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ABSTRACT 

AMJAD ALMALAQ 

EXAMINING THE PROPERTIES OF THE STANDARD COMPREHENSIVE 

EXAMINATION THROUGH THE USE OF FACTOR ANALYSIS AND 

MULTIDIMENSIONAL SCALING 

 

MAY 2016 

The purpose of this study was to examine the properties of a departmental 

comprehensive examination in the course of Elementary Statistics-I (MATH 1703) as 

used by the Department of Mathematics & Computer Science in Texas Woman's 

University during the semesters Fall 2012 through Spring 2015. Item performance 

was assessed with standard discrimination and difficulty indices. Factor analysis and 

multidimensional scaling were used to assess construct validity from unique 

perspectives. Internal consistency reliability was defined with Cronbach’s alpha 

coefficient. The data and findings support use of the examination, while studies of 

predictive and concurrent validities remain to be done. 
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CHAPTER I 

INTRODUCTION 

Nearly 50 years ago Norman Gronlund identified characteristics of classroom 

achievement tests which are in strict agreement with modern criteria for assessing the 

effectiveness of classroom instruction and accreditation standards (Gronlund, 1968). 

Specifically, tests should measure clearly defined learning outcomes that coordinate 

with overall objectives, and tests should be useful for improving student learning. 

Related to the mission of using tests in the educational  process is the assessment of 

the test itself in terms of how well the test problems function in assessing relevant 

learning, and the extent to which we can trust a test to provide useful and accurate 

information about student learning.  

The present thesis considers one form of achievement test, the multiple-choice 

format, in assessing statistics knowledge and skills.  In the end, studies on a classroom 

achievement test should determine the efficacy of the test, aiming at demonstrating 

whether and to what extent a test yields “dependable” data. Magnussen’s classic 

statement says it best: “Data should thus be dependable from two points of view--they 

should be meaningful and they should be reproducible” (Magnussen, 1966, pg. 59). 

The meaningfulness of a test score depends on the measured “validity” of the test; a 

valid test provides scores that actually convey information that the teacher or 

administrator needs to know about the student; or as it is commonly put, the test 

measures what it is supposed to measure. Reproducibility of scores reflects the 

accuracy or “reliability” of the measure; a reliable test measures a skill or knowledge 
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with precision. Dependable tests are thus valid and reliable. The current study 

assessed certain validities and reliabilities of the departmental final exam used in an 

elementary statistics, core curriculum course. 

Overall Strategy 

 A large number of current studies, in both education and psychology, have 

dealt with test score profiles (Hill, Sleep, Lewis, & Ball, 2007). The term "profile" has 

been utilized as a part of the instruction settings and score reporting in mathematics, 

reading comprehension, and basic intuition aptitudes (Johannsdottir, 2013; Schmidt, 

Wang, & McKnight, 2005). It is not unusual for undergraduates to get test results as 

score profiles, speaking to the quality and shortcomings in their performance on tests 

(Jacobs et al., 2006; NCTM, 2000). Because of this basic practice in instruction, the 

profile examination was considered by training professionals as portraying basic test 

scores. Therefore, a mixture of exploratory systems has been utilized to recognize 

profile designs in mathematics. While the object of this thesis is the quality of one 

classroom test, multivariate procedures were applied to the test items with a view to 

determining if “performance profiles” might exist within the test, among the test 

items. 

Statistics and statistical mathematical models are important tools used in 

conducting research and making inferences that can be applied to whole populations 

(Mewborn, 2003). However, despite their popularity and feasibility for use as 

scientific tools for accepting or rejecting hypotheses in research, they have some 

limitations and shortfalls (Bechger & Maris, 2015). For example, statistics has 

limitations in its ability to answer research questions that can be applied to the general 
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population. Furthermore, people are limited in their ability to understand and fully 

comprehend statistics, resulting in a reduction in their applicability in real world 

problems (Petroski, 2005). Understanding the problems and pitfalls in using certain 

statistical models and mathematics in different situations can help us know what 

models should be used in particular situations (Macnab & Payne, 2003; Mewborn, 

2003). From this perspective and through this study, I aim to examine how properties 

