52  P2 
  Yes No 

Meet minimum Cutoff Score, C 
Yes .690 .153 
No .310 .847 

Total 1 1 
 

We can see that the higher cutoff score C = 52 SCH2 increased Specificity = .847 

(84.7%) and reduced the False Positive Error = .153 (15.3%). Now, only 15.3% of all 

students in the training dataset do not persist after two years, which is over a 10% 

reduction to this error compared to the results utilizing Youden’s cutoff score. Although 

Youden’s index value of J = .538 (.690+.847– 1) has decreased with the higher standard 

cutoff score, the investment proposition is more selective and includes a nearly 20% 

reduced investment commitment of 48.9% (1,557/3,184) of all matriculating students. 

This more selective criteria also increases potential ROI. To illustrate this potential 

increase in ROI we calculate a simple ratio of true positive/false positive across the 

investment Row = Yes of Tables 4.4 and 4.6, which are respectively 5.87 and 7.55. We 

can think of this ratio as a simple win/loss ratio. For the higher standard cutoff, this ratio 

means that for every non-persisting student you mistakenly invest in, you have 7.55 

students that persist and continue to generate revenue through accumulated SCH after 

time period t = 2. In this context, the higher standard cutoff, when compared to the 

Youden’s cutoff, will compensate for each non-persisting student by having nearly two 

more persisting students (1.68) generate continued revenue. More formally, the higher 

standard cutoff increases the precision or positive predicted value (PPV), defined by  
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True Positives
True Positives + False Positives

=PPV , 

from Youden’s PPV = .854 to PPV = .883. The PPV is also prominently discussed in 

medical research (Manrai et al., 2014). Using this more selective cutoff C = 52 SCH2, we 

have now defined the dependent variable, Equation 3.1.  

Variable Selection, Building the Model, and Assessing Fit 

 Utilizing Equation 3.8, we can now associate the dependent variable to the 

admission variables we are using for this study. These independent variables are expected 

to be widely available, well occupied, and are critical in the evaluation of whether or not 

an applicant to a university is admitted. The independent variables selected for this study 

are listed and described in Table 4.8. From the training dataset we obtain the logistic 

regression coefficients, Table 4.9, and fill in Equation 3.8 to obtain Equation 4.1 

 

 _ _) ln( ) 3.4161 1.1499 0.00594
i ii i AP GPA AP Ranklogit(p odds x x= = − + −  . (4.1) 

 
Notice that both independent variables are significant at the 0.05 level and 

application GPA, in particular, is significant at the 0.01 level. Still, and not unexpectedly, 

these variables are negatively and almost strongly correlated (−0.67255) with each other, 

which can cause multicollinearity issues and problems with model coefficient 

interpretation. However, we are more concerned with predictive accuracy than we are 

with model coefficient interpretation. In addition, the evaluation of the model’s predictive 

accuracy will be through cross-validation. Although both variables are significant, it is 

not an uncommon practice to include variables that may not be significant, but for which 
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the literature suggests are variables that are generally significant. In a like way, because 

these variables are so commonly used across the admissions processing landscape and are 

well occupied in the data, their inclusion is relevant to almost all admission decision 

making processes at universities across the nation. Their face-validity, based on the 

findings in the literature, lends operational credibility utilizing them in the model (Lang, 

2007). To this point, despite potential multicollinearity issues, it is worth noting through 

the odds ratio, 3.158, calculated from Table 4.9 as ( )1 1499.e , how important the 

application GPA is to accumulating credit hours. For each .5 increase in application GPA, 

the odds of meeting the cutoff C = 52 SCH2 increases by a factor of 1.9 ( )5 1 1499. * .e . 

Table 4.8 

Variables Selected for Model Building 

Variable Type Coded Name Description 
High school GPA Quantitative AP_GPA 0 ≤ GPA ≤ 4.00 
High school Class Rank Quantitative AP_Rank% 0% < Rank ≤ 100% 

 
The coefficients for these variables are shown in Table 4.8 below. 

Table 4.9 

Results from Fitting Logistic Regression Model to Quantitative Variables 

Variable Coefficient Estimate Standard Error P-Value 
Intercept -3.4161 0.3863 <.0001 
AP_GPA 1.1499 0.1072 <.0001 
AP_Rank% -0.00594 0.00244 0.0149 
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Although the ultimate judgment of the model is through its ability to predict 

future outcomes through cross-validation, we will now briefly discuss model fit 

assessment through interpretation of the resulting ROC curve, Figure 4.1. 

 A perfect fit of the model will have an ROC value of 1, which would mean the 

model perfectly discriminates between those that meet the cutoff value and those that do 

not. Whereas an ROC value of 0.5 indicates no discrimination. From Figure 4.1, the ROC 

value of 0.6723 indicates acceptable discrimination. Given that we are only utilizing two 

independent variables, the adequate model fit is fairly impressive.  

Figure 4.1 

ROC Curve 
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 As discussed in Chapter 3, the objective is to create performance zones, Equation 

3.3, that have relative proportions of success, Equation 3.4, indicating the expected 

outcomes of applicants meeting the derived cutoff score. We do this because we want to 

identify a rank ordered performance outcomes from which we can identify zones of 

potential investment. To create these zones, we will use Equation 4.1 and Equation 3.10 

to initially partition the model outcomes (p) of the training dataset on the basis of decile 

intervals, as shown in Table 4.10. From Table 4.10, the “Average Probability” column of 

this table are the results of Equation 4.1 and Equation 3.7. The “SCH Cutoff Rate” 

column of Table 4.11 are the realized outcomes, Equation 3.4.  

Table 4.10 

Creating Partitions for Training Data on the Basis of Model Outcomes 

Train Apply FTIC Grid  
  Apply Grid Model Apply Grid Actual Results 

Model 
Group 

Probability 
Range 

Enroll 
Total 

Probability 
Sum 

Average 
Probability 

SCH Cutoff 
Sum 

SCH Cutoff 
Rate 

03 .7 ≤ p < .8 326 240 73.6% 258 79.1% 
04 .6 ≤ p < .7 509 330 64.8% 331 65.0% 
05 .5 ≤ p < .6 625 342 54.7% 342 54.7% 
06 .4 ≤ p < .5 737 332 45.0% 288 39.0% 
07 .3 ≤ p < .4 647 227 35.0% 237 36.6% 
08 .2 ≤ p < .3 307 80 26.1% 84 27.3% 
09 .1 ≤ p < .2 32 6 17.3% 17 53.1% 
10 0 ≤ p < .1 1 0 9.6% 0 0.0% 

Total  3,184 1,557 48.9% 1,557 48.9% 
 
 Examining Table 4.10, due to the lower average probabilities in Groups 08–10 

and the smaller enrollment totals, we decided to combine these groups with Group 07. 

Since we encountered no observations in Group 01 or Group 02 with combined 
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probability model scores between .8 ≤ p ≤ 1, we have decided to combine these two 

groups with Group 03. This new set of groups now totals five zones instead of ten, and 

are rewritten as follows, see Table 4.11: Group 01 = .7 ≤ p ≤ 1, Group 02 = .6 ≤ p < .7, 

Group 03 = .5 ≤ p < .6, Group 04 = .4 ≤ p < .5, and Group 05 = 0 ≤ p < .4, see Table 4.10. 

 
Table 4.11 

Regrouped Partitions for Training Data on the Basis of Model Outcomes 

Train Apply FTIC Grid  
  Apply Grid Model Apply Grid Actual Results 

Model 
Group 

Probability 
Range 

Enroll 
Total 

Probability 
Sum 

Average 
Probability 

SCH Cutoff 
Sum 

SCH Cutoff 
Rate 

01 .7 ≤ p ≤ 1 326 240 73.6% 258 79.1% 
02 .6 ≤ p < .7 509 330 64.8% 331 65.0% 
03 .5 ≤ p < .6 625 342 54.7% 342 54.7% 
04 .4 ≤ p < .5 737 332 45.0% 288 39.0% 
05 0 ≤ p < .4 987 313 31.6% 338 34.2% 

Total  3,184 1,557 48.9% 1,557 48.9% 
 
If you want to shape your class to have higher than average performance, the most 

logical approach would be to increase the yield from every strata that exceeds the overall 

results average (48.9%). These groups are worthy of investment at likely different rates 

that align to the expected performance outcomes. In this way, the training dataset 

identifies three groups, Groups 01–03, that can be used to shape the subsequent class in a 

positive way.  

All universities are likely to compete for applicants in Group 01. These applicants 

are going to have both a high GPA and a high class rank percentage. However, in the 

training dataset, Group 02 has application GPA’s as low as 3.36 and Group 03 has 

application GPA’s as low as 3.0. Similarly, Group 02 has High School ranks that exceed 
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50% and Group 03 ranks that go down even further. Certainly, Group 02 and Group 03 

contain potentially over looked and undervalued students that are worthy of financially 

incentivized targeting to increase yield and, consequently, increase the overall 

performance of the class. To illustrate this, we will now utilize Equation 4.1 and Equation 

3.10 on the testing dataset, see Table 4.12. 

