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PREFACE 

In comparison with other areas of mathematics, 

lattice theory is "new." Boole, in 1824, introduced a 

class of lattices (Boolean Algebras), and, in the 1890's, 

Schroder and Dedeki nd presented further concepts of lattice 

theory. In the 1930's the development of lattice theoretical 

concepts began to increase with publications by van der 

Waerden, von Neumann, Ore, Stone, Kantorovitch, Birkhoff, 

and others. Then in 1948, Garrett Birkhoff published his 

classical volume on lattice theory, in which he unified and 

up-dated former results and presented new discoveries [1 ,8]. 

Since 1950 R. W. Bagley [1], J. Hartmanis [5], and 

A. K. Steiner [7] have published articles specifically con-

cerning the lattice of topologies. The purpose of this 

thesis is to examine the lattice of topologies and to de

termine whether certain subsets are sublattices. 
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CHAPTER I 

GENERAL PROPERTIES OF THE LATTICE OF TOPOLOGIES 

Presented in this chapter are basic definitions of 

1 a t t i c e t he or y a n d g e n e r a 1 the o rem s c once r n i n g t he .1 at t i c e 

of topologies. A knowledge of fundamental topological 

properties and definitions is assumed. Unless otherwise 

indicated, the notation and basic definitions concerning 

lattices are those used by Thron [9] and/or Birkhoff [2]. 

All proofs are original, though some of the results pre

sented in this paper are due to Steiner [7]. Some concepts~ 

to my knowledge, have not been previously studied. 

Definition 1.1: A partially ordered set is a pair 

·(X, R) for which the relation R on X is reflexive, antisym

metric, and transitive. 

Definition .L._?_: An upper bound of a subset A~ X, 

where X is a partially ordered set, is an element b of X 

such that for every x E A, x < b. 

Definition l:l.: A least upper bound of a subset 

A. C X, where X is a partially ordered set, is an element 

b* such that b* is an upper bound for A and such that 

b* < b for b E B, the set of all upper bounds of A. 

Note 1.1 : The least upper bound is also designated 

by the term suprem~m or sup and by the symbol \j. 

1 



Note 1.2: 

simi 1 arly defined. 
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Lower bound and greatest 1 ower bound are 

The greatest 1 ower bound is also desig-

nated by the term infimum or inf and by the symbol /\. 

Definition 1.4: A lattice (L, R) is a partially 

ordered set (X, R) such that for any a EX and b EX, 

a V b exists and a 1\ b exists. 

Theorem 1.1: The collection of all topologies on 

a set X forms a lattice. 

Proof: Let T be the set of all topologies on X. 

Consider the order relation as being set containment. 

C e r t a i n 1 y for any T a. E T , T a ~ T a. :t s o the r e 1 a t i. on i s 

reflexive. Also if Ta ~ T8 and Ts c Ta, then Ta. = Ts 

by the property of set containment; thus, the relation 

is antisymmetric. Similarly, for topologies Ta., Ts, Ty, 

if every open set in To. is in Ts and every open set in 

Ts is in Ty, then certainly every open set of Ta. is in Ty 

and the relation is transitive. 

NoW con si de r T a E T and T B E T • To f i n d T a 'l T S , 

let Ta. U Ts be a subbase. Then, by the definition of a 

subbase, taking finite intersections and arbitrary unions 

will generate a topology. Certainly it is the least such 

topology, since any upper bound must contain both Ta. and 

Ts· Thus, TCJ. V Ts = {U(1Q1{Gi: Gi ETa U Ts}]}. 



3 

To find the infimum, consider Tan Ts (non-

empty since the trivial topology is a subset of every 

topology). Since Ta and Ts are topologies, certainly 

Ta. (\ Ts is a topology. It is a lower bound since for 

every G E (Ta f\Ts), G E Ta and G E Ts; thus (Ta f'\ Ts) ~ Ta. 

and (Tan Ts) ~ T 8 • It is the greatest lower bound since 

any additional open sets could not belong to both Ta. and 

T8 • Thus, Ta 1\ T 8 = Ta. f\ T6• 

Definition 1.5: A lattice (L, R) on a set X is 

complete if and only if for every A C X, sup A and inf A 

exist in X. 