of the standard comprehensive examination may help us to identify criteria that can 

lead to the improvement of such examinations, in a language that may be more easily 

understood.  
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CHAPTER II 

RATIONALE AND THE NEED FOR THE STUDY 

Examination of the properties of standard comprehensive examinations has 

been emphasized as part of a standards‐based conception in contemporary 

mathematics education (NCTM, 2000). Validation of a test involves many sources of 

information gathered over time (Kane, 1992). However, the results of validity 

investigations may be affected by sources of error. Generally, statistical methods are 

just true on average because statistics and statistical mathematical models represent 

expectations about aggregate facts. Single observations do not constitute irrefutable 

statistics, and statistical results can be misleading. Using statistics to make decisions 

might result in errors, especially in inferential statistics, because it is impossible to 

know whether an error has been committed or the converse is true. 

 Regardless of cautions about the use of methods that provide information that 

is not completely “truthful” because of error involved, this thesis used several 

methods to make estimations of test properties, knowing that the estimations would 

carry some error. Multidimensional scaling (MDS) and factor analysis are among the 

common statistical mathematical models. In fact, MDS is considered a factor analysis 

alternative. They are appropriate for analysis of the interpretation and representation 

of complex structural data (Borg, Groenen, & Mair, 2013; Groenen & Borg, 2014). 

The aim of analyses is to unearth meaningful underlying aspects that make it possible 

for the researcher to explain dissimilarities or similarities observed in objects they 

have investigated (Borg, Groenen, & Mair, 2013; Groenen & Borg, 2014). Moreover, 
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such analysis helps to improve the mathematical thinking and reasoning of learners in 

the field of mathematics.  

With regard to factor analysis, similarities in variables are shown in 

correlation matrices, while for MDS, as well as correlation matrices, any kinds of 

dissimilarity or similarity matrices can be analyzed (Jaworska & Chupetlovska‐

Anastasova, 2009).  For instance, age and height have a probabilistic distribution in 

humans with a stochastic relation; knowing the age of a person can influence the 

determination of the probability of the person being over six feet tall. This 

relationship can be formalized using a linear regression model, but the regression 

model must include an error term, implying that age can be used to predict height, 

with a certain level of error.  

A model that is admissible, using the example of age and height, has to be 

consistent with all the data points; therefore, a relation such as Height hj = Ij + b1Agej 

+ Ej is not a suitable model for the data because it cannot fit all data points exactly 

where all data points lie perfectly in a straight line (Borg, Groenen, & Mair, 2013; 

Groenen & Borg, 2014). That is why we must include the E (error value) within the 

model to make the model consistent with all data points, so making an inference 

would have to entail making assumptions about the error factor’s probability 

distribution. For example, the error distributions in the formula can be assumed to be 

Gaussian, having a mean of zero. For these reasons, it is important and highly 

significant that the statistical mathematical models and their assumptions reflected in 

data be evaluated using scientific research approaches. Such attention to detail will 

help professionals and researchers to develop better research models using statistics to 
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reduce the errors associated with using statistical models to enhance research 

inferences. 
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CHAPTER III 

MATHEMATICS APPLIED 

 Factor analysis and multidimensional scaling are the methodologies of this 

study. Since factor (component) analysis and multidimensional scaling are the major 

procedures which are applied to the exam data, they, as treatments of those statistics, 

are the mathematical bases for this thesis. In the following sections, I review the two 

procedures, factor analysis and multidimensional scaling, which are applied in this 

study and will be used as the methodology of the research. 

Factor Analysis 

With the advancement of technology, factor analysis has become more 

accessible in a wider variety of technological formats. Programs have been developed 

that emphasize the use of factor analysis, such as BMD, DATATEXT, OSTRIS, SAS, 

and SPSS (Kim & Mueller, 1978a). Despite the wide availability of programs capable 

of conducting factor analyses, the user may not have the necessary expertise to 

analyze the data relating to or the results from factor analysis. This lack of expertise 

does not stop many researchers from utilizing factor analysis in their own research, 

even if it yields inaccurate results. 

