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PREFACE

In comparison with other areas of mathematics,
lattice theory is "new." Boole, in 1824, introduced a
class of lattices (Boolean Algebras), and, in the 1890's,
Schroder and Dedekind presented further concepts of lattice
| theory. In the 1930's the development of lattice theoretical
concepts began to increase with publications by van der
Waerdeh, von Neumann, Ore, Stone, Kantorovitch, Birkhoff,
and others. Then in 1948, Garrett Birkhoff published his
classical volume on lattice theory, in which he unified and
up-dated former results and presented new discoveries [1,8].

Since 1950 R. W. Bagley [1], J. Hartmanis [5], and
A. K. Steiner [7] have published articles specifically con-
cerning the lattice of topologies. The purpose of this
thesis is to exaﬁn‘ne the lattice of topologies and to de- -

. termine whether certain subsets are sublattices.
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CHAPTER 1
GENERAL PROPERTIES OF THE LATTICE OF TOPOLOGIES

Presented in this chapter are basic definitions of
lattice theory and general theorems concerning the lattice
of topologies. A knowledge of fundamental topological
properties and definitions is assumed. Unless otherwise
indicated, the notation and basic definitions concerning
lTattices are those used by Thron [9] and/or Birkhoff [2].
A11 proofs are original, though some of the results pre-
sented in this paper are due to Steiher [7]. Some concepts,
to my know1edge, have not been preV1ous1y studied..

Def1n1t1on 1.1: A partially ordered set is a pair

(X, R) for which the relation R on X is reflexive, antisym-
metric, and ‘tr‘ansitive.

~ Definition 1.2: An upper bound of a subset A CX,

where X is a partia'l'l_y ordered set, is an element b of X

uch that for every x €A, x<b.

Defin1t1on 1.3: A least upper bound of a subset

A.‘g X, ‘wh‘erevx is a partially ordered set, is an element
b* such that Vb*risv ‘an upper bound for A and such that
b* < b for b e B, ‘the set of all u‘pper bounds of A. |
. Note 1 1 The lTeast upper bound is a]so des1gnated
‘ by the term supr'emum or sup and by the symbol \,/
] 4
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Note _1___2_ Lower bound and greatest lTower bound are

similarly defined. The greatest lower bound is also desig-
nated by the term infimum or inf and by the symbol A.
Definition 1.4: A lattice (L, R) is a partially

ordered set (X, R) such that for any a € X and b ¢ X,
aV b exists and a /A b exists. '

Theorem 1.1: The collection of all topologies on
a set X forms a Tattice. |

Proof: Let I be the set of all topologies on X.
Consider the order relation as being set containment.
Certainly for any 'y € T, Ty € Ty» SO the relation is
reflexive. Also if Ty € Tg and Tg & Ty, then Ty = Tq
by the property of set containment; thus, the relation
is antisymmetric. Similarly, for topologies 7., Tg, Ty
if eQery open set in T, is in Tg and every open set i‘n
Tg is 'in‘Ty, _then certainly every open set of 7, is in Ty
and the relation is transitive.

‘Now consider T, €T and Tg € T. To‘fin‘d Ty V Tgs
1ei: Ty U Tg be a subbase. Then, b‘y the definition of a
sm_lbba-Se, taking finite vinter’sectionsv and arbitrary u‘nions
will génerate a top‘dlogy. Certainly it is the 'Iea‘st such
topdlogy, since any ‘upp.er bound ‘musf contain vbof:h‘Ta and

TB-"' T"hus,}TqV Tg %".{Uftbl{(ii: G; €, VUrglll}.
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To find the infimum, consider 7,N Tg (non-
empty since the trivial topology is a subset of every
topology). Since T& and Ty are topologies, certainly
To, N Tg is a topology. It is a 1ower bound since for
every G € (T, N Tg), G € Ty and G € Tg; thus (T N Tg) € Ty
and (7, N 1Tg) ¢ Tg. It is the greatest lTower bound since
any additional open sets could not belong to both T, and
Tg. Thus, T, ATg = T, N Ig.

Definition 1.5: A lattice (L, R) on a set X is

complete if and only if for every A € X, sup A and inf A
exist in X. ‘

Theorem 1.2: The lattice of all topologies on a

set X is complete.

‘_E_r_go_f‘:‘ Consider 7, the family of all topologies
~on X. For any subset {7} c 1, V{ry} is generated by using
Uu{Ty} as a subbase. Similarly N Ty} = Nyirgl}.

 Definition 1.6: A lattice (L, R) on X is distribu-

 tive if and only if the operations \/ and A satisfy the fol-
lowing property for every x, y, z € X: |

| xV (y Az) = (xV y) AN xVz).