Theorem 1.2: The lattice of all topologies on a 

set X is complete. 

Proof: Consider T, the family of all topologies 

on X. For any subset {Ta} ~ T, V{Ta,} is generated by using 

Va{Ta} as a subbase. Similarly /\{Ta} = (\{Ta.}. 

Definition 1.6: A lattice (L, R) on X is distribu

tive if and only if the operations \1 and 1\ satisfy the fol

lowing property for every x, y, z E X: 

x \1 (y 1\ z) = (x V y) 1\ (x V z). 

Note 1 . 3: Steiner [7] proved that the 1 attice of 

topologies is not distributive if X has three or more 

elements. The following example illustrates this for a set 

of t h r e e e 1 em e nt s • 
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Let X = {a, b' c}. Consider the following topolo-

gies on X: 

Tl = { $' X, {b}, {a, c}}; 

T2 = {$, X ' {a}, {b, c}} ; 

T3 = {$, X' {b}, {a' b}} • 

Then Tl V (T 
2 

1\ T 
3

) = 

{<I> , X , · { b } , {a , c } } v 
[{<f>, X, {a}, {b, c}} 1\ {<f>, X, {b}, {a, b}}] = 

{<f>, X, {b}, {a, c}} V {<f>, X}= {<f>, X, {b}, {a, c}}. 

But (Tl VT2)/\(Tl VT3) = 

[{ <P, X , . {b}, {a' c}} V {<f>, X' {a} ' {b, c}}] 1\ 

[ { <P , X , {b}, {a, c}} V {<f>, X' { b} , {a, b}}] = 

[ { <P , X ' { b}, {a' c}, {a}, {b, c}' {c}, {a, b}] 1\ 

[ { <P ' X ' {b}, {a, c}, {a, b}, {a}}] = 
{<f>, X, {a}, {b}, {a, c}, {a, b}}. So, 

T 1 V (T 2 1\ T 3 ) ~ (T 1 V T 2 ) 1\ (T 1 V T 3 ). 

Definition 1.7: An element b of a partially 

ordered set (X, <) is considered a least element of X 

if and only if for all x EX, b ~ x. 

Note L.i= The largest element of X is similarly 

defined. 

Theorem 1.3: The lattice of topologies on a set X 

has a largest and a least element, and hence is bounded. 
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Proof: Let {T
0

) be the set of all topologies on 

a set X. Since this set forms a complete lattice, the 

supremum and infimum exist for any subset of {T 0 ). Cer

tainly, t{,{TcJ is a subbase which generates the discrete 

topology. Also, ncx{Ta.} = {<!J, X}. 

Definition 1.8: If a lattice has a least element b, 

and if there exists an element c :f b such that b < x < c 

implies that x = b or x = c, then c is an atom of the lat

tice. 

Note 1.5: By Theorem 1.4, the least element in the 

lattice of topologies on any set X is the indiscrete topol

ogy; that is, Tb = {<j>, X}. If Tc = {<j>, X, G} where G c: X, 

then Tc is an atom, since for any Tx such that Tb ~ Tx ~ Tc, 

either Tx =·Tb or Tx = Tc· 

Definition 1.9: A base of a lattice L is a subset 

B C L such that for every x E L, other than the 1 east ele

ment, there exists a set Bx c B such that x = V[b: b E Bx]. 

Definition 1.10: An atomic lattice has a base con-

sisting only of atoms. 

Theorem'l.4: The lattice of topologies on any set 

X is an atomic lattice. 

Proof: Let T be the set of all topologies on X. 