 To begin with, it is assumed in factor analysis that measured variables are 

linear with underlying variables. Thus, both types of variables are assumed to be in 

existence. However, the logical properties of factor analysis suggest that 

correspondence between variables occurs in that the causal variable system always 

leads to correlated measured variables. At the same time, the measured variable 
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system does not always lead to correlated causal variables (Kim & Muller, 1978b). 

This establishes limited conditions available to ascertain the causal system in relation 

to the correlation of measured variables. This effect occurs through inference and 

other uncertainties of statistics. Therefore, factor analysis is affected by inferences 

and uncertainties of statistics. 

 Factor analysis is defined as a group of statistical techniques for the purpose of 

achieving a common objective – the representation of set variables in relation to 

hypothetical variables. Thus, factor analysis also focuses on interrelationships 

between variables. In one example, when obtaining opinions from, hypothetically, one 

thousand random participants, the measured variable would be the opinions provided 

by the participants, while the underlying variable may be a correlation coefficient.  

This would allow researchers to ascertain relationships among the measured variables 

(Kim & Muller, 1978a). Once the relationships are established, factor analysis can be 

used to determine if correlations occur due to other variables that are associated with 

the measured variable. 

 The analysis of these correlations and relationships allows researchers to break 

down complicated theories into specific steps in order to make up the whole in 

context of the overall theory. At the same time, the underlying variable may be 

unknown, prompting the researcher to utilize factor analysis to ascertain this variable 

for comparison. As a result, the third use of factor analysis is exploratory. In other 

cases, factor analysis is used to confirm/refute hypotheses, in which case it is also 

known as confirmatory factor analysis (Kim & Muller, 1978b). 
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 Since there are different uses of factor analysis, the exact relationship obtained 

from the variables may not be clear. Moreover, the types of strategies utilized to 

conduct factor analyses can be utilized in different ways simultaneously. For example, 

half of the variables can be used in exploratory strategies, while the other half can be 

used in testing hypotheses developed from the exploration of the first half of the 

variables (Kim & Muller, 1978a). Thus, there are numerous opportunities for use 

within the technique of factor analysis. 

 Unsurprisingly, conceptually, factor analysis is easy to learn. Practical 

applications of factor analysis, by contrast, are not so simple due to the sheer number 

of strategies that can be used to analyze variables. As a result, the underlying problem 

related to factor analysis is that variables tend to be much more complex than the 

analysis shows. For instance, factor analysis assumes that measurement levels will 

match the requirements of the analysis. However, some model components may be 

unrealistic in relation to the data provided, and minor factors may have a much more 

significant impact on the overall results than expected (Kim & Muller, 1978b). 

Therefore, researchers must be prepared to make unbiased decisions in relation to 

assumptions for the analysis and must be aware that the varying strategies can yield 

different final results. 

 The principal components (PC) approach was used in this study. Briefly, PC 

proceeds to solve the characteristic equation for the variance-covariance matrix (the 

basis for the correlation matrix), [S - iI]bi = 0. The solution ultimately yields 

eigenvalues or s, and eigenvectors or bs. A given  represents the variance accounted 

for by a given factor, and there will be as many s as there are factors, as there are 
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variables. The bs, with one b for each variable on each factor, are weights for combining 

the variables and producing scores on the factors. Sets of factor loadings or structure 

coefficients, or Fs, with as many Fs as there are factors and within a given F, as many fs 

as there are variables, can be obtained by dividing a given b by the square root of its 

corresponding , or, of course by correlating the original variables with a given factor 

score. For example, given three variables, A, B, and C, and three Factors I, II, and III, 

obtain the factor loadings for Factor I by multiplying each weight in bI by the square root 

of I. Factor score coefficients are obtained for a variable by multiplying that variable's 

factor loading by the inverse of that factor's eigenvalue. 

Multidimensional Scaling 

Multidimensional Scaling (MDS) is used because of its suitability in standard 

data analysis. It attempts to organize objects in space with a specific number of 

dimensions in order to reproduce observed dissimilarities or distances in data (Borg, 

Groenen, & Mair, 2013; Groenen & Borg, 2014).  This makes it possible to explain 

dissimilarities or distances between results with regard to the underlying dimensions. 