Nofe 1.3: Steiner [7] proved that the Tattice of

topologies is not distributive if X has three or more
elements. - The following example illustrates this for a set

of three elements.
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Let X = {a; b, c}. Consider the fo]loWing topolo-
g‘ies on X: |
.= 1o, X, {b}, {a, c}};
, = {6, X, {a}, {b, c}};
{6, X, {b}, {a, b}}.
Then 7,V (1, /\TS). =
{6, X, {b}, {a, c}} V
~[{e, X, {a}, {b, c}} A {4, X, {b}, {a, b}}] =
{6, X, {b}, {a, c}} V {¢, X} = {$, X, {b}, {a, cl}}.
But (7, Vr)A(r, V)= ,
[{6, X, {b}, {a, ¢}} V {4, X, {a}, (b, c}}] A
[{¢, X, {b}, {a, c}} V {4, X, {b}, {a, b}}] =
[{6, X, {b}, fa, ¢}, {a}, {b, c}, {c}, {a, B3] A
[{¢, X, {b}, {a, c}, {a, b}, (a}}] =
{4, X, {a}, (b}, {a, c}, {a, b}}. So,
Vo (z, A (2, VT, AT,V oT,).

- Definition 1.7: An element b of a partially

3
1

=3
I

|
n

or'd'ered se_t,(X,‘ <) dis considered a least element of X
| if and only iif‘ fbr all x € X, b < x.

ﬂvg_t_:_e_l;_{l_:‘ ~The -largest element of X is similarly
defined. |

Theorem 1.3: The lattice of topologies on a set X

| has a largest and a Tleast element, and hence is bounded.
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Proof: Let {7, } be the set of all topologies on
a set X. Since this set forms a complete lattice, the
supremum and infimum exist for any subset of {TO‘}. Cer-
tainly, ,‘Ua{il’a} i.s a subbase which generates the discrete
topology. Also, na{Ta} = {¢, X}.

Definition 1.8: If a Tattice has a 1Teast element b,

and if there exists an element ¢ # b such that b < x < ¢
implies that x = b or x = ¢, then ¢ is an atom of the lat-
tice. '

Note 1.5: By Theorem 1.4, the least element in the

lattice of topologies on any set X is the indi_screté topol -
ogy; that is, 7y = {¢, X}. If 7« = {¢, X, G} where G X,
then T, is an atom, since for any Ty such that Ty < Ty < Tc»
either T, =Ty or Ty = Tg. |

Definition 1.9: A base of a lattice L is a subset

B C. L ‘such tha',t for .e}very x € L, other than the leaét ele~-
ment, there exists a set By ¢ B such that x = V[b: b € By].

Definition 1.10: An atomic Tattice has a base con-

sisting only of atoms.

| Theorem'1.4: The lattice of topologies on any set
X is an étdmic‘ lattice. _ |
- | .‘_P_r_o_g_f_:‘ “Let T be the set of all topologies on X,
Let B = {Bg: BGv‘= {¢, X, 6}:: G € X}. Each Bg is an

atom. Then for any Ty > 77, where T; = {¢, X_}, there
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exists a subcollection from B such that for every G € Iy,
G is in some Bg. Thus Ty = V{Bgl}.
| Thus, the collection of topologies on any set X
forms a lattice which is bounded, complete, non~-distributive,

and atomic.



CHAPTER I1I

SEPARATION PROPERTIES AND SUBLATTICES OF THE
LATTICE OF TOPOLOGIES

After the identification of a lattice, it is
‘natural to search for sublattices. The separation prop-
erties of Ty, T,, T,, R,, R;, and R, are apropriate to
this investigation. The definitions of T -, T -, and
Tz-vspaces are those of Pervin [6] and of R,-, R,-, and
Rz—sp.aces are those of Davis [4]. The closure of a svet
G is denoted G, and the complement of G is denoted G'.

Definition 2.1: A subset L* of a lattice L is a

sublattice if, for any two elements x‘e L* and y € L*,

(x V y) € L*and (x Ay) €L*.
| Note 2.1: It is possible for a subset of a lattice

to be a lattice, but still not be a sublattice. However, it
is always true that x V* y > xV y and that x A\* y < x /\y,
where V* and A* are the infimum and supremum in the sub-
collection [9, p. 10].

| Definition 2.2: A topological space X is a To-space

if and only if for two distinct points x ¢ X and y € X,
there exists an open set G which contains one of them but

excludes the other.
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Theorem 2.1: On a set X, where the cardinality of

X is greater than or equal to i:wo, the subset of the lattice
of all To-top01091‘es is not a subTattice.

Proof: Let X = {a, b}. 'Let T, = {¢, X, {al}}, and
let 7, = {¢, X, {b}}. Thus, 7, and T, are To. However,
r, ANr, =r.nr, = {¢, X} which is not T,.