Table 4.12 

Partitions for Testing Data on the Basis of Model Outcome Zones 

Test Apply FTIC Grid Projection 
  Apply Grid Model Apply Grid Actual Results 
Model 
Group 

Probability 
Range 

All 
Applied 

Probability 
Sum 

Average 
Probability 

Enroll 
Total 

SCH Cutoff 
Sum 

SCH Cutoff 
Rate 

01 .7 ≤ p ≤ 1 545 398 73.0% 160 111 69.3% 
02 .6 ≤ p < .7 925 600 64.8% 214 131 61.2% 
03 .5 ≤ p < .6 974 536 55.0% 237 116 48.9% 
04 .4 ≤ p < .5 867 392 45.1% 200 75 37.5% 
05 0 ≤ p < .4 1,415 404 28.5% 243 79 32.5% 

Total  4,726 2,330 49.2% 1,054 512 48.5% 
 

Table 4.12 shows the results of the cross-validation on the testing dataset. Recall 

that the testing dataset, is a set of applicant data not used to determine the coefficients for 

Equation 4.1. The testing dataset contains all FTIC applicants that applied to TWU for 

the 2018 fall semester that provide admission criteria values and define |P| = 4,726. 

Utilizing this performance zone modeling approach, during the application process, we 

would expect that students coming from Group 01 would be the top performers, followed 

by Group 02, Group 03, Group 04 and Group 05. In other words, we expect rank order 

performances on the basis of their model group and the results of the cross-validation 

show that exact relationship, see right hand side of Table 4.12. For example, 2 years after 

entry 69.3% of all the enrolled students from Group 01 met the expected cutoff whereas 
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only 32.5% of all the enrolled students from Group 05 met the expected cutoff. 

Comparing these results, we can generalize that, on average, a student from Group 02 

will be almost twice as likely to meet the desired cutoff as a student from Group 05. In 

other words, you would likely need two students from Group 05 to meet the SCH 

production of one student from Group 02. Interestingly, the rank order performance of 

these groups does not limit itself to the SCH2 cutoff score. In fact, Figure 4.2 shows 

Model Group rank order for both outcomes: 2-year persistence (P2) and SCH2 Cutoff 

Rate.  

Figure 4.2 

Testing Dataset, Enrolled Rank order of P2 and SCH2 Cutoff Rate by Model Group 

 

Now that we have illustrated the rank order reliability of the performance based 

zoning on the basis of model groups, we conclude with a brief discussion on shaping a 

class. Recall that the modeling technique we developed can be applied to all applicants 

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00%

05

04

03

02

01

M
od

el
 G

ro
up

P2 SCH2 ≥ C = 52 Rate



38 
 

prior to their actual enrollment. From Table 4.12, we would be able to target and recruit 

any of the 4,726 applicants on the basis of their potential performance, see also 

performance grid visual Figure 4.3.  

Figure 4.3 

Testing Dataset, 5 Groups, All Applied Performance Grid 

 

 
By focusing, for example, on the performance grid visual of Group 03, it is 

interesting to note the general compensatory pattern of application GPA and Rank. In 

particular, notice how that group creates a pattern that slopes down from left to right, 

which indicates that a student can compensate for a higher rank by an increased 
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application GPA (This pattern is present in the training data as well, see Appendix B). As 

a simple illustration on targeting yield by model group, suppose an enrollment manager 

increased the yield of Groups 01–03 by 10% respectively and decreased the yield of 

Groups 04 and 05 by 10% respectively, then the overall class size of the testing 

enrollment group would have increased by just 16 students to 1070 total, but the overall 

SCH cutoff rate would have increased by over 5% from 48.5% to 53.8% overall. 
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CHAPTER V 

CONCLUSION 

Introduction 

 In this chapter, this study used chi-square analysis to formally test the SCH2 ≥ C = 

52 rates across the testing dataset groups modeled in Chapter 4. Further, this research 

utilized ANOVA and post hoc test to determine significant pairwise differences of the 

average accumulated SCH2 between these groups. Additionally, these model groups will 

be briefly summarized and contextualize through the exploration of an investment 

proposition. To provide additional context, we will expand on the Chapter 4 discussion 

regarding additional outcome metrics associated with the testing model groups, by 

including some demographic breakdowns. Finally, we will discuss some alternative 

approaches to explore for future research. 

Chi-Square and ANOVA Analysis 

From the cross-validation example in Chapter 4, it was illustrated that the 

expected rank order outcome by model Groups 01–05 for the SCH2 ≥ C = 52 rates, in 

fact, held true as well as the persistence rank order, and even the rank order of both the 

first and second year TWU GPA. Utilizing chi-square analysis we tested the null 

hypothesis that there is no association between meeting C = 52 SCH2 cutoff and the five 

model groups categories. The alternative hypothesis is that meeting the cutoff is 

dependent on the model group categories. To see the contingency table associated with 

this chi-square analysis see Appendix C. From Table 5.1, at the .01 significance level, we 
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reject the null hypothesis in favor of the alternative indicating that there is a significant 

(χ2 (4) = 294.07, p < .0001) association (dependence) between meeting the cutoff C = 52 

SCH2 and the five model groups categories. This chi-square analysis implies a significant 

difference between the ranked ordered cutoff rates by groups, see Figure 5.1, but without 

identifying exactly which pairs of groups significantly differ.  

Table 5.1 

Results from Chi-Square Analysis on the Training Data 

Statistic Degrees of Freedom Value Probability 

Chi-Square 4 294.0651 <.0001 

 

Figure 5.1 

Testing Dataset, Enrolled SCH2 Cutoff Rate by Model Group 
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To determine where the pairwise differences are occurring, we use post-hoc 

ANOVA analysis, see Appendix D. First, at the .01 significance level, the ANOVA 

rejects the null hypothesis that the mean SCH2 across the five model groups are equal, 

which indicates that at least two mean SCH2 model groups differ significantly (F = 64.46, 

p < .0001). From the Tukey’s Honest Significant Difference test, a post hoc analysis, at 

the 0.05 significance level, we found that Group 01 mean SCH2 is pairwise significantly 

different from all other group mean SCH2, Group 02 mean SCH2 is pairwise significantly 

different form all other group mean SCH2 except Group 03 mean SCH2, Group 03 mean 

SCH2 is pairwise significantly different from all other group mean SCH2 except Group 02 

mean SCH2, and Group 04 mean SCH2 is pairwise significantly different from all other 

group mean SCH2. This post hoc analysis highlights how Groups 01, 02, and 03, which 

have higher than average SCH2 ≥ C = 52 rates, are significantly different from Groups 04 

and 05 and therefore are good candidates for targeted recruitment and investment efforts. 

The Investment Proposition 

 For simplicity, without the nuance of formula funding and overhead cost, we 

present a simple, albeit contrived, way to conceptualize the potential revenue impact of 

the testing dataset model groups by their SCH2 cutoff rate. For this exercise, assume 100 

students enrolled in each model group, see Table 5.2, and utilize their respective realized 

SCH2 cutoff rates from Table 4.12. Further, we assume the students that meet the cutoff 

rate generate exactly the minimum cutoff value C = 52 SCH2. With these basic 

assumptions, we are controlling for extraneous factors to facilitate a simple model group 

revenue comparison. Thus, using Table 5.2, we considered the potential impact of an 
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investment in Group 02. According to the constraints set earlier in this example, we can 

expect that out of 100 students in this sub-cohort, 61 will generate 52 SCH2 since their 

respective cutoff rate is 61.2%. Thus, if 61 students for Group 02 generate 52 SCH2 then 

the total SCH2 generated by those students is 3,172 SCH2. TWU’s current published 

undergraduate resident tuition rate is $230.70 per semester credit hour, which implies the 

61 students from model Group 02 will generate $731,780.40 in SCH2 revenue. 

Comparing the revenue from the students that meet the cutoff rate of Group 02 to Group 

04, Group 02 generates $287,913.60 more revenue than Group 04. Similarly, comparing 

the revenue from the students that meet the cutoff rate of Group 02 to Group 05, Group 

02 generates $347,895.60 more revenue than Group 05. Considering the potential 

revenue benefits of the model groups, we leave it up to the university’s decision makers 

to determine how best to allocate resources in order to increase the yield rate of 

applicants-to-enrolled in the model groups that generate credit hours for the university. 

Table 5.2 

Test Data, Revenue of Model Groups by SCH Cutoff Rate 

Model 
Group 

Enroll 
Total 

SCH 
Cutoff 

Rate 

# Meet 
Cutoff  

SCH2 
Cutoff  

Total 
SCH2 SCH2 Revenue 

01 100 69.3% 69 52 3,588  $  827,751.60  
02 100 61.2% 61 52 3,172  $  731,780.40  
03 100 48.9% 48 52 2,496  $  575,827.20  
04 100 37.5% 37 52 1,924  $  443,866.80  
05 100 32.5% 32 52 1,664  $  383,884.80  

Total 500 48.5% 247 52 12,844  $2,963,110.80  
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The obvious goal of an investment proposition should be to increase the yield 

from high performing zones. By doing so, the yield increase in these higher performing 

zones will lead to increased revenue generated for the university as well as increased P2 

and graduation rates. However, an additional goal can be to address under performance in 

yield considering other factors as well. For example Table 5.3 presents the overall 

proportional distribution of applications by ethnicity for the training dataset, which is the 

data we would utilize to inform the tactical targeting for the testing model data. Notice 

that Hispanics make up 53% of all applications, which is more than all other ethnicities 

combined. If we narrow the focus on the high performance zone Group 02, we see that 

Hispanics make up almost half, 49%, of all applicants in this group. 