Let B = {BG: BG = {<j>, X, G}:: G C X}. Each BG is an 

atom. Then for any 'Tx > T1 , where Tr =·{<I>, X}, there 
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exists a subcollection from B such that for every G E Tx, 

Gis insomeBG. ThusTx=V{BG}· 

Thus, the collection of topologies on any set X 

forms a lattice which is bounded, complete, non-distributive, 

and atomic. 



CHAPTER II 

SEPARATION PROPERTIES AND SUBLATTICES OF THE 

LATTICE OF TOPOLOGIES 

After the identification of a lattice, it is 

natural to search for sublattices. The separation prop-

erties of T0 , T1 , T 2 , R0 , R1 , and R2 are apropriate to 

this investigation. The definitions of T0 -, T 1 -, and 

T 2 -spaces are those of Pervin [6] and of R
0
-, R 1 -, and 

R2 -spaces are those of Davis (4]. The closure of a set 

G i s denoted G, and the com p 1 em en t of G is denoted G • . 

Definition 2.1: A subset L* of a lattice L is a 

sublattice if, for any two elements x E L* andy E L*, 

(x V y) E L* and (x 1\ y) E L*. 

Note 2.1: It is possible for a subset of a lattice 

to be a lattice, but still not be a sublattice. However, it 

is always true that x V* y ~ x V y and that x /\* y ~ x 1\y, 

where V* and/\* are the infimum and supremum in the sub

collection [9, p. 10]. 

Definition 2.2: A topological space X is a To-space 

if and only if for two distinct points x EX and y EX, 

there exists an open set G which contains one of them but 

excludes the other. 

7 
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Theorem~: On a set X, where the cardinality of 

X is greater than or equal to two, the subset of the lattice 

of all T0 -topologies is not a sublattice. 

Proof: Let X= {a, b}. Let T 1 = {<P, X, {a}}, and 

let T 2 ={~,X, {b}}. Thus, T1 and T2 are To. However, 

T 1 1\ T 2 = T 1 (l T 2 = {¢, X} which is not T0 • 

Note 2.2: The example of Theorem 2.1 also shows that 

the subset consisting of T0 -topologies does not form a lat

tice. 

Definition 2.3: A topological space X is a T1-space 

if and only if for distinct points x EX andy EX, there 

exist open sets G and H such that x E G with y ~ G and 

y E H with X I. H. 

Note 2.3: Obviously, if a topological space is T1 , 

then it is also To. 

Definition 2.4: A chain is a partially ordered set 

{X, >) such that for every x E X andy EX, either x > y, 

y>x,orx=y. 

Definition 2.5: In a partially ordered set {X,>), 

mE X is called a maximal element if and only if there 

exists no X EX with X r m such that X> m. 

Note 2.4: Zorn's Lemma states that if each chain 

in a partially ordered set has an upper bound, then there 

is a maximal element in the set. 
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Theorem 2.2: The subset consisting of all T1 -

topologies on a set X is a lattice. 

Proof: Let {Ta.} be the set of all topologies on a 

set X. Consider any two T1 -topologies T; and Tj· Then 

Pi V Tj exists and is T1 since whatever open sets existed 

in the topologies to insure T1 -ness also exist in the 

topology generated by the subbase Ti U Tj· (That is, 

topologies finer than a T1 -topology are T1 .) 

Again consider T 1 -topologies Ti and Tj. Let 

A= {Ta.: Ta c Ti, Ta. S. Tj, and Ta is T 1 }; 

that is, A is the set of all T1-lower bounds forTi and 

Tj· Certainly A 'I- <1> since, for any set X, there exists 

a unique smallest T 1 -topology (the cofinite topology). 

Let C = {Tn} be a chain from A. Let U{Tn} be a 

subbase for a topology T. Certainly Tn ~ T for every n. 