Note 2.2: The example of Theorem 2.1 also shows that
the subset consisting of Ty-topologies does not form a lat-
tice.

Definition 2.3: A topological space X is a T;-space

if and only if for distinct points x € X and y ¢ X, there
exist open sets G and H such'that X € Gwith y ¢ G and
y € H with x ¢ H,

Note 2.3: Obviously, ‘if' a topological space is T,,
| then it is also To. |

Definition 2.4: A chain is a partially ordered set-

(X, >) such that for every x ¢ X and y ¢ X, either x > vy,
y > X, or x=y.

Definition 2.5: In a partially ordered set (X, >),

m e X 1s called a maximal element if and only if there

exists no x € X with x # m such that x > m.
| "Note 2.4: Zorn's Lemma states that if each chain
in a partially ordered set has an upper bound, _then there

is a 'maximéﬂ element in the set.
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Theorem 2.2: The subset consisting of all T,-

topologies on a set X is a lattice.

Proof: Let {7, } be the set of all topologies on a
set X. Consider any two T;-topologies Tr; and Tj. Then
Ty V Tj exists and is T, since whatever open sets exisfed
in the topologies to insure T,-ness also exist in the
topology generated by the subbase T; Vv Tj. (That is,
topologies finer than a T,-topology are T;.)

Again consider T, -topologies T4 and Tjy- Let

| 4 =A{r,: To €Ti» Ty & Tj, and T is T,}s
that is, 4 is the set of all T,-1ower bounds fdr T; and

Tj'

a unique smallest T,-topology (the cofinite topology).

‘Certainly 4 # ¢ since, for any set X, there exists

Let C = {7} be a chain from 4. Let u{r,} be a
subbase for a topology T. Certainly 7, €T for every n.
Also \HTp} ¢ 7y and U{r,} ¢ Tj. Thereforer < 7y,
T €Ty, and T is T, since? =V{r,}. Thus, T € 4. By
the construction of T, it is an upper bound of the chain
C in .4.} Thus, by Zorn's Lemma, there is a maximal element,
say Tps in A, This implies Ty A\ T5 = Tp, a Ti-space.

Theorem 2.3: The lattice of all T,-topologies is

a sublattice of the lattice of all topologies on X.

Proof: Let T; and T be T, -topologies. Then

r; V Ty, the supremum of Ty and T; over the lattice of
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all topologies, is T, (see Theorem 2.2).
Let 7; A 73 be the infimum of 7y and T3, over
the lattice of all topologies, and let Ty I\ T5 be the

infimum of r; and Tj over the T, -topologies. Then

Ty ATy < Ty AT

by lattice theory.  Since T A* 7. is T, and topologies

_ J
finer than a T -topology are also T,, then Ty VAN Tj must

be T,; so 7y A¥ 7y = 1y ATy,

Definition 2.6: A topo'logiyca] space X is an Rp-

space [4] if and only if either of the following is true:
(a) For al1 x € X, y € X, either IxF = TyT or

(b) For every x €6 € T, {x} CG.
Theorem 2.4: Parts (a) and (b) of Definition 2.6

aré equivalent.

Proof: Suppose (a). Let x ¢ G. Suppose that
XY & G. Then, TXF N G' # ¢. Thus there exists an
e]emént y such that y € {x} and y € G'. Since y € {xJ,
then TyY N TxT # ¢, so {y} = {x¥. But since y € G',
{y} 'g. G' si:nce a closed set contains the cTosure of each
of its points. Thus {x} €G' which is a contradiction |
‘s‘in‘ce x € G. Thus mg‘G.
| Suppose (b). Letx € G € T. Thus {x} € G. Let

y € X. Suppose {x} # {y}. There are two cases:
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Case I. There exists an element z such that
z éTTFandzé'{T}'. Since z ¢ TyF, then z ¢ TyTF', an
open set. This implies x € TyJ'. So Ix} c{y}', and
T N Tyt =
Case II. There exists an element z such that

z ¢ IxF and z ¢ TyF. Proof is similar to Case I.

Theorem 2.5: The collection of all Ry-topologies

on a space X forms' a Tattice.
Proof: (I) Let {r.} be some set of R,-topologies.
Then‘, for every'open set G; ¢ Tpis X € Gi implies that
xT € Gj. Sup{T} over the lattice of all topologies is
generated by the subbase formed by U,{r,}. Let sup{r.}=r.
Certain]_y, x¥ir :DT—TT for each r. Now, for any G €T,
= U{ f\ G where Gj € Uplr,l. Cef‘tainw, X € Ger
implies x € (:-1G ) for some intersection, and since, for
every Gjis M < G; (where 6; € Tp; for some r), then
¥ 0, FFri < A6
and 7 = sup{T,} is R,.
' (I1) Similarly, let T and Tj be R,-topologies on
X. Let 4 ={ry: 7T <Tj,0pC Tj, and 7. is Ry}. Certainly
4 # ¢ since the indiscrete topology is R, and is contained in
Ty and Tj. Let C be a chain from 4. By (I), supC exists.
Thus, by Zorn's Lemma, there is a maximal element, say Ty,
in 4, the set of R,-Tower bounds for T and Tj R 1'mp1y1'hg

Tm = T% /\* Ty, the infimum in the Tattice of Ro-topologies.
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Theorem 2.6: The intersection of two sublattices

is a sublattice.