Table 5.3 

Various Ethnic Breakdowns for Training Data Applicants 

Group % White % Black % Hispanic % Asian % Other 
01 36.2% 7.6% 36.3% 17.7% 2.2% 
02 24.4% 12.3% 49.2% 11.6% 2.4% 
03 16.3% 17.0% 55.2% 9.5% 2.0% 
04 13.6% 20.6% 56.8% 7.2% 1.9% 
05 9.7% 27.9% 54.5% 6.0% 1.8% 

Total 16.1% 20.3% 52.9% 8.7% 2.0% 
 

However, in Table 5.4, Hispanics make up only 38% of all actual enrolled 

students, a 15% disparity to their application percentage. Additionally, Hispanics account 

for only 32% of the Group 02 actual enrolled students, a 17% disparity to their 

application percentage specific to this group. On the other hand, all other ethnicities are 

over represented in their respective enrollment percentage relative to their application 
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percentage in both the overall and Group 02 specific totals. This over representation is 

especially true for white applicants.  

Table 5.4 

Various Ethnic Breakdowns for Training Data Enrolled Students 

Group % White % Black % Hispanic % Asian % Asian 
01 52.5% 8.0% 25.5% 12.0% 2.1% 
02 36.0% 13.8% 32.4% 15.5% 2.4% 
03 27.0% 19.5% 39.5% 11.4% 2.6% 
04 18.3% 27.1% 43.6% 8.3% 2.7% 
05 16.6% 32.2% 39.4% 9.8% 1.9% 

Total 25.8% 23.1% 37.8% 10.9% 2.3% 
 

It is even more striking to see this phenomenon in terms of yield rate, or modeling 

group zones, see Table 5.5. We can clearly see that Hispanics have a much lower 

matriculation rate of 18% overall, which is 22% below the 40% yield rate of white 

applicants. Further, looking at the high performance zone Group 02 in the same table, we 

see nearly identical yield rates respective to each of these two ethnicities. To revisit Table 

5.3 to make a more direct comparison, Hispanic applicants are more than twice the 

number of white applicants in the high performance zone Group 02 (49.2% to 24.4%), 

but white applicants enroll at more than twice the rate of Hispanic applicants (40.5% to 

18.1%) for this same group. As an institution in the state of Texas with a growing 

demographic of Hispanics, it may be wise to address this yield problem through targeted 

initiatives utilizing performance zones from which appropriate investment and ROI are 

considered. For a more in depth look at the training data breakdowns, please see 

Appendix E. 
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Table 5.5 

Percentage of Applicants (App) who Enroll (Enr) for Training Data 

Group White Black Hispanic Asian Other 
 Enr/App Enr/App Enr/App Enr/App Enr/App 

01 46.6% 33.8% 22.6% 21.8% 31.8% 
02 40.5% 30.6% 18.1% 36.6% 26.7% 
03 42.4% 29.3% 18.3% 30.7% 33.3% 
04 38.2% 37.2% 21.7% 32.6% 40.8% 
05 36.7% 24.9% 15.6% 35.1% 22.6% 

Total 40.7% 29.0% 18.2% 31.9% 29.8% 
 

Missing Data and Other Techniques 

As mentioned in Chapter 3, in this research we defined the set P to contain only 

those applicants that submitted both application GPA and Rank. Before restricting the 

training dataset with this criteria, the number of applicants who submitted both 

application GPA and Rank accounted for 84.3% of all completed applications. However, 

there were 11.2% of students that had an application GPA but no Rank. Interestingly, 

some high schools are doing away with ranking their students (Balingit, 2015). To deal 

with these missing data, future research entails imputing high school rank, which will 

then allow assignment to performance zone modeling. For further research, we are also 

considering using alternative statistical approaches, such as k-means clustering, to 

determine the performance zones. Such an approach would substitute the dichotomous 

dependent variable in this study and replace it with a continuous variable, that is the sum 

of all SCH accumulated by a student over time period t = two academic years.  
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%INCLUDE 'C:\Users\SAS_Credentials\mycreds.sas'; 
 
/* Take de-identified data and only keep students  
 who have both AP_GPA and AP_RANK_PERCENT */ 
   
DATA THESIS.FTIC_APPLY_14_18_GPARANK_SCRUB; 
 SET THESIS.FTIC_APPLY_14_18_SCRUB; 
 
 IF AP_GPA1 = . THEN DELETE; 
 IF AP_RANK_PERCENT1 = . THEN DELETE; 
 IF AP_RANK_PERCENT1 = 0 THEN DELETE; 
/* We found one occurrence in the data where a  

Missing AP_RANK_PERCENT1 was changed to a 0. 
This was removed also */ 

RUN; 
 
 
/* Split this dataset into two datasets: 
 * 14,15,16 students who enrolled (_SUBSET) 
 * everyone else (_LEFT) 
*/ 
 
DATA THESIS.FTIC_APPLY_14_16_GPARANK_SUBSET 

THESIS.FTIC_APPLY_14_18_GPARANK_LEFT; 
 SET THESIS.FTIC_APPLY_14_18_GPARANK_SCRUB; 
 
 IF SUBSTR(TERM,1,2) IN ('14','15','16') AND SCH27 NE .  

THEN OUTPUT THESIS.FTIC_APPLY_14_16_GPARANK_SUBSET; 
 ELSE OUTPUT THESIS.FTIC_APPLY_14_18_GPARANK_LEFT; 
RUN; 
 
/* Move the main table to the work library */ 
DATA CUTOFF_DATA; 
 SET THESIS.FTIC_APPLY_14_16_GPARANK_SUBSET; 
 
RUN; 
 
/* Set up the Youden Macro to run for multiple  
 different parameters      */ 
%MACRO YOUDEN(P=,SCH=,); 
%LET CONTINUOUS_VAR = &SCH.; 
 
PROC LOGISTIC DATA=CUTOFF_DATA DESCENDING NOPRINT; 

MODEL &P. = &CONTINUOUS_VAR / OUTROC=ROC_STATS_CUTOFF; 
/* ROC_STATS_CUTOFF dataset contains the sensitivity and  
 specificity values for different probability cutoffs. 
 We will use Youden to select which probability cutoff (_Prob_) 
      is optimal and key (link) it back to the CUTOFF_LOGIT_DATA.  
*/ 
 OUTPUT OUT=CUTOFF_LOGIT_DATA  
/*Probability scored dataset using the continuous variable as a 
predictor.*/ 
    P=PROB             



53 
 

/*Probility field (Prob) in the CUTOFF_LOGIT_DATA is a key to link 
optimal cutoff.*/ 
    XBETA=LOGIT;  
RUN; 
 
DATA CHECK; 
 SET ROC_STATS_CUTOFF; 
 _SPECIF_ = (1 - _1MSPEC_); 
 J = _SENSIT_ + _SPECIF_ - 1; 
/* Youden's, Youden's J index is used to select the optimal 

predicted probability cut-off. It is the maximum vertical 
distance between ROC curve and diagonal line. The idea is to 
maximize the difference between True Positive and False Positive.  

*/ 
RUN; 
 
PROC SQL NOPRINT; 
 CREATE TABLE CUTOFF AS 
  SELECT _PROB_,  
/* Use this variable to link back to dataset for the cutoff record */ 
    J, 
    _SENSIT_, 
    _SPECIF_, 
    _1MSPEC_    
 
  FROM CHECK 
 
  HAVING J = MAX(J); 
/*criteria for determining cutoff record(s)*/ 
QUIT; 
 
/* Attach the record from above back to CUTOFF_LOGIT_DATA dataset to 
find the corresponding date that maximizes Youden */ 
PROC SQL; 
 CREATE TABLE CUTOFF_LOGIT_DATA2 AS   
      SELECT LD.* , 
                   CO._PROB_, 
    J, 
    _SENSIT_, 
    _SPECIF_, 
    _1MSPEC_   
                         
         FROM CUTOFF_LOGIT_DATA LD 
                 LEFT JOIN CUTOFF  CO ON (LD.PROB = CO._PROB_) 
 
  ORDER BY CO._PROB_ DESC; 
QUIT;  
 
DATA MACRO_DATE_DATA; 
 SET CUTOFF_LOGIT_DATA2; 
     IF _PROB_ NE . THEN CALL SYMPUT 
("OPTIMAL_CUTOFF",STRIP(&CONTINUOUS_VAR.)); 
RUN; 
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%PUT &OPTIMAL_CUTOFF;  
/* Check the log if desired */ 
 
DATA EXPLORE_&P.; 
 SET CUTOFF_LOGIT_DATA2; 
 
    OPTIMAL_CUTOFF_GTET=.; 
    IF &CONTINUOUS_VAR NE . THEN DO; 
  IF (&CONTINUOUS_VAR >= &OPTIMAL_CUTOFF.) THEN 
OPTIMAL_CUTOFF_GTET=1; 
        ELSE OPTIMAL_CUTOFF_GTET=0; 
 END; 
RUN; 
 
PROC FREQ DATA=EXPLORE_&P.; 
  TABLES OPTIMAL_CUTOFF_GTET*&P.; 
 
RUN; 
 
PROC MEANS N STD NMISS MEAN Q1 MEDIAN Q3 QRANGE 
  DATA=EXPLORE_&P.; 
  VAR &SCH.; 
RUN; 
%MEND YOUDEN; 
 
/* 

Below is the macro to call the above code.  
We are passing P2 variables. This could be done  
With other persistence variables as well. 