Similar to factor analysis, in MDS, axes are oriented, and so in the final solution, the 

actual axis orientation is arbitrary. For example, in using matrices of the distances 

between two points on a road from a road-map, the matrix can be analyzed with the 

aim of reproducing the distances on the map in two dimensions. 

Using the MDS analysis will likely involve using a two dimensional 

representation for the two points locations, creating a two-dimensional map Borg, 

Groenen, & Mair, 2013; Groenen & Borg, 2014.  In whatever direction the map is 

rotated, the distances between the two points do not change, although the view of 
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them may change. In the final analysis, a researcher may orient the axes of the 

distances due to her or his subjective viewpoints and decisions as the researcher 

selects the orientation that is easiest to explain such as an East West or North South 

orientation. Porter (2014) used the approach of MDS to see the differences that may 

exist among players in baseball. This research provides an overview of how to use 

and apply the mathematical concept of MDS in a study. 

MDS is a method for rearranging points in space in a manner that is efficient 

so that a point that best estimates the observed distances can be arrived at by moving 

around objects in the defined space as dictated by the number of dimensions and tests 

the accuracy with which the distances between points can be reproduced using a new 

configuration (Borg, Groenen, & Mair, 2013; Groenen & Borg, 2014). MDS, 

therefore, mplements an algorithm for minimizing functions that analyzes different 

configurations with the aim of maximizing the quality of fit or minimizing a lack of 

fit.  The MDS algorithm used in this thesis was Kruskal and Wish’s ALSCAL 

(Kruskal & Wish, 1978). To measure the quality of fit, the concept of stress was used. 

The stress measure accurately estimates the goodness of a fit for the observed distance 

matrices. The Phi (the raw stress value) is defined by the relationship: 

Phi = [dij - f ( ij)]
2  

Where dij refers to the distances that have been reproduced based on the 

numbers of dimensions, while delta ij ( ij) is the data input or the observed distances. 

f ( ij) denotes a non-metric transformation monotone of the observed distances. It is 

used for the purpose of reproducing the common rank-ordering of observations in the 

input data during analysis. The Shepard diagram is also a useful tool for measuring 
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quality of fit; this is achieved by plotting the reproduced distances for a specific 

number of dimensions against distances (observed input data). The scatter plot 

produces a Shepard diagram that is usually negatively sloped and shows the step 

function. The negatively sloped line represents D-hat values, which is the outcome of 

f ( ij), the monotone transformation for input data (Borg, Groenen & Mair, 2013). 

Using more dimensions results in a better fit for the observed results because the 

stress is smaller.  

Both PC and a two-dimensional MDS analysis were applied to statistics test 

items which assessed a skill or knowledge as identified below: 

 Q1 Interpreting a histogram  

 Q2 Identifying measurement levels   

 Q3 Find/compute a median score 

 Q4 Compute a standard deviation  

 Q5 Find a percentile using the Standard Normal Distribution (SND)  

 Q6 Compute and interpret Z-scores 

 Q7 Find P-values for means using the SND  

 Q8 Compute and interpret a confidence interval using the SND 

 Q9 Compute the sample size required for a specifically-sized margin of error 

Q10 Compute and interpret a confidence interval using a t-distribution 

Q11 Perform a hypothesis test using the normal curve  

Q12 Give a practical definition of statistical power  

Q13 Identify and instance of a Type I Error 

Q14 Identify and instance of a Type II Error 

Q15 Interpret the results of hypothesis test using a t-distribution  

Q16 Identify the Law of Large Numbers  

Q17 Define r-squared  

Q18 Compute a predicted value of Y given a value of X  

Q19 Match a value of rXY with a scatterplot 

Q20 Match a value of rXY with a scatterplot 
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CHAPTER IV 

RESULTS 

 The items were submitted to principal components analysis with both oblique 

and orthogonal rotations of the initial structure. The oblique components were not 

well correlated so the orthogonal result was retained for interpretation. Components 

associated with eigenvalues of 1.0 or larger were retained, and interpretations were 

based on items that demonstrated loadings of  0.40 or larger. The first two 

components appear stable and relevant, and reflect the major purposes of the course. 