Proof: Let L be a lattice, L, and L, be sublattices,
and L, NV L, = L*,

Case I. Suppose L; N L.z = L* = ¢, Since there are
no nonempty subsets of ¢, the supremum and infimum exist in
L*.

Case II. Suppose L, N L, = L* = {a}. Then
sup{a} = a, inf{a} = a, anda ¢ L*,

Case III. Supposel, N L, = L* where the cardinality
of L* is greater than or equal to two. Consider A € L* and
B GVL*. Then certainly A el, ¢ L and Bel, € L. Sinilarly,
AelL, SLandBelL, L. Thus A V! B exists in L,, since
L, is a Tlattice, and similarly A /2 B exists in L,. Also
since L, and L, aré sublattices of L, AV!B= A V2B =
AVE¢ B. Thus AV‘ B elL,NlL,=1L* and A\/*}B = A V% B,

Similarly, A N* BCcANB L, and AAN* B €
AnB cL,, since L, and L, are Tattices. So
Av/\*v BcAns g_.‘. L, AL, =L* Sincel,,L, are sub-
lattices, AA' B = A A2 B =AA" B. So, L
AAS B €L, AL, = L* and AA* B = A AL B, |
' | Definition 2'7,: A topology T is called a Erinci‘éa] _
topology 1f and only if _arbitr‘ary intersections of open sets

~are open [7, p. 382].
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Note 2.5: Every topology on a finite set X is
principal.

Lemma 2.1: In a principal topology, the arbitrary
union of closed sets is closed.

Proof: Let X be any space and T a principal
tobo_]ogy on X. Let K = Uy{Fy} where each Fy is a closed |
set. ThenK' = N {F,'}. Each F ' is open; thus, by
Definition 2.7, K' is open. Therefore (K')' = K must
be closed.

Théorem 2.7: A principal topology is R, if and

only if every open set is closed.

Proof: Let T be a principal topology on a set X.
Suppose every open set is also closed. Let x € G €T,
Thus, T)ZT_C_IG since G is closed.

Now suppose T is an R -topology on X. Let G € T;

thus, {xj} CG for each x; € G. Taking the union of every
point in G yields
6 = U; i) e U TG0 = 6
By Lemma 2.1, UiBZT} is closed. Therefore G is closed.
~ Note 2.6: If every open set 1"s closed, thenvcer-
tainly every closed set is also open. |

Theorem 2.8: The principal Ry-topologies form a

sublattice of the Tattice of all topologies.
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Proof: Let T; and T; be principal Ro-topologies

on a set X. Part I of the proof of Theorem 2.4 shows that
for any two Ry,-topologies, their supremum is R,; thus, the
Ro-tobo1og1'es form a sublattice with respect to the supremum.
Steiner [7, p. 382] proved that the principal topologies form
a sub1att1‘ce. Thus, by Theorem 2.5, the set of topelogies
which are principal and R, will be a sublattice with re-
spect to the supremum; that is, 74 \V T; will be a principal
R,-topology. |

| Similarly, let T, and T3 be ph’ncipa] R,-topologies.
Let T A 75 be the‘ir‘infimum over the lattice of all topolo-
gies. Certainly T; A Tj is principal since the principal
topb]o.gies are a sublattice of the lattice of topologies.
Suppose 6 € 74 A Ty = TyN Tj. Then G ¢ r; and G € Tj.
Since Ti and Tj‘ are principal R,-topologies, G' € T; and
.G“' é Tj, by Theorem 2.6. Therefore, again by Theorem 2.6,
T; /\,Tj is R,. Therefore, since 7; A Tj is principal and
Ro» the co'lvlectien“of principal R,-topologies is a sub-
latfice,

Note 2.7: - Whether or not the lattice of all R,-

topo'ldgies forms. @ sublattice of the Tlattice of all topolo-
gies.' over‘an’infini'te set is not known.

Theorem 2.9:‘ A topology is T, if and only if it is

both R, and T,.
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Proof: Suppose T is a Ti-topology on a set X.
Thus, T is also To. Also for every {x}, {x} = {x}. Thus,
if x #y, XIN {yY = ¢, and T is R,.