*/ 
%YOUDEN(P=P2,SCH=P2_SCH); 
 
 
/* Combine main table back with everything else */ 
DATA COMBINE; 
 SET  

WORK.CUTOFF_LOGIT_DATA2 
 THESIS.FTIC_APPLY_14_18_GPARANK_LEFT; 

 
RUN; 
 
 
/* Create flags for various cutoff thresholds */ 
DATA THESIS.EXPLORE_P2_GT_AND_GTET_FULL_2; 
 RETAIN SCRUB_STU_ID _LEVEL_ LOGIT PROB _PROB_  

 GT_OPTIMAL_CUTOFF_45 GTET_OPTIMAL_CUTOFF_45  
 GT_OPTIMAL_CUTOFF_51 GTET_OPTIMAL_CUTOFF_51; 

 SET COMBINE; 
 
GT_OPTIMAL_CUTOFF_45=.; 
    IF P2_SCH NE . THEN DO; 
   IF (P2_SCH > 45) THEN GT_OPTIMAL_CUTOFF_45=1; 
        ELSE GT_OPTIMAL_CUTOFF_45=0; 
    END; 
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GTET_OPTIMAL_CUTOFF_45=.; 
    IF P2_SCH NE . THEN DO; 
   IF (P2_SCH >= 45) THEN GTET_OPTIMAL_CUTOFF_45=1; 
        ELSE GTET_OPTIMAL_CUTOFF_45=0; 
    END; 
 
 GTET_OPTIMAL_CUTOFF_48=.; 
    IF P2_SCH NE . THEN DO; 
   IF (P2_SCH >= 48) THEN GTET_OPTIMAL_CUTOFF_48=1; 
        ELSE GTET_OPTIMAL_CUTOFF_48=0; 
    END; 
 
GT_OPTIMAL_CUTOFF_48=.; 
    IF P2_SCH NE . THEN DO; 
        IF (P2_SCH > 48) THEN GT_OPTIMAL_CUTOFF_48=1; 
        ELSE GT_OPTIMAL_CUTOFF_48=0; 
    END; 
 
GT_OPTIMAL_CUTOFF_51=.; 
    IF P2_SCH NE . THEN DO; 
        IF (P2_SCH > 51) THEN GT_OPTIMAL_CUTOFF_51=1; 
        ELSE GT_OPTIMAL_CUTOFF_51=0; 
    END; 
 
GTET_OPTIMAL_CUTOFF_51=.; 
    IF P2_SCH NE . THEN DO; 
        IF (P2_SCH >= 51) THEN GTET_OPTIMAL_CUTOFF_51=1; 
        ELSE GTET_OPTIMAL_CUTOFF_51=0; 
    END; 
RUN; 
 
 
/* 
 Now that we have the various Cutoff Score options, we move onto 
the implementing its usage. We knew from a %PUT statement earlier that 
Youden ‘picked’ 45 – but we created other variables within a reasonable 
range. 
*/ 
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/*MAKE DEPENDENT VARIABLE A MACRO VARIABLE*/ 
%LET DEPENDENT_VAR=GT_OPTIMAL_CUTOFF_51; 
*%LET DEPENDENT_VAR=GTET_OPTIMAL_CUTOFF_51;  
*%LET DEPENDENT_VAR=GT_OPTIMAL_CUTOFF_48; 
*%LET DEPENDENT_VAR=GTET_OPTIMAL_CUTOFF_48; 
*%LET DEPENDENT_VAR=GT_OPTIMAL_CUTOFF_45; 
*%LET DEPENDENT_VAR=GTET_OPTIMAL_CUTOFF_45; 
 
/********************************************************************/ 
/* 
Train the model by using 3-years of Fall data. Since two year 
persistence is part of the model, the most recent year in the Train 
dataset should be 2 years prior to Test Fall year of interest.  For 
this study, I will use Fall Apply 14-16 data to predict Fall Apply 18 
outcome. 
Thus, using 3-years of data to Train the model and 1-year of data to 
Test the model. 
/**********************************************************************
******************/ 
  
%LET PREDICT_COHORT=18; /*FALL APPLY COHORT*/ 
 
/*YEAR_BACK1 CREATES Primary data that will be used to make the model*/ 
%LET YEAR_BACK2=%SYSFUNC(PUTN(%EVAL(&PREDICT_COHORT-2),Z2.));/*NEED TWO 
DIGIT VALUES*/  
%LET YEAR_BACK3=%SYSFUNC(PUTN(%EVAL(&PREDICT_COHORT-3),Z2.));/*NEED TWO 
DIGIT VALUES*/ 
%LET YEAR_BACK4=%SYSFUNC(PUTN(%EVAL(&PREDICT_COHORT-4),Z2.));/*NEED TWO 
DIGIT VALUES*/ 
 
/**********************/ 
/*Bring in Thesis Data*/ 
/**********************/ 

 
DATA GRID_DATA; 
 SET GG_DATA.Explore_p2_gt_and_gtet_full_2; 
 
/* ONLY CONSIDERING COMPLETE APPLICATIONS, ONES ABOUT WHICH A DECISION 
CAN BE MADE */ 
 IF AP_COMPLETE='YES'; 
 
/* POSSIBLE INDPENDENT VARIABLES: AP_GPA1,AP_RANK_PERCENT1,  

SAT_GRID<--CONVERTS act TO sat, AP_SAT_VM_OLD*/ 
/* POSSIBLE DEPENDENT VARIABLES: GT_OPTIMAL_CUTOFF_45, 
GTET_OPTIMAL_CUTOFF_45, GT_OPTIMAL_CUTOFF_51, GTET_OPTIMAL_CUTOFF_51*/ 
 /*MINOR DATA CLEAN UP*/ 
 ARRAY VARIABLES {1:3} AP_GPA1 AP_RANK_PERCENT1 AP_SAT_VM_OLD; 
 DO I=1 TO 3; 
  /*CLEAN*/ 
   IF VARIABLES{I}=0 THEN VARIABLES{I}=. ; 
   ELSE VARIABLES{I}=VARIABLES{I}; 
 END; 
RUN; 
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/*--CREATE TRAINING(MODEL BUILDING)& TESTING DATASETS--*/ 
DATA GRID_DATA_TRAIN GRID_DATA_TEST; 
 SET GRID_DATA; 
  
 /*TERMS TO BUILD MODEL & TEST*/ 
 IF SUBSTR(TERM,1,2) IN 
("&YEAR_BACK2","&YEAR_BACK3","&YEAR_BACK4") THEN OUTPUT 
GRID_DATA_TRAIN; 
 IF SUBSTR(TERM,1,2) IN ("&PREDICT_COHORT") THEN OUTPUT 
GRID_DATA_TEST; 
 
RUN; 

 
/*----------------1:LOGISTIC MODEL SELECTION---------------------------
---*/ 
 
/*macronize the indepependent variables*/ 
 
%let Explanatory=  
/*------Application VARIABLES------*/ 
/*HAVE_EXAM REFERENCE GROUP=0 (DID NOT SUBMIT ENTRY TEST SCORES)*/ 
/*GENDER REFERENCE GROUP='M'*/ 
AP_GPA1 /**/ 
AP_RANK_PERCENT1 /**/ 
/*AP_SAT_VM_OLD */ 
; 

 
PROC LOGISTIC DATA=GRID_DATA_TRAIN DESCENDING OUTEST=FIT_LOGISTIC 
COVOUT OUTMODEL=TRY; 
   TITLE "FTIC APPLY GRID ENROLLMENT MODEL"; 
/*DEPENDENT VARIABLE DEALS WITH YES/NO SCH ACCUMULATION AT CUTOFF OR 
NOT*/ 
   MODEL &DEPENDENT_VAR = &Explanatory 
 
   /SELECTION=none 
   CTABLE PPROB = (0 TO 1 BY .05) 
   LACKFIT 
   RISKLIMITS 
   PPROB=.4 /*CUTOFF POINT*/ 
   OUTROC=ROC; 
 
   OUTPUT out=TRAIN_RESULTS p = prob xbeta =logit;  
/*APPEND TO THE DATASET (FOR EACH OBS) LOGIT VALUE AND PROBABILITY*/ 
   ods output ParameterEstimates=LOGISTIC_PARMS; 
/*THIS IS FOR POOLING MODEL RESULTS*/ 
 
/*----------2: CALCULATE PROBILITY ON TESTING DATASET----------------*/ 
 score data = GRID_DATA_TEST out = TEST_DATA_SCORED ; 
RUN; 
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/*----3: REPORT RESULTS OF MODEL PREDICTION ON TRAINING DATASET----*/ 
 