The third through fifth factors are basically about definitions, but are not well marked 

and can be discarded, especially as the third and fifth structures contained only two 

items each (see Table 1). 
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Table 1. 

Varimax Rotation of Components 

 

 
Component  

General 

Knowledge Inference 

Defining 

errors 

Defining 

Terms 

Defining 

Terms 

 

h2 

 Q1 Interpreting a histogram            .239 

 Q2 Identifying measurement levels           .675 .510 

 Q3 Find/compute a median score .512         .415 

 Q4 Compute a standard deviation  .556         .319 

 Q5 Find a percentile using the 

Standard Normal Distribution (SND)  
.497         .327 

 Q6 Compute and interpret Z-scores .402         .263 

 Q7 Find P-values for means using 
the SND  

          .238 

 Q8 Compute and interpret a 

confidence interval using the SND 
  .546       .388 

 Q9 Compute the sample size 
required for a specifically-sized 

margin of error 

          .284 

Q10 Compute and interpret a 

confidence interval using a t-

distribution 

  .629       .422 

Q11 Perform a hypothesis test using 

the normal curve  
  .495       .340 

Q12 Give a practical definition of 

statistical power  
      .714   .549 

Q13 Identify and instance of a Type I 

Error 
    .839     .744 

Q14 Identify and instance of a Type 
II Error 

    .855     .742 

Q15 Interpret the results of 

hypothesis test using a t-distribution  
  .552       .323 

Q16 Identify the Law of Large 
Numbers  

      .476   .407 

Q17 Define r-squared  .409     .420   .345 

Q18 Compute a predicted value of Y 
given a value of X  

.592         .355 

Q19 Match a value of rXY with a 

scatterplot 
        .639 .522 

Q20 Match a value of rXY with a 
scatterplot 

.553         .451 

                               Eigenvalue            3.57              1.39              1.11            1.06             1.05 

                      Percent Variance         17.87              6.95               5.55            5.32             5.22 
 

 



 

15 

 

 The items were further submitted to multidimensional scaling by the ALSCAL 

method for binary data. Two dimensions were extracted and the stimulus pattern 

appeared to present four neighborhoods that could be named in meaningful ways. The 

analysis provided more details than did the components approach.  Table 2 displays 

the computed dimension coordinates. A plot of the values per dimension across 

stimuli (items) suggests that the dimensions differ mainly for items 10, 11, 12, 13, 14, 

and 15 (see Figure 1). These items concern inference and appear in sequence in Form 

A of the test. The same items are in a randomized order in Form B of the test. 
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Table 2. 

MDS Coordinate Values 

 Dimension One Dimension Two 
 Q1 Interpreting a histogram  0.357  0.143 
 Q2 Identifying measurement levels   0.188 0.075 
 Q3 Find/compute a median score 0.175 0.091 
 Q4 Compute a standard deviation  0.330 0.172 
 Q5 Find a percentile using the Standard Normal 

Distribution (SND)  
0.399 0.207 

 Q6 Compute and interpret Z-scores 0.364 0.189 
 Q7 Find  P-values for means using the SND  0.282 0.147 
 Q8 Compute and interpret a confidence interval 

using the SND 
0.388 0.202 

 Q9 Compute the sample size required for a 

specifically-sized margin of error 
0.398 0.207 

Q10 Compute and interpret a confidence interval 

using a t-distribution 
0.229 0.284 

Q11 Perform a hypothesis test using the normal 

curve  
0.259 0.321 

Q12 Give a practical definition of statistical power  0.236 0.293 
Q13 Identify and instance of a Type I Error 0.340 0.422 
Q14 Identify and instance of a Type II Error 0.269 0.334 
Q15 Interpret the results of hypothesis test using a t-

distribution  
0.211 0.262 

Q16 Identify the Law of Large Numbers  0.360 0.144 
Q17 Define r-squared  0.315 0.126 
Q18 Compute a predicted value of Y given a value 

of X  
0.311 0.124 

Q19 Match a value of rXY with a scatterplot 0.205 0.082 
Q20 Match a value of rXY with a scatterplot 0.498 0.199 