Suppose T is a topology which is both T, and R,.
If x #y, (X} # {y}, since 7 is T,. So Xy N Tyt = ¢,
since T is R, Thus y € {x}' € 7, andx ¢ {y}' ¢ T.
Therefore 7 is T,. |

Definition 2.8: A topological space (X, T) is

an R,-space [4] if and only if {x} # {y} implies there exist
open sets G € 7 and Gy, € T such that {x} ¢ Gx and {y} € Gy
and such that 6, N Gy = ¢.

Theorem 2.10: If (X, T) is R,, then it is R,.

Proof: If (X, T) is an R;-topological space in which
for all points x and y elements of X, {x} = {y}, then 7 is
R,. Consider (X, ‘T), an R,-space and points x and y such
that {x} f'-fy—}_. Thus, there exist Gy €T and Gy C T such
that IxY € G, and ) c Gy and G, N Gy = ¢. Therefpre,
-{7—}—/\ mé¢and T is R,.

Theorem 2.11: For any pri‘ncipa? topology 7 on a

set X, T is R, if and only if 7 is R,.
‘Proof:‘ Suppose T is R, 3 then by Theorem 2.9, it
is Ry.

Suppose T is R,. There are two cases to consider:
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Case I: For every x, y € X, {x} = {_y—}' Then 7 is
R, vacdous]y.
Case II. Suppose {x} # {y}. Thereforé, since T is
Ry s "{"{'}"nm= 6. By Note 2.6, {x} and {y} are open as
well as closed. Thus {x} and {y?} are contained in open

sets (respectively {x} and {y}) which are disjoint.

Theorem 2.12: The principal R;-topologies on a |

set X'form a sublattice of the Tattice of topologies.
Proof: See Theorems 2.8 and 2.11.
Note 2.8: A topological space which is R, may or
may notvalso be T, and/or T,. For ex_amp]e, consider the

following topologies on the set X = {a, b, c}:

Ty = {0, X, {al}, {a, c}1};
T2={¢, xs{b]’9 {as C}};
7, = {¢, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}.

Of these, T, is To but not R;; T, is R; but not T,; and
T, is both T, and Rlb.

Definition 2.9: A topological space (X, T) is a

T,~-space (or Hausdorff space) if and only if, for distinct
points x and y in X, there exist disjoint open sets, one
vconv}tai‘ni_ng x and the other containing y.

Note 2.9: A T, -topological space is automatically
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Theorem 2.13: A topological space (X, T) is T, if

and only if it is T, and R;.

Proof: Suppose (X, ) is Ty and Ri. Let x and y
be distinct points in X. Then {xY # -{—y—}_ since singletons
are closed in T;-topologies. By the property of being R;,
there exist G, and Gy such that {x} ¢ 6, and {y} c Gyvand
Gx N Gy = 9. Thus T is T,.

Now suppose T is T,. Let x andy be distinct points
in X.A Then theré exist open sets Gy and Gy such that x € Gy
and y ¢ Gy and Gy N Gy, = ¢. By being T,, I is also Ty, which
implies that singletons are c]o'sed. Therefore, {x} = -{7}-§
Gy, {y} = {y_}g Gy, Gy Gy = ¢, and T is Ry.

Theorem 2.14: The collection of all T,-topologies

on an arbitrary set X does not form a lattice (and hence is

not a sublattice).
Proof: ’, Let X equal the set of real numbers. Con-

sider the following topologies on X:

Ty ={G: 0 ¢Gor0 ¢ G and G' is finitel;

{H: 1 ¢ Hor1l € H and H' is finite}.

7,
By Pervin [6, p. 79], each of these topologies (known as
Fo'rt's”'space)v is To. Thenpy A7, =

r, N T, = {K: 0 ¢ K, 1 ¢£K, or O or 1 ¢Kand K' is finite}.
‘Consider the points 0 and 1 and open sets K, and K; such that

0 € Ky € Tin 7, and 1 €k, € 7, N r,. Since their
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complements are finite, K¢ and K1 must be infinite. How-
ever, K, N K, # ¢ since this would imply that one of them
“would be contained in the complement of the other (that is,
an infinite set contained in a finite set). Therefore, there
do not exist disjoint open sets, one containing x and the

other y; thus 7, A\ 7, is not Hausdorff.
Theorem 2.15: The set of all R,-topologies does

not form a sublattice of the 'Iattice of topologies.

Proof: Let {7y} be the set of R,-topologies and
{7;} be the set of T,-topologies on a set X. Then the
set of topologies in the intersection of {r.} and {7;} is
composed of T,-topologies by Theorem 2.13. Suppose {r,}
is a sublattice; by Theorem 2.3, {r;} is a sublattice.
Therefore {r,}N {7;} is a sublattice by Theorem 2.6.
But this contradicts Theorem 2.14; therefore, {kTr} must
not be a‘s'ublattice.