/* THIS IS JUST APPLICANTS WHO ENROLLED FROM TRAINING DATASET*/ 
DATA TRAIN_MODEL_RESULTS; 
 SET TRAIN_RESULTS; 
 
 IF &DEPENDENT_VAR. NE .; 
 
 PROB_SCH=PROB2; 
 
/*DELETE THOSE THAT ENROLLED BUT DIDN'T HAVE BOTH RANK AND AP_GPA*/ 
 IF PROB_SCH=. THEN DELETE /*GP_PR='00'*/;  
 

IF  0<=PROB_SCH<.1 THEN GP_PR='10'; 
 ELSE IF .1<=PROB_SCH<.2 THEN GP_PR='09'; 
 ELSE IF .2<=PROB_SCH<.3 THEN GP_PR='08'; 
 ELSE IF .3<=PROB_SCH<.4 THEN GP_PR='07'; 
 ELSE IF .4<=PROB_SCH<.5 THEN GP_PR='06'; 
 ELSE IF .5<=PROB_SCH<.6 THEN GP_PR='05'; 
 ELSE IF .6<=PROB_SCH<.7 THEN GP_PR='04'; 
 ELSE IF .7<=PROB_SCH<.8 THEN GP_PR='03'; 
 ELSE IF .8<=PROB_SCH<.9 THEN GP_PR='02'; 
 ELSE IF .9<=PROB_SCH<=1  THEN GP_PR='01'; 
 ELSE GP_PR=' '; 
 
/*AFTER VIEWING THE RESULTS OF THE ABOVE DECILES*/ 

IF  0<=PROB_SCH<.4 THEN GP2_PR='05';/*7,8,9,10 above*/ 
 ELSE IF .4<=PROB_SCH<.5 THEN GP2_PR='04';/*6 above*/ 
 ELSE IF .5<=PROB_SCH<.6 THEN GP2_PR='03';/*5 above*/ 
 ELSE IF .6<=PROB_SCH<.7 THEN GP2_PR='02';/*4 above*/ 
 ELSE IF .7<=PROB_SCH<=1 THEN GP2_PR='01';/*1,2,3 above*/ 
 ELSE GP2_PR=' '; 
 
 COUNT=1; 
RUN; 

/* THESE ARE ALL APPLICANTS FROM TRAINING COHORT */ 
DATA TRAIN_MODEL_RESULTS_2; 
 SET TRAIN_RESULTS; 
 
 /*ONLY KEEP DATA FOR THOSE THAT HAVE BOTH INDEPENDENT VARIABLES*/ 
 IF HAVE_GPA = 1 AND HAVE_RANK = 1; 
 
 /*GIVE UNIQUE COUNT TO THOSE WHO HAVE ENROLLED*/ 
 IF &DEPENDENT_VAR. NE . THEN COUNT = 1; 
 
 PROB_SCH=PROB2;  
/*DELETE THOSE THAT ENROLLED BUT DIDN'T HAVE BOTH RANK AND AP_GPA*/ 
 IF PROB_SCH=. THEN DELETE /*GP_PR='00'*/;  
 
      IF  0<=PROB_SCH<.1 THEN GP_PR='10'; 
 ELSE IF .1<=PROB_SCH<.2 THEN GP_PR='09'; 
 ELSE IF .2<=PROB_SCH<.3 THEN GP_PR='08'; 
 ELSE IF .3<=PROB_SCH<.4 THEN GP_PR='07'; 
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 ELSE IF .4<=PROB_SCH<.5 THEN GP_PR='06'; 
 ELSE IF .5<=PROB_SCH<.6 THEN GP_PR='05'; 
 ELSE IF .6<=PROB_SCH<.7 THEN GP_PR='04'; 
 ELSE IF .7<=PROB_SCH<.8 THEN GP_PR='03'; 
 ELSE IF .8<=PROB_SCH<.9 THEN GP_PR='02'; 
 ELSE IF .9<=PROB_SCH<=1 THEN GP_PR='01'; 
 ELSE GP_PR=' '; 
 /*after viewing results above*/ 
 IF  0<=PROB_SCH<.4 THEN GP2_PR='05';/*7,8,9,10 above*/ 
 ELSE IF .4<=PROB_SCH<.5 THEN GP2_PR='04';/*6 above*/ 
 ELSE IF .5<=PROB_SCH<.6 THEN GP2_PR='03';/*5 above*/ 
 ELSE IF .6<=PROB_SCH<.7 THEN GP2_PR='02';/*4 above*/ 
 ELSE IF .7<=PROB_SCH<=1 THEN GP2_PR='01';/*1,2,3 above*/ 
 ELSE GP2_PR=' '; 
 
 ALL_COUNT=1; 
  
RUN; 

 
TITLE; 
TITLE 'Training 10 Groups Enrolled'; 
%sort(dsn=train_model_results,var=GP_PR); 
proc sgplot data=TRAIN_MODEL_RESULTS; 
 Xaxis      VALUES =(1.4 TO 4   BY .2) GRID/**/; 
 yaxis reverse  VALUES =(0 TO 100 BY 10)  GRID/**/; 
    *styleattrs datacontrastcolors=(grey red orange yellow green blue 
purple); 
   scatter x=AP_GPA1 y=AP_RANK_PERCENT1 / group=GP_PR; 
 *reg   y=AP_RANK_PERCENT1 x=AP_GPA1 / group=GP_PR ; 
run; 
 
TITLE; 
TITLE 'Training 10 Groups All Apps'; 
%sort(dsn=train_model_results_2,var=GP_PR); 
proc sgplot data=TRAIN_MODEL_RESULTS_2; 
 Xaxis      VALUES =(1.4 TO 4   BY .2) GRID/**/; 
 yaxis reverse  VALUES =(0 TO 100 BY 10)  GRID/**/; 
    *styleattrs datacontrastcolors=(grey red orange yellow green blue 
purple); 
   scatter x=AP_GPA1 y=AP_RANK_PERCENT1 / group=GP_PR; 
 *reg   y=AP_RANK_PERCENT1 x=AP_GPA1 / group=GP_PR ; 
run; 
 
TITLE; 
TITLE 'Training 5 Groups Enrolled'; 
%sort(dsn=train_model_results,var=GP2_PR); 
/*after viewing results above*/ 
proc sgplot data=TRAIN_MODEL_RESULTS; 
 Xaxis      VALUES =(1.4 TO 4   BY .2) GRID/**/; 
 yaxis reverse  VALUES =(0 TO 100 BY 10)  GRID/**/; 
    styleattrs datacontrastcolors=(ggr vibg vio bilg lip); 
   scatter x=AP_GPA1 y=AP_RANK_PERCENT1 / group=GP2_PR; 
 *reg     y=AP_RANK_PERCENT1 x=AP_GPA1 / group=GP2_PR ; 
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run; 
 
TITLE; 
TITLE 'Training 5 Groups All Apps'; 
%sort(dsn=train_model_results_2,var=GP2_PR); 
/*after viewing results above*/ 
proc sgplot data=TRAIN_MODEL_RESULTS_2; 
 Xaxis      VALUES =(1.4 TO 4   BY .2) GRID/**/; 
 yaxis reverse  VALUES =(0 TO 100 BY 10)  GRID/**/; 
    styleattrs datacontrastcolors=(vibg ggr vio bilg lip); 
   scatter x=AP_GPA1 y=AP_RANK_PERCENT1 / group=GP2_PR; 
 *reg     y=AP_RANK_PERCENT1 x=AP_GPA1 / group=GP2_PR ; 
run; 

 

PROC REPORT DATA=TRAIN_MODEL_RESULTS PS=60 LS=110 MISSING SPLIT='\' 
NOWINDOWS 
 
 STYLE(REPORT)={BACKGROUND=WHITE /*CELLPADDING = 1.2PT CELLSPACING 
= 0PT frame=box rules=groups*/} 
 STYLE(HEADER)={FONT=("times new roman",12PT) 
BACKGROUND=lightSTEELblue FOREGROUND=MAROON FONT_WEIGHT=BOLD} 
 STYLE(COLUMN)={FONT=("times new roman",11PT) FOREGROUND=BLACK 
/*CELLWIDTH=1.25IN*/};   
 
 TITLE1 'Texas Woman''s Uninversity'; 
 TITLE2 'Train Model Data'; 
 TITLE3 "Dependent Variable:&DEPENDENT_VAR"; 
 
 
 COLUMN ("Train Apply FTIC Grid Prediction" GP2_PR COUNT ("Apply 
Grid Model"  PROB_SCH conv1) ("Apply Grid Actual Results"  
&DEPENDENT_VAR conv2)); 
 
 DEFINE GP2_PR   / GROUP /*FORMAT=$GP_FMT. */ORDER=INTERNAL 
WIDTH=12  'Model\Level'; 
 DEFINE COUNT  / ANALYSIS SUM FORMAT=COMMA6.  
 WIDTH=10   'Enroll\Total' CENTER; 
  
 DEFINE PROB_SCH  / ANALYSIS sum FORMAT=COMMA6.   WIDTH=8 
 'Probability\Sum' CENTER; 
  DEFINE CONV1    / COMPUTED FORMAT=PRCNT_NEW. WIDTH=9 
'AVG\Probability'; 
 