 

                                 

                                 Figure 1. Profile plots for two dimensions of test items 
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 The customary two-dimension plot (see Figure 2) suggested three meaningful 

interpretations: General knowledge and computation skills; Interpretation skills; and 

Giving definitions. A fourth neighborhood contains items which could not be 

interpreted in a meaningful way. The definitions neighborhood or quadrant 

incorporated many definition tasks/items and defined a stable construct as compared 

with the PC results that would lead to the discard of some definitions items. 
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Figure 2. MDS of the exam items. Note: A: General knowledge with computing and 

interpreting, B: Interpretations,  C: Definitions,  D: Undefined, hybrid 
 

Legend: 

 

 Q1 Interpreting a histogram  

 Q2 Identifying measurement levels   

 Q3 Find/compute a median score 

 Q4 Compute a standard deviation  

 Q5 Find a percentile using the Standard Normal Distribution (SND)  

 Q6 Compute and interpret Z-scores 

 Q7 Find P-values for means using the SND  

 Q8 Compute and interpret a confidence interval using the SND 

 Q9 Compute the sample size required for a specifically-sized margin of error 

Q10 Compute and interpret a confidence interval using a t-distribution 

Q11 Perform a hypothesis test using the normal curve  

Q12 Give a practical definition of statistical power  

Q13 Identify and instance of a Type I Error 

Q14 Identify and instance of a Type II Error 

Q15 Interpret the results of hypothesis test using a t-distribution  

Q16 Identify the Law of Large Numbers  

Q17 Define r-squared  

Q18 Compute a predicted value of Y given a value of X  

Q19 Match a value of rXY with a scatterplot 

Q20 Match a value of rXY with a scatterplot  

B 

A 

C 

D 
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Reliability Analysis 
 

 The items were submitted to reliability analysis by Cronbach’s internal  

 

consistency approach. Equations for Cronbach's Coefficient Alpha reliability coefficient  

 

are as follows.   Based on sample data:    k     1 -  ΣSi
2    . 

                                                                  k - 1        ST
2 

 

In words, get the variance of each item and sum the item variances.  Divide the sum of  

 

item variances by the total  test variance.  Subtract that quotient from 1.0 and multiply  

 

the difference by the number of items (k) over the number of  items less 1.0. 

                                                                                                                              ___ 

 The standardized version uses the average inter-item correlation:    k Corr   

                                                                                                                              ____ 

                                                                                                                 1+(k-1) Corr         

            ___ 

where Corr is      2   Σi<jΣ Corr(i, j). 

                        k(k-1) 

                     

In words, manipulate the average inter-item correlation as a function of number of items  

 

(k). The average inter-item correlation is of all non-redundant  and non-trivial  

 

correlations among the items (trivial is an item correlated with itself, while redundant  

 

would  be item Y with item X, when item X with item Y has already been processed.)   

 

To do this, find the sum of all relevant correlations and then manipulate the sum as a  

 

function of k. 

 

 Using standard criteria for gauging reliability coefficients (Aiken, 1985),  

 

overall  reliability is adequate, and no items appear to harm the coefficient by their   

 

presence (see Table 3.) The item analysis supported the usefulness of the test and did  

 

not provide evidence that the test items should be amended. 
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Table 3. 

Alpha Reliability for the Examination 

 

Reliability Statistics 

Cronbach's Alpha 

Cronbach's Alpha 

Based on 

Standardized Items N of Items 

.742 .744 20 

 

 

 Mean Minimum Maximum Range 

Item Means .655 .431 .908 .477 

Inter-Item Correlations .127 .017 .528 .511 

 

 

Final exam test questions 

Correlate 

Item VS. 