Note 2.10: The counterexample given in Theorem 2.14

also illustrates that the infimum of two R,-topologies need

not be R;.

Definition 2.9: A topological space (X, 7) is an
Rz-space if and only if it satisfies the foHowing': If
F 1’"5‘ a closed subset of Xand x € X, x ¢ F, then there

exist open sets G and Gy such that F c_;GF, X € Gy, and

GF nGX = ¢.
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‘Note 2.11: An R,-space '1's sometimes referred to
as a regular space. Also note that since the trivial
topology is Ry(vacuously), an R,-topological space need
not be T,, T,, or even T,.

Theorem 2.16: If (X, 7) is R,, then it is R,

(abnd hence R,).
Proof: Let (X, 7) be R,. Letx,y € X. If
{x} = {y}, then 7 is R,. Suppose {x} # {yJ. Then

x £ {yY ory¢ T)Z—}‘;‘ else {x} ¢ {y} and {y} € {x}. Since
T is R,, there exist open sets Gy such that x € Gy and
6, such that 7T < Gy, and 60 Gy = 4. |
Suppose {x} ¢ Gx. Then {x} N (6,)' # ¢. So
there exists an element z such that z ¢ (IXT N (Gy)').
Thus z € (Gyx)', a closed set, but x ¢ (G)'. So there
exist open sets' U and V such that (Gy)' c_: u, 'x €V, and
UN V = ¢. But this implies UN{z} N {x} = ¢, so
z ¢ {x} forany z € (64)'. Thus {x} < 6. Since
6y NGy = ¢, 7is R;.
Theorem 2.17: In a principal topology T on X,

ris R, if and only if 7 is Ry..
o M: Suppose T is R,. Then.by Thebr‘em 2.16,
it is Ry. _
Suppose 7 is R;. By Theorem 2.10, it is also

Ro. Let F be a closed subset of X and x € X, x £ F.
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For any y € F, {yy € F, so {yJ # {x}. Thus there exist
open sets G, and Gy such that X} < Gy and TyT < Gy-
Since T is principal and R,, every open set is also closed

by Theorem 2.7. Therefore y is an element of a closed set,

Gy, which is contained in an open set, Gy s also x € Gy and

Gy N Gy = ¢.. Thus T is R,.

Theorem 2.18: The principal Rz-tiopo1og1'es form a~

sublattice of the lattice of topologies.

Proof: See Theorems 2.8 and 2.12.

Theorem 2.19: The subset of all R,-topologies on
an infinite set does not form a sublattice.

Proof: Let X equal the set of real numbers. Let
T, and T, be defined as in Theorem 2.14, Each of these
top‘o]vogies is R,, as can be seen by considering either of
them. Therefore, consider

T, =1{6: 0 ¢ Gor0ecG and G' is finite}.
Let F be a closed subset of X. Let x € X such that x ¢ F,
There are three cases to consider. ‘ |

Case I.- x - 0. Then for any oben set G which
contains 0, G' is finite and closed since G is open.
However, G' is also open since 0 ¢ G'. So there exist
disjoint 'open sets G' and G such that G' (closed) is

contained in G' (open) and 0 € G.
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Case IT. x 0, 0¢g F. SinceF is vclosed and
0 ¢ F, F' is open and contains 0. As in Case I, syince
0 ¢ F, Fis an open set. So there exist an open set F which
contains F and an open set F' such that x € F', and |
FONF' =¢.

Case ITI. x #0, 0 € F. Since x #’0, {x} is an
open set. So {x1}' is a closed set. But since 0 ¢ {x}'
and ({x}')' is finite, {x}' is open as well as closed.
Therefore, there exist open sets {x} and {x}' such that
x € {x} and F € {x}"' and {x} Ny {x}' = 6.

| Now consider 7y AT, = |

T, N T, = {K: lO £ Kand 1 ¢ K, or Oor 1 € K and K' is
finite}. Consider the singleton set {0}. This is a
closed set since K = {0}' is such that 0 ¢ K, 1 € K, and
K' is finfte. Certain]Iy, there exists an open set K* such
that 1 € K*, 0 ¢ K* and (K*)' s finite. However for any
‘open set K° such that {0} € K°, (K°)' is finite; therefor‘e,'"
K* n K° f¢ since this would imply that one of them would
be contained in the complement of the other. Therefore,
7y AN T, is not Ro. |

Definition 2.10: A topological space (X, 7) is a

Ts-space if and only if it is R. and T,.

Theorem 2.20: The principal T;-topologies form a

sublattice of the lattice of topologies.
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Proof: See Theorems 2.3, 2.6, and 2.18.