 DEFINE &DEPENDENT_VAR / ANALYSIS SUM FORMAT=COMMA6.  WIDTH=8 
 'SCH_Cutoff\Sum' CENTER; 
 DEFINE CONV2   / COMPUTED FORMAT=PRCNT_NEW. WIDTH=9 
'AVG\SCH_Cutoff'; 
 
   COMPUTE CONV1; 
      IF COUNT.SUM=0 THEN CONV1=.;ELSE 
      CONV1=PROB_SCH.SUM/COUNT.SUM; 
   ENDCOMP; 
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   COMPUTE CONV2; 
      IF COUNT.SUM=0 THEN CONV2=.;ELSE 
      CONV2=&DEPENDENT_VAR..SUM/COUNT.SUM; 
   ENDCOMP; 
 
 RBREAK AFTER /SUMMARIZE STYLE={FONT_WEIGHT=BOLD FOREGROUND=MAROON 
BACKGROUND=lightSTEELblue}; 
 COMPUTE AFTER;  
  CALL DEFINE ('GP_PR', "STYLE", "STYLE={PRETEXT='Total' 
FONT_WEIGHT=BOLD JUST=LEFT}");   
    ENDCOMP; 
 
RUN; 
 
 
PROC REPORT DATA=TRAIN_MODEL_RESULTS_2 PS=60 LS=110 MISSING SPLIT='\' 
NOWINDOWS 
 
 STYLE(REPORT)={BACKGROUND=WHITE /*CELLPADDING = 1.2PT CELLSPACING 
= 0PT frame=box rules=groups*/} 
 STYLE(HEADER)={FONT=("times new roman",12PT) 
BACKGROUND=lightSTEELblue FOREGROUND=MAROON FONT_WEIGHT=BOLD} 
 STYLE(COLUMN)={FONT=("times new roman",11PT) FOREGROUND=BLACK 
/*CELLWIDTH=1.25IN*/};   
 
 TITLE1 'Texas Woman''s Uninversity'; 
 TITLE2 'Train Model Data'; 
 TITLE3 "Dependent Variable:&DEPENDENT_VAR"; 
 
 COLUMN ("Train Apply FTIC Grid Prediction" GP2_PR ("Apply Grid 
Model" PROB_SCH conv1) ("Apply Grid Actual Results" COUNT 
&DEPENDENT_VAR conv2)); 
 
 DEFINE GP2_PR   / GROUP /*FORMAT=$GP2_FMT. */ORDER=INTERNAL 
WIDTH=12  'Model\Level'; 
 
 DEFINE PROB_SCH  / ANALYSIS sum FORMAT=COMMA6.   WIDTH=8 
 'Probability\Sum' CENTER; 
  DEFINE CONV1    / COMPUTED FORMAT=PRCNT_NEW. WIDTH=9 
'AVG\Probability'; 
 
 DEFINE COUNT  / ANALYSIS SUM FORMAT=COMMA6.  
 WIDTH=10   'Enroll\Total' CENTER; 
 DEFINE &DEPENDENT_VAR / ANALYSIS SUM FORMAT=COMMA6.  WIDTH=8 
 'SCH_Cutoff\Sum' CENTER; 
 DEFINE CONV2   / COMPUTED FORMAT=PRCNT_NEW. WIDTH=9 
'AVG\SCH_Cutoff'; 
 
   COMPUTE CONV1; 
      IF COUNT.SUM=0 THEN CONV1=.;ELSE 
      CONV1=PROB_SCH.SUM/COUNT.SUM; 
   ENDCOMP; 
   COMPUTE CONV2; 
      IF COUNT.SUM=0 THEN CONV2=.;ELSE 
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      CONV2=&DEPENDENT_VAR..SUM/COUNT.SUM; 
   ENDCOMP; 
 
 RBREAK AFTER /SUMMARIZE STYLE={FONT_WEIGHT=BOLD FOREGROUND=MAROON 
BACKGROUND=lightSTEELblue}; 
 COMPUTE AFTER;  
  CALL DEFINE ('GP2_PR', "STYLE", "STYLE={PRETEXT='Total' 
FONT_WEIGHT=BOLD JUST=LEFT}");   
    ENDCOMP; 
 
RUN; 

 

 
/*----4: REPORT RESULTS OF MODEL PREDICTION ON TESTING DATA SET----*/ 
DATA TEST_Model_RESULTS; 
 SET TEST_DATA_SCORED; 
 
 IF &DEPENDENT_VAR. NE .; 
 PROB_SCH=P_1; 
 
/*DELETE THOSE THAT ENROLLED BUT DIDN'T HAVE BOTH RANK AND AP_GPA*/ 
 IF PROB_SCH=. THEN DELETE /*GP_PR='00'*/;  
 
 IF  0<=PROB_SCH<.4 THEN GP2_PR='05';/*7,8,9,10 above*/ 
 ELSE IF .4<=PROB_SCH<.5 THEN GP2_PR='04';/*6 above*/ 
 ELSE IF .5<=PROB_SCH<.6 THEN GP2_PR='03';/*5 above*/ 
 ELSE IF .6<=PROB_SCH<.7 THEN GP2_PR='02';/*4 above*/ 
 ELSE IF .7<=PROB_SCH<=1 THEN GP2_PR='01';/*1,2,3 above*/ 
 ELSE GP2_PR=' '; 
 
 COUNT=1; 
RUN; 
 
 
DATA TEST_Model_RESULTS_2; 
 SET TEST_DATA_SCORED; 
 
 /*ONLY KEEP DATA FOR THOSE THAT HAVE BOTH INDEPENDENT VARIABLES*/ 
 IF HAVE_GPA = 1 AND HAVE_RANK = 1; 
 
 /*GIVE UNIQUE COUNT TO THOSE WHO HAVE ENROLLED*/ 
 IF &DEPENDENT_VAR. NE . THEN COUNT = 1; 
 PROB_SCH=P_1; 
 *IF COUNT = 1 THEN PROB_SCH2 = PROB_SCH; 
 
/*DELETE THOSE THAT ENROLLED BUT DIDN'T HAVE BOTH RANK AND AP_GPA*/ 
 IF PROB_SCH=. THEN DELETE /*GP_PR='00'*/;  
 
 IF  0<=PROB_SCH<.4 THEN GP2_PR='05';/*7,8,9,10 above*/ 
 ELSE IF .4<=PROB_SCH<.5 THEN GP2_PR='04';/*6 above*/ 
 ELSE IF .5<=PROB_SCH<.6 THEN GP2_PR='03';/*5 above*/ 
 ELSE IF .6<=PROB_SCH<.7 THEN GP2_PR='02';/*4 above*/ 
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 ELSE IF .7<=PROB_SCH<=1 THEN GP2_PR='01';/*1,2,3 above*/ 
 ELSE GP2_PR=' '; 
 
 ALL_COUNT=1; 
RUN; 

 
PROC REPORT DATA=TEST_Model_RESULTS PS=60 LS=110 MISSING SPLIT='\' 
NOWINDOWS 
 
 STYLE(REPORT)={BACKGROUND=WHITE /*CELLPADDING = 1.2PT CELLSPACING 
= 0PT frame=box rules=groups*/} 
 STYLE(HEADER)={FONT=("times new roman",12PT) 
BACKGROUND=lightSTEELblue FOREGROUND=MAROON FONT_WEIGHT=BOLD} 
 STYLE(COLUMN)={FONT=("times new roman",11PT) FOREGROUND=BLACK 
/*CELLWIDTH=1.25IN*/};   
 
 TITLE1 'Texas Woman''s Uninversity'; 
 TITLE2 'Test Model Data'; 
 TITLE3 "Dependent Variable:&DEPENDENT_VAR"; 
 
 COLUMN ("Test Apply FTIC Grid Prediction" GP2_PR COUNT ("Apply 
Grid Model"  PROB_SCH conv1) ("Apply Grid Actual Results"  
&DEPENDENT_VAR conv2)); 
 
 DEFINE GP2_PR   / GROUP /*FORMAT=$GP2_FMT. */ORDER=INTERNAL 
WIDTH=12  'Model\Level'; 
 DEFINE COUNT  / ANALYSIS SUM FORMAT=COMMA6.  
 WIDTH=10   'Enroll\Total' CENTER; 
  
 DEFINE PROB_SCH  / ANALYSIS sum FORMAT=COMMA6.   WIDTH=8 
 'Probability\Sum' CENTER; 
  DEFINE CONV1    / COMPUTED FORMAT=PRCNT_NEW. WIDTH=9 
'AVG\Probability'; 
 
 DEFINE &DEPENDENT_VAR / ANALYSIS SUM FORMAT=COMMA6.  WIDTH=8 
 'SCH_Cutoff\Sum' CENTER; 
 DEFINE CONV2   / COMPUTED FORMAT=PRCNT_NEW. WIDTH=9 
'AVG\SCH_Cutoff'; 
 