Total 

 if Item 

Deleted 

 Q1 Interpreting a histogram  .357 .727 

 Q2 Identifying measurement levels   .188 .741 

 Q3 Find/compute a median score .175 .740 

 Q4 Compute a standard deviation  .330 .730 

 Q5 Find a percentile using the Standard Normal Distribution (SND)  .399 .725 

 Q6 Compute and interpret Z-scores .364 .727 

 Q7 Find P-values for means using the SND  .282 .734 

 Q8 Compute and interpret a confidence interval using the SND .388 .725 

 Q9 Compute the sample size required for a specifically-sized margin of error .398 .725 

Q10 Compute and interpret a confidence interval using a t-distribution .229 .738 

Q11 Perform a hypothesis test using the normal curve  .259 .736 

Q12 Give a practical definition of statistical power  .236 .737 

Q13 Identify and instance of a Type I Error .340 .729 

Q14 Identify and instance of a Type II Error .269 .735 

Q15 Interpret the results of hypothesis test using a t-distribution  .211 .740 

Q16 Identify the Law of Large Numbers  .360 .728 

Q17 Define r-squared  .315 .731 

Q18 Compute a predicted value of Y given a value of X  .311 .733 

Q19 Match a value of rXY with a scatterplot .205 .739 

Q20 Match a value of rXY with a scatterplot .498 .716 

 

  



 

21 

 

Standard Item Analysis 

 Items were analyzed by the conventional item analysis procedures. 

Discrimination indices are given below, using the formula     

                                                       Index (DI) = nupper - nlower  

                                                                                 neither 

where “n upper” and “n lower” are the frequencies in the upper and lower quartiles of 

students answering an item correctly, and “n either” is the sample size in either 

quartile. The Index can also be computed as the difference in the percentages of 

students passing an item between the upper and lower quartiles or DI = Upper% - 

Lower%. 

 DI ranges from 0.00 to 1.00, with adequate values in the mid-range and higher 

(Lin & Gronlund, 1995). Most of the DI values were about 0.50; the few that were 

smaller marked items that would make for “basement” or “easy” items that measure 

more rudimentary skills and knowledge that most students will have attained (see 

Table 4).  
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Table 4. 

Discrimination of Items 

Item %Upper %Lower DI 

1 92.1 26.3 65.8 

2 89.1 51.3 37.8 

3 98.3 77.1 21.2 

4 96.1 41.2 54.9 

5 97.2 38.7 58.5 

6 88.5 21.1 67.4 

7 75.9 19.7 56.2 

8 93.6 25.9 67.7 

9 99.1 35.2 63.9 

10 80.8 29.7 51.1 

11 89.8 34.8 55.0 

12 88.0 35.9 52.1 

13 84.0 17.5 66.5 

14 90.0 32.3 57.7 

15 83.5 37.8 45.7 

16 96.2 42.5 53.7 

17 85.5 30.3 55.2 

18 99.4 67.3 32.1 

19 91.7 50.8 40.9 

20 97.4 22.7 74.7 

Note: n = 532 in each quartile group. 

 

Distractor Analysis and Item Difficulty 

 Inspection of response frequency across the four alternatives per item suggests 

that the distractors are about equally effective in evoking incorrect responses and that 

the items tend to be of appropriate difficulty (see Tables 5 and 6). A few items may be 

too difficult (with indices lower than 50 percent) due to lack of instruction on the 

topics or item structure itself, and several can be seen as “basement” items or those 

that nearly all students answer correctly. Note that the percentages of students who 
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answered an item correctly is generally in the acceptable range of 40 to 80 percent for 

a measure of item difficulty (Lin et al., 1995), across the set of 20 items.  

 Two forms of the test exist, differing only in order of item presentation (the 

items are identical between forms). Comparison of students taking either Form A or 

Form B suggests about equal achievement regardless of form. 

Table 5. 

Item Performance: Distractors and Difficulty, Form A 

Item A B C D 

1 6.5 10.5 22.8 60.2 

2 21.6 2 72.4 4.1 

3 89.1 5.3 5.5 0.1 

4 8.4 15.4 74.3 1.9 

5 3.8 15.0 75.7 5.5 

6 3.2 4.5 35.7 56.6 

7 45.6 39.8 9.8 4.8 

8 11.5 64.7 16.8 6.9 

9 10.0 9.6 74.5 5.9 

10 51.6 2.6 3.2 42.6 

11 6.9 27.6 62.3 3.2 

12 22.4 8.7 8.3 60.7 

13 40.7 48.6 4.3 6.4 

14 5.6 5.7 29.2 59.5 

15 34.4 10.9 2.7 52.0 

16 10.0 7.1 7.7 75.3 

17 13.1 7.8 65.7 13.4 

18 2.1 1.5 90.3 6.1 

19 76.7 1.6 19.6 1.9 

20 73.0 13.8 7.2 4.4 

            Note: Entries are percentages of student choosing an alternative on a given 

item.  Percentages for correct answers are underlined and italicized in 

boldface. 
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Table 6. 