In summary, the collections of Ty,- and T,-
topologies on a set aré not lattices (and hence not
sublattices), while the set of T,-topologies is a sub-
lattice of the lattice of topologies. The set of Ro-
topologies form a Tattice, and the set of principal
Ro-topologies (hence all R,-topologies on a finite set)
is a sublattice. The question of whether all R,-topologies
form a sublattice is not answered. Though principal R;-
and principal R,-topologies are sublattices of the lattice
of topologies, neither the sets of R,-nor R,-topologies are

lattices in general.



CHAPTER II1I

MISCELLANEOUS TOPOLOGICAL PROPERTIES
AND SUBLATTICES

While the separation axiomé helpto identify
topological spaces, topologies are further character-
ized as being connected, compact, Lindeldf, scattered,
or metrizable. In the lattice of topologies, the sub-
sets composed of connected topologies, compact topolo-
gies, Lindeldf topologies, ahd scattered topologies
fail to be lattices b'ecause the supremum may fail to be
connected, 'c.ompact, or Lindelof, respectively. The sub-
set of metrizable topologies is a sublattice with respect
to the ‘supremum;however, it is not known if the infimum of
two metrizable topologies is metrizable.

The notaition and definitions are those of Pervin.

[6].

Definition 3.1: 1If given a topological space

(X, 7) and sets A, B, and E contained in X, then sets

A and B form a separation of E if and only if A # ¢,

B# ¢ ANB=¢, ANd(B)=¢, BN d(A) =¢, and
AU B = E,

Definition 3.2: A set is connected if and only

if it has no separation.

23
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Theorem 3.1: In the Tattice of all topologies on

a set X, the subset consisting of all topologies which are
connected does not form a sublattice.
M:' Let X = {a, b, c}. Let
{¢, X, {a}, {a, b}, {a, c}} and
{¢, X, {b}, {c}, {b, c}}.

Thus, T, and 7, are connected; however, T, V T, equals

Tl

.T2

[}

the discrete topology which is not connected.

Definition 3.3: If {A,} is a family of sets and

S € U)A,, then {AX} is called a covering of S. If each

Ay is open, then {AA} is called an open covering of S.

Definition 3.4: Given (X, 7) and SC X, S is

compact if and only if every open covering of S contains
a finite subcovering.

Theorem 3.2: In the lattice of all topologies on

an uncountab]e set X, the subset consisting of all compact
topological spaces does not form a sublattice.
Proof: Let X = Reals. Let
{6, X, {6,: G = [a, =)} and
{¢, X, {Hp: Hp (-=, b]}}.

Consider [m, n] a closed interval of X. Certainly [m, n]

T
1

P

is compact with 7,, since for any open cover of [m, n],'

say 0 = {[aj, »): i € I}, there exists a finite subcover,
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which is the sihg1e open set [aj, ) where aj = m. Simi-
1ar1y, [m, n] is compact with T,
The supremum of 7, and 7, is formed by the subbase
-(‘T1 v Tz)' There exi s‘ts an open cover consisting of single-
ton sets for which there does not exist a finite .subc0\}er.
Thus 7 'V 1, is not compact. |

Definition 3.5: A topological space (X, 7) is a

Lindeldf space if and only if every open covering is re-

ducible to a countable subcovering.

‘Theorem 3.3: In the lattice of all topologies on

an uncountab]e'lset X, the subset of Linde18f topologies
does not form a sublattice.
Proof: Seev the proof of Theoren 3.2.
Definition.3.6: A subset E of a topollogical space

(X, T) is 'dense-j_n_-itse”,if and 0n1y if every point of E

s a Timit point of E; that is, if E < d(E).

Def1n1t1on 3 7 " The nucleus of a set E 1is the

| un'idn‘ of all de_nse-1,n.—1tse1f subsets of E.

’ '_Definitd'on- 3,‘.8:‘ A set whose nucleus is empty is
called scvatter‘e’d. | |

_ Theorem'3.44:‘ | In the lattice of topologies on any

set X, t‘he subset of scattered topologies does not form a

" sublattice.
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Proof: Let X = {0, 1}. Consider the following
topologies on X:
{6, X, {0}} and
{¢, X5 {T1}}.

7

Ty

Therefore, (X, T,) 1is scattered since E¢ d(E) for any
nonempty E ¢ X, which implies that there exist no non-
empty dense-in-itself sets and the nucleus of X is empty.

Similarly, 7, is scattered. However, 7, AT, = 7 N T, =

{6, X}, the trivial topology which is not scattered since
for the subset X, X < d(X) = {0, 1}, and the nucleus of X
is not empty. ‘

Definition 3.9: A metric for a set X is a mapping

d of X x X into the hon-negati‘ve reals satisfying, for all
Xs ¥s z € X, the following axioms:

(a) dlx, x) = 0;

(b) d(x, y) < d(x, y) + d(y, z);

(c) dlx, y) = dly, x);

(d) if x # y, then d(x, y) > 0.