   COMPUTE CONV1; 
      IF COUNT.SUM=0 THEN CONV1=.;ELSE 
      CONV1=PROB_SCH.SUM/COUNT.SUM; 
   ENDCOMP; 
   COMPUTE CONV2; 
      IF COUNT.SUM=0 THEN CONV2=.;ELSE 
      CONV2=&DEPENDENT_VAR..SUM/COUNT.SUM; 
   ENDCOMP; 
 
 RBREAK AFTER /SUMMARIZE STYLE={FONT_WEIGHT=BOLD FOREGROUND=MAROON 
BACKGROUND=lightSTEELblue}; 
 COMPUTE AFTER;  
  CALL DEFINE ('GP2_PR', "STYLE", "STYLE={PRETEXT='Total' 
FONT_WEIGHT=BOLD JUST=LEFT}");   
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    ENDCOMP; 
 
RUN; 
 
 
PROC REPORT DATA=TEST_Model_RESULTS_2 PS=60 LS=110 MISSING SPLIT='\' 
NOWINDOWS 
 
 STYLE(REPORT)={BACKGROUND=WHITE /*CELLPADDING = 1.2PT CELLSPACING 
= 0PT frame=box rules=groups*/} 
 STYLE(HEADER)={FONT=("times new roman",12PT) 
BACKGROUND=lightSTEELblue FOREGROUND=MAROON FONT_WEIGHT=BOLD} 
 STYLE(COLUMN)={FONT=("times new roman",11PT) FOREGROUND=BLACK 
/*CELLWIDTH=1.25IN*/};   
 
 TITLE1 'Texas Woman''s Uninversity'; 
 TITLE2 'Test Model Data 2'; 
 TITLE3 "Dependent Variable:&DEPENDENT_VAR"; 
 
 COLUMN ("Test Apply FTIC Grid Prediction" GP2_PR ALL_COUNT 
("Apply Grid Model"  PROB_SCH conv1) ("Apply Grid Actual Results" COUNT  
&DEPENDENT_VAR conv2)); 
 
 DEFINE GP2_PR   / GROUP /*FORMAT=$GP2_FMT. */ORDER=INTERNAL 
WIDTH=12  'Model\Level'; 
 DEFINE ALL_COUNT / ANALYSIS SUM FORMAT=COMMA6. WIDTH=10 'All 
Applicants' CENTER; 
  
 DEFINE PROB_SCH  / ANALYSIS SUM FORMAT=COMMA6.   WIDTH=8 
 'Probability\Sum' CENTER; 
  DEFINE CONV1    / COMPUTED FORMAT=PRCNT_NEW. WIDTH=9 
'AVG\Probability'; 
 
 DEFINE COUNT  / ANALYSIS SUM FORMAT=COMMA6.  
 WIDTH=10   'Enroll\Total' CENTER; 
 DEFINE &DEPENDENT_VAR / ANALYSIS SUM FORMAT=COMMA6.  WIDTH=8 
 'SCH_Cutoff\Sum' CENTER; 
 DEFINE CONV2   / COMPUTED FORMAT=PRCNT_NEW. WIDTH=9 
'AVG\SCH_Cutoff'; 
 
    COMPUTE CONV1; 
   IF COUNT.SUM=0 THEN CONV1=.; 
  ELSE CONV1=PROB_SCH.SUM/ALL_COUNT.SUM; 
 ENDCOMP; 
    COMPUTE CONV2; 
     IF COUNT.SUM=0 THEN CONV2=.; 
  ELSE CONV2=&DEPENDENT_VAR..SUM/COUNT.SUM; 
    ENDCOMP; 
 
 RBREAK AFTER /SUMMARIZE STYLE={FONT_WEIGHT=BOLD FOREGROUND=MAROON 
BACKGROUND=lightSTEELblue}; 
 COMPUTE AFTER;  
  CALL DEFINE ('GP2_PR', "STYLE", "STYLE={PRETEXT='Total' 
FONT_WEIGHT=BOLD JUST=LEFT}");   
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    ENDCOMP; 
 
RUN; 
 
TITLE; 
TITLE 'Testing 5 Groups Enrolled'; 
%sort(dsn=test_model_results,var=GP2_PR); 
proc sgplot data=TEST_Model_RESULTS; 
 Xaxis      VALUES =(1.4 TO 4   BY .2) GRID/**/; 
 yaxis reverse  VALUES =(0 TO 100 BY 10)  GRID/**/; 
    styleattrs datacontrastcolors=(ggr vibg vio bilg lip); 
   scatter x=AP_GPA1 y=AP_RANK_PERCENT1 / group=GP2_PR; 
 *reg     y=AP_RANK_PERCENT1 x=AP_GPA1 / group=GP2_PR ; 
run; 
 
TITLE; 
TITLE 'Testing 5 Groups All Apps'; 
%sort(dsn=test_model_results_2,var=GP2_PR); 
proc sgplot data=TEST_Model_RESULTS_2; 
 Xaxis      VALUES =(1.4 TO 4   BY .2) GRID/**/; 
 yaxis reverse  VALUES =(0 TO 100 BY 10)  GRID/**/; 
    styleattrs datacontrastcolors=(bilg lip vibg vio ggr); 
   scatter x=AP_GPA1 y=AP_RANK_PERCENT1 / group=GP2_PR; 
 *reg     y=AP_RANK_PERCENT1 x=AP_GPA1 / group=GP2_PR ; 
run; 

 

 

/* Code for Chi-Square Analysis */ 
 
title; 
title 'Frequency/Expected/Chi-square - Train'; 
proc freq data=train_model_results; 
 tables gt_optimal_cutoff_51*gp2_pr / expected chisq cellchi2 norow 
nocol; 
run; 
 
title; 
title 'Frequency/Expected/Chi-square - Test'; 
proc freq data=test_model_results; 
 tables gt_optimal_cutoff_51*gp2_pr / expected chisq cellchi2 norow 
nocol; 
run; 
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/* Code for ANOVA Analysis */ 
 
%sort(dsn=train_model_results,var=gp2_pr); 
title; 
title 'ANOVA Post Hoc - Train'; 
proc anova data = train_model_results; 
 class gp2_pr; 
 model cum_sch_after_s45 = gp2_pr; 
 means gp2_pr / tukey scheffe; 
run; 

title; 
 
title 'ANOVA Post Hoc - Test'; 
%sort(dsn=test_model_results,var=gp2_pr); 
proc anova data = test_model_results; 
 class gp2_pr; 
 model cum_sch_after_s45 = gp2_pr; 
 means gp2_pr / tukey scheffe; 
run; 

 

/* Code for Correlation */ 
 
title; 
title 'AP GPA with AP Rank Correlation - Train'; 
proc corr data = train_model_results; 
 var ap_gpa1 ap_rank_percent1; 
run; 

title; 
title 'AP GPA with AP Rank Correlation - Test'; 
proc corr data = test_model_results; 
 var ap_gpa1 ap_rank_percent1; 
run; 

 

 

 

 
 
 
 
 
 
 



67 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX B 

Scatterplots of Training and Testing Data 
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Training Dataset, 5 Groups, All Enrolled Performance Grid 
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Testing Dataset, 5 Groups, All Applied Performance Grid 
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Testing Dataset, 5 Groups, All Enrolled Performance Grid 
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APPENDIX C 

Chi-Square Output 
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Chi-Square Statistics for Training Dataset 

Table of GT_OPTIMAL_CUTOFF_51 by GP2_PR 

GT_OPTIMAL_CUTOFF_51 GP2_PR 

Frequency 
Expected 
Cell Chi-Square 
Percent 01 02 03 04 05 Total 

0 68 
166.58 
58.341 

2.14 

178 
260.1 

25.912 
5.59 

283 
319.37 
4.1419 

8.89 

449 
376.6 

13.918 
14.10 

649 
504.35 
41.487 

20.38 

1627 
 
 

51.10 

1 258 
159.42 
60.964 

8.10 

331 
248.9 

27.077 
10.40 

342 
305.63 
4.3281 

10.74 

288 
360.4 

14.544 
9.05 

338 
482.65 
43.352 

10.62 

1557 
 
 

48.90 

Total 326 
10.24 

509 
15.99 

625 
19.63 

737 
23.15 

987 
31.00 

3184 
100.00 

 

Statistics for Table of GT_OPTIMAL_CUTOFF_51 by GP2_PR 

Statistic 
D
F Value Prob 

Chi-Square 4 294.06
51 

<.000
1 

Likelihood Ratio Chi-
Square 

4 303.94
37 

<.000
1 

Mantel-Haenszel Chi-
Square 

1 286.17
07 

<.000
1 

Phi Coefficient  0.3039  

Contingency Coefficient  0.2908  

Cramer's V  0.3039  
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APPENDIX D 

ANOVA Output 
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ANOVA – P2_GPA by GP2_PR (Groups) 

Class Level Information 

Class Levels Values 

GP2_PR 5 01 02 03 04 05 

 

Number of Observations Read 3184 

Number of Observations Used 3184 

 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 4 64269.7731 16067.4433 64.46 <.0001 

Error 3179 792361.6628 249.2487   

Corrected Total 3183 856631.4359    

 

R-Square Coeff Var Root MSE CUM_SCH_AFTER_S45 Mean 

0.075026 34.39652 15.78761 45.89887 

 

Source DF Anova SS Mean Square F Value Pr > F 

GP2_PR 4 64269.77313 16067.44328 64.46 <.0001 
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Tukey’s Honest Significant (Post-Hoc) Test for Training Dataset 

 

Alpha 0.05 

Error Degrees of Freedom 3179 

Error Mean Square 249.2487 

Critical Value of Studentized Range 3.85987 

 

Comparisons significant at the 0.05 level are indicated by ***. 