Item Performance: Distractors and Difficulty, Form B 

Item A B C D 

1 6.5 11.8 24.9 56.8 

2 27.4 1.4 62.4 4.0 

3 91.6 4.9 3.3 0.2 

4 10.3 11.5 75.6 2.7 

5 5.0 13.6 75.9 5.5 

6 3.9 3.8 40.1 52.2 

7 38.9 48.2 8.0 4.9 

8 17.0 59.9 15.4 7.7 

9 9.6 12.4 72.2 5.8 

10 43.3 2.0 4.7 50.0 

11 6.9 33.8 56.0 3.3 

12 22.3 8.6 5.9 62.2 

13 43.9 45.6 5.1 5.4 

14 6.9 6.4 26.7 60.0 

15 32.1 10.7 2.1 55.0 

16 9.9 6.0 5.8 78.2 

17 14.7 9.4 63.6 12.3 

18 2.2 1.1 91.7 5.0 

19 67.9 2.3 26.6 1.8 

20 65.9 17.4 11.4 5.3 

            Note: Entries are percentages of student choosing an alternative on a given 

item. Percentages for correct answers are underlined and italicized in boldface. 
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CHAPTER V 

CONCLUSION 

Making a legitimate decision regarding a strategy for a particular examination 

requires the learning of the suppositions, restrictions, and data used in measuring an 

achievement profile. In addition to standard item performance investigations as done 

here, the current study attempted to identify profiles of test items that combined in 

meaningful ways while preserving the identities of the items themselves, within a 

single test instead of test performance within a battery of examinations. 

Among the methods used here to study the structure of the final exam, the 

MDS model has the advantages of being effortlessly connected to tests of any size, 

grouping individuals on a continuum scale, and utilizing individual profile lists for 

further theory studies; however, a few provisos should be noted. To begin with, the 

determination of the number of measured versus latent or hypothetical variables 

impacts interpretability and reproducibility of results. Second, the relative importance 

of the measurements is to some degree not easily determined. A few scientists have 

utilized a bootstrapping technique to gauge the presumed and demonstrable 

importance of scale qualities (Jaworska & Chupetlovska‐Anastasova, 2009). Third, it 

is not well understood to what degree the profiles or dimensions found in MDS can be 

compared over populations; for example, when comparing women and men (Petroski, 

2005). More investigation is needed in these areas. Statistical tests and statistical 

conclusions need to be reliable; reliability or unwavering quality is the general 
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constancy of a measure. By comparison, researchers seek to be confident in the 

conclusions drawn and results offered as possible states of nature. 

This paper therefore proposes that research involving quantitative measures 

should be evaluated using various statistical measures that give various perspectives 

on the data and the research questions. We might be able to draw valuable 

generalizations based on many statistical points of view. 

To make research inferences valid and accurate, researchers should ensure the 

tools used have reliability in terms of test-retest aspects to ensure that test scores are 

consistent if different test administrations are used. Often, when scientific studies and 

research are undertaken, the assumption is normally that if the same tests were 

repeated, the results would more or less be the same. However, this may not 

necessarily be true. We need to ensure reliability of test scores by evaluating the 

statistical models to be used using a mathematical analysis framework like MDS or 

factor analysis, which portray the ways in which various items combine or separate in 

demonstrating student achievement, and in defining the concept of achievement 

(Borg, Groenen, & Mair, 2013; Groenen & Borg, 2014). 

Finally, the data gathered and analyses performed suggest that the test 

currently used has sufficient construct validity and reliability to warrant its further 

use. Correlations with course grades would provide sound evidence of concurrent 

validity and define the practical relevance of the test as a final measure of 

achievement in elementary statistics. 
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