Definition 3.10: If x € X with metric d and ¢ is

any positive real nu_mber, then the set of all y € X, where
d(x, y) < ewill be called the ball with center at x and
radius €. This ball is denoted B(x, ¢).

Note 3.1: By Pervin [6, p. 100], the collection of

all balls of points on é set X induces a topology for X.
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Definition 3.11: A topo]ogicaTspace (X, 7) is

metrizable if and only if there exists a metric for X which

induces T. _

Note 3.2: Not all topologies are induced by metrics,
and those topologies that are metrizable may be induced by
many qhetrics, but a single metric induces a unique tobo]ogy.

t

§ Theorem 3.5: In the Tattice of topologies on a set

[

Xy th§e supremum of any subset consisting of metrizable topol-
ogies is metrizable.
Proof: Consider 74 and T,, metrizable topologies
on X. Thus there EXists' a metric d which induces 74 and
a metric p which induces Tp. Then T = 14V Tp is formed
by the subbase 7q U Tp. Define a metric q such that
| a(x, y) = max(d(x, y), p(x, y))
. for all x, y € X.
| .Th1's is a metric since it satisfies the axioms of
pefinition 3.6: | |
(a) a(x, x) = max(d(x, x), p(x, x))} =
max(0, 0) =0.
'_(b) Consider the following:
d(x, y)
,p(vx, y) < max(d(x, y), p(xs y))s

max(d(x, y), p(x, y));

{A

d(y, z) < max(d(y, z), ply, z));
p(y, z) < max(d(y, z), p(y, 2)).
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Certainly, d(x, i) < d(x, y) + d(y, z) <
max(d(x, y), p{x, y)) + max(d(y, z), ply, 2)),
and p(x, z) <p(x, y) + ply, 2) <
max(d(x, y), p(x, y)) + max(d(y, z), ply, z)).
So, max(d(x, z), p(x, z)) <
max(d{(x, y), p(x, y)) + max(d(y, z), ply, z)) which,
by definition of q, is q(x, z) < q(x, y) + q{y, z).

(c) q(x, y) = max(d(x, y), p(x, y)) =
max(d(y, x), ply, x)) = aly, x).

(d) If x # y, then
g(x, y) = max(d{x, y), p(x, y)) > 0, since both
d(x, y).> 0 and p(x, y) > 0.

Thus q is a metric. Now it is necessary to show
that T4 \Y Tp is the same topology on X as that generated
by the metric g.

let 7= 7 V 7, = W[, 0, {Gi: 6 € (Tq U 7p)}1}.

Let Tq be the topology induced by the metric g
‘where q(x, y) = max(d(x, y), p(x, y)).

- (I) Choose G €1, and Tet x € 6. So
X € 1é1{Gi}gG, for some intersection, For every i
such that x € Gj, there existé an eg; such that
Ba(x, €5) € G; for Gj € T4, or

B.(x, €5) € G; for Gy € Tp.

o
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Let € = min{e;}. If Gy € 7y, then
| Bo(x> €) < Bylx, ) & By(x, ¢j) € 65.

Simi]a"ﬂy, if Gi € Tp, then .

Ba(x, €) < Bp(x, e) € Bplx, ¢j) € G5.
Therefore, Bg(x, €) < Gy, for every i. So, Bq(x, e) is
contained in the intersection of all G; which contain x.
This implies Bq(x; €) E,’:\“’,w X € 6;} ¢ G. Thus,

| Terg.

(I1) Now, choose G* € Tq and Tet x € 6*. There

exists a By(x, ¢) € G*. Consider
S Bylx, €) N Bp(x, €) € T4 VTp =,

Let y € Bgq(x, e) N Bp(x, e).' So d(x, y) <e, and
p(x, y) <e. Since qix, y) = max(d(x, y), p(x, ¥)),
9(x, y) <e. Soy € Bq(x, e), and

7 Balx, €) N By(x, €) € Bglx, ) € 6% € 7q.
Thus, | |

TqC T.

Comb1n1ng the results of (I) and (II), = Tq;
therefore, the supremum of any two metnzable topologies
is metmzab]e and the topology induced by the metric is
equivan1ent to the s‘u‘p topo1o§y.

| Note 3.3: Consider the following construction:
- For topb]ogies 71 and Tz such that Axioms (a), (b), and

(c) are satisfied, define a function f such that
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fix, y) = min(d(x, y), p(x, y)).
Then 1let
f*(x, y) ='1'n‘f{ln§1f(x1-, Xi+1): X, = x and x, 4, = yl.
By Birkhoff [3], the function f* is the infimum of the
"distance functions" d and p. However, f* does not
satisfy Axiom (d), so f*, though "close" to being a

metric which would induce the infimum of any two metriz-

.able topologies, is not sufficient. Whether such a metric

does exist is not known.
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