GP2_PR 
Comparison 

Difference 
Between 

Means Simultaneous 95% Confidence Limits  

01 - 02 4.7409 1.6842 7.7976 *** 

01 - 03 7.2569 4.3130 10.2007 *** 

01 - 04 10.3021 7.4360 13.1683 *** 

01 - 05 14.0826 11.3300 16.8351 *** 

02 - 01 -4.7409 -7.7976 -1.6842 *** 

02 - 03 2.5160 -0.0567 5.0886  

02 - 04 5.5612 3.0778 8.0446 *** 

02 - 05 9.3416 6.9903 11.6930 *** 

03 - 01 -7.2569 -10.2007 -4.3130 *** 

03 - 02 -2.5160 -5.0886 0.0567  

03 - 04 3.0452 0.7021 5.3883 *** 

03 - 05 6.8257 4.6230 9.0284 *** 

04 - 01 -10.3021 -13.1683 -7.4360 *** 

04 - 02 -5.5612 -8.0446 -3.0778 *** 

04 - 03 -3.0452 -5.3883 -0.7021 *** 

04 - 05 3.7804 1.6827 5.8782 *** 

05 - 01 -14.0826 -16.8351 -11.3300 *** 

05 - 02 -9.3416 -11.6930 -6.9903 *** 
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Comparisons significant at the 0.05 level are indicated by ***. 

GP2_PR 
Comparison 

Difference 
Between 

Means Simultaneous 95% Confidence Limits  

05 - 03 -6.8257 -9.0284 -4.6230 *** 

05 - 04 -3.7804 -5.8782 -1.6827 *** 

 

 

Scheffe’s Test for Training Dataset 

 

Alpha 0.05 

Error Degrees of Freedom 3179 

Error Mean Square 249.2487 

Critical Value of F 2.37473 

 

Comparisons significant at the 0.05 level are indicated by ***. 

GP2_PR 
Comparison 

Difference 
Between 

Means Simultaneous 95% Confidence Limits  

01 - 02 4.7409 1.2892 8.1926 *** 

01 - 03 7.2569 3.9326 10.5811 *** 

01 - 04 10.3021 7.0656 13.5386 *** 

01 - 05 14.0826 10.9743 17.1908 *** 

02 - 01 -4.7409 -8.1926 -1.2892 *** 

02 - 03 2.5160 -0.3891 5.4211  

02 - 04 5.5612 2.7569 8.3655 *** 

02 - 05 9.3416 6.6864 11.9969 *** 

03 - 01 -7.2569 -10.5811 -3.9326 *** 

03 - 02 -2.5160 -5.4211 0.3891  

03 - 04 3.0452 0.3994 5.6911 *** 
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Comparisons significant at the 0.05 level are indicated by ***. 

GP2_PR 
Comparison 

Difference 
Between 

Means Simultaneous 95% Confidence Limits  

03 - 05 6.8257 4.3383 9.3130 *** 

04 - 01 -10.3021 -13.5386 -7.0656 *** 

04 - 02 -5.5612 -8.3655 -2.7569 *** 

04 - 03 -3.0452 -5.6911 -0.3994 *** 

04 - 05 3.7804 1.4116 6.1492 *** 

05 - 01 -14.0826 -17.1908 -10.9743 *** 

05 - 02 -9.3416 -11.9969 -6.6864 *** 

05 - 03 -6.8257 -9.3130 -4.3383 *** 

05 - 04 -3.7804 -6.1492 -1.4116 *** 
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APPENDIX E 

Additional Academic and Demographic Metrics for Training Dataset 
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All Enrolled and P2 =1 – AP_GPA and AP_Rank Breakdown 

Group Average AP_GPA High 
AP_GPA 

Low 
AP_GPA 

High 
AP_Rank 

Low 
AP_Rank 

01 3.904112727 4 3.72 0.16 40.25 
02 3.590650538 3.84 3.36 0.37 52.25 
03 3.264402948 3.62 3 0.6 95.91 
04 2.968438202 3.32 2.71 0.4 83.05 
05 2.555778905 2.97 1.68 4.15 97.97 

 

All Enrolled and P2 = 1 – P2_GPA and P2_SCH Breakdown 

Group Average 
P2_GPA 

High 
P2_GPA 

Low 
P2_GPA 

Average 
P2_SCH 

High 
P2_SCH 

Low 
P2_SCH 

01 3.7058875 4 1.85 58.56 94 21 
02 3.46507046 4 1.08571429 56.63709677 90 5 
03 3.17316976 4 1.04545455 54.93611794 76 19 
04 2.89184832 4 1 52.15505618 82 12 
05 2.739878 4 0.97777778 52.86612576 88 19 

 

All Enrolled (P2 =1 and P2 = 0) – AP_GPA and AP_Rank Breakdown 

Group Average AP_GPA High 
AP_GPA 

Low 
AP_GPA 

High 
AP_Rank 

Low 
AP_Rank 

01 3.901104294 4 3.72 0.16 40.25 
02 3.584713163 3.84 3.36 0.37 52.25 
03 3.2652736 3.62 3 0.2 100 
04 2.970339213 3.32 2.63 0.4 83.05 
05 2.54851773 2.97 1.53 4.15 98.42 

 

All Enrolled (P2 =1 and P2 = 0) – P2_GPA and P2_SCH Breakdown 

Group Average 
P2_GPA 

High 
P2_GPA 

Low 
P2_GPA 

Average 
P2_SCH 

High 
P2_SCH 

Low 
P2_SCH 

01 3.648258808 4 1.48 54.83128834 94 6 
02 3.279851077 4 0 50.09037328 90 0 
03 2.941817724 4 0 47.5744 76 0 
04 2.587533397 4 0 44.52917232 82 0 
05 2.219696204 4 0 40.74873354 88 0 
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All Applicants (Enrolled = 1 and Enrolled = 0) – AP_GPA and AP_Rank Breakdown 

Group Average AP_GPA High 
AP_GPA 

Low 
AP_GPA 

High 
AP_Rank 

Low 
AP_Rank 

01 3.896528134 4 3.71 0.16 50.77 
02 3.571774246 3.84 3.33 0.2 52.25 
03 3.250027016 3.79 3 0.2 100 
04 2.955791091 3.33 2.63 0.4 94.17 
05 2.399612214 3.06 1 0.4 100 

 

All Applicants – Ethnicity Frequency Breakdown 

Group Apply Total White Black Hispanic Asian Other 
01 1,013 367 77 368 179 22 
02 1,856 452 229 914 216 45 
03 2,443 399 416 1,349 231 48 
04 2,604 353 537 1,478 187 49 
05 4,585 447 1,277 2,501 276 84 
Total 12,501 2,018 2,536 6,610 1,089 248 

 

All Enrolled – Ethnicity Frequency Breakdown 

Group Apply Total White Black Hispanic Asian Other 
01 326 171 26 83 39 7 
02 509 183 70 165 79 12 
03 625 169 122 247 71 16 
04 737 135 200 321 61 20 
05 987 164 318 389 97 19 
Total 3,184 822 736 1,205 347 74 

 

Proportion Enrolled From Applicants for Each Group 

Group White Black Hispanic Asian Other 
01 0.46594 0.33766 0.22554 0.21788 0.31818 
02 0.40487 0.30568 0.18053 0.36574 0.26667 
03 0.42356 0.29327 0.18310 0.30736 0.33333 
04 0.38244 0.37244 0.21719 0.32620 0.40816 
05 0.36689 0.24902 0.15554 0.35145 0.22619 
Total 0.40733 0.29022 0.18230 0.31864 0.29839 
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All Applicants – Ethnicity Percentage Breakdown 

Group Apply Total White Black Hispanic Asian Other 
01 36.23% 7.60% 36.33% 17.67% 2.17% 36.23% 
02 24.35% 12.34% 49.25% 11.64% 2.42% 24.35% 
03 16.33% 17.03% 55.22% 9.46% 1.96% 16.33% 
04 13.56% 20.62% 56.76% 7.18% 1.88% 13.56% 
05 9.75% 27.85% 54.55% 6.02% 1.83% 9.75% 
Overall 16.14% 20.29% 52.88% 8.71% 1.98% 16.14% 

 

All Enrolled – Ethnicity Percentage Breakdown 

Group Apply Total White Black Hispanic Asian Other 
01 52.45% 7.98% 25.46% 11.96% 2.15% 52.45% 
02 35.95% 13.75% 32.42% 15.52% 2.36% 35.95% 
03 27.04% 19.52% 39.52% 11.36% 2.56% 27.04% 
04 18.32% 27.14% 43.55% 8.28% 2.71% 18.32% 
05 16.62% 32.22% 39.41% 9.83% 1.93% 16.62% 
Overall 25.82% 23.12% 37.85% 10.90% 2.32% 25.82% 
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