Also U{Tn} ~ Ti and U{Tn} ~ Tj. Therefore T c:: Ti, 

T c: Tj' and Tis T 1 since T =\I{Tn}. Thus, T E. A. By 

the construction of T, it is an upper bound of the chain 

C in A. Thus, by Zorn•s Lemma, there is a maximal element, 

say Tm, in A. This implies T; 1\ Tj = Tm, a T1-space. 

Theorem 2.3: The lattice of all T1 -topologies is 

a sublattice of the lattice of all topologies on X. 

Proof: Let Ti and Tj be T 1 -topologies. Then 

Ti V Tj, the supremum ofT; and Tj over the lattice of 
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all topologies, is T 1 (see Theorem 2.2). 

LetT; 1\ Tj be the infimum ofT; and Tj, over 

the lattice of all topologies, and letT;/\* Tj be the 

infimum ofT; and Tj over the T 1 -topologies. Then 

Ti /\* Tj < Ti 1\Tj 

by 1 a t ti c e theory . S i n c e T; 1\* T j i s T 1 and top o 1 o g i e s 

finer than a T1 -topology are also T1 , then T; 1\ Tj must 

be T 1 ; so T·l\* T· = T· 1\TJ·· 1 J 1 

Definition 2.6: A topological space X is an B.a.-

Theorem 2.4: Parts (a) and (b) of Definition 2.6 

are equivalent. 

Proof: Suppose (a). Let. x E= G. Suppose that 

TXT c/= G. Then, TXT n G1 ~ ~. Thus there exists an 

element y such that y E {x} andy E G1
• Since y E {x}, 

then {y} (\ {x} ~ <f>, so {y} = {x}. But since y E G •, 

{y} c: ~· since a closed set contains the closure of each 

of its points. Thus {x} ~ G1 which is a contradiction 

since x E G. Thus {x} ~G. 

Suppose (b). Let x E GET. Thus{x} C:: G. Let 

y EX. Suppose {x} 'I {y}. There are two cases: 
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Case I. There exists an element z such that 

z E TXT and z ~ TYT. Since z ~ tyT, then z E TYT', an 

open set. This implies x ETYT'. So TXT~TYT·, and 

TXT fl TYT = ~-

Case II. There exists an element z such that 

z ~TXT and z E TYT. Proof is similar to Case I. 

Theorem 2.5: The collection of all R0 -topologies 

on a space X forms a lattice. 

Proof: (I) Let {Tr} be some set of R0 -topologies. 

Then, for every open set G· 1 E Tri ' X E Gi implies that 

TXTc G i • Sup{Tr} over the lattice of a 11 topologies is 

generated by the subbase formed by Ur{Tr}. Let sup{Tr} = 

Certainly, txrTr ::::> ~ for each r. Now, for any G E T, 
D 

G = U{/)
1
Gi}, where Gi E Ur{Tr}. Certainly, x E G E T 

II 

i m p 1 i e s x E ( 1Q 
1 
G i ) f o r s om e i n t e r s e c t i on , a n d s i n c e , for 

every Gi, 1XJTri c Gi (where Gi E Tri for some r), then 

T:":'l'T{x} c "{x}Tri c: A G· 
-1=1 -1=11 

and T = sup{Tr} is R0 • 

T. 

(II) Similarly, let Ti and Tj be R0 -topologies on 

X. Let A = {Tr: Tr ~ Ti, Tr c Tj, and Tr is R0 }. Certainly 

A 'f <f> since the indiscrete topology is R0 and is contained in 

T; and Tj· Let C be a chain from A. By (I), supC exists. 

Thus, by Zorn's Lemma, there is a maximal element, say Tm, 

ih A, the set of R0 -lower bounds forT; and Tj, implying 

Tm = Ti /\* Tj, the infimum in the lattice of Ro-topologies. 
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Theorem 2.6: The intersection of two sublattices 

is a sublattice. 

Proof: Let L be a lattice, L1 and L2 be sublattices, 

and L 1 (\ L2 = L*. 

Case I. Suppose L 1 (\ L2 = L* = ~. Since there are 

no nonempty subsets of <f>, the supremum and infimum exist in 

L*. 

Case II. Suppose L
1 

f\ L
2 

= L* = {a}. Then 

sup{a} =a, inf{a} = a, and a E L*. 

Case III. Suppose L1 (\ L2 = L* where the cardinality 

of L* is greater than or equal to two. Consider A E L* and 

BEL*. Then certainly A E L1 C: L and BE L1 C L. Similarly, 

A E L2 C: Land BE L2 C L. Thus A.V 1 B exists in L 1 , since 

L1 is a lattice, and similarly A \/2 B exists in L2 • Also 

since L 1 and L2 are subl attices of L, A V1 B = A V2 B = 

A Vt. B • Thus A \jt. B E L 1 1)L~= L* and A V* B = A v1. B, 

Similarly, A /\* B~Af\B CL 1 and A/\* B c 
Afl B C: L 2 , since LI and L 2 are lattices. So 

A /\* B . C A 1\ B S L 1 fl L 2 = L * . S i n c e l 1 , L 2 a r e s u b -

1 at t i c e s , A /1..1 B = A /\.2 B = A 1\ t. B • So , 

A /',t. B E L 1 (\ L 2 = L * and A /\* B = A 1\ t. B. 

Definition 2.7: A topology Tis called a principal 

topology if and only if arbitrary intersections of open sets 

are open [7, p. 382]. 
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Note 2.5: Every topology on a finite set X is 

principal. 

Lemma 2.1: In a principal topology, the arbitrary 

union of closed sets is closed. 

Proof: Let X be any space and T a principal 

topology on X. Let K = Uc~{Fa} where each Fa is a closed 

set. Then K' = na.{Fa.'}. Each Fa.' is open; thus, by 

Definition 2.7, K' is open. Therefore (K') • = K must 

be closed. 

Theorem 2.7: A principal topology is R0 if and 

only if every open set is closed. 

Proof: Let T be a principal topology on a set X. 

Suppose every open set is also closed. Let x E G E T. 

Thus, {x} f G since G is closed. 

Now suppose T is an R
0
-topology on X. Let GET; 

thus, {xi}~ G for each x; E G. Taking the union of every 

point in G yields 

G = Ui{xi} c:: U;{xi} =G. 
--

By Lemma 2.1, U1 {x;} is closed. Therefore G is closed. 

Note 2.6: If every open set is closed, then cer-

tainly every closed set is also open. 

Theorem 2.8: The principal R0 -topologies form a 

sublattice of the lattice of all topologies. 
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Proof: Let Ti and Tj be principal Ro-topologies 

on a set X. Part I of the proof of Theorem 2.4 shows that 

for any two R0 -topologies, their supremum is R0 ; thus, the 

R0 -topologies form a sublattice with respect to the supremum. 

Steiner [7, p. 382] proved that the principal topologies form 

a sublattice. Thus, by Theorem 2.5, the set of topologies 

which are principal and R0 will be a sublattice with re

spect to the supremum; that is, T; V Tj will be a principal 

R
0 
-topology. 

Similarly, let Ti and Tj be principal R 0 -topologies. 

Let Ti 1\. Tj be their infimum over the lattice of all topolo

gies. Certainly Ti A Tj is principal since the principal 

topologies are a sublattice of the lattice of topologies. 

Suppose G E Ti 1\ Tj = Ti (l Tj. Then G E Ti and G E Tj. 

Since Ti and Tj are principal R0 -topologies, G' E Ti and 

G' E Tj, ~Y Theorem 2.6. Therefore, again by Theorem 2.6, 

Ti 1\ Tj is R
0

• Therefore, since Ti 1\. Tj is principal and 

R0 , the collection of principal R 0 -topologies is a sub

lattice. 

Note 2.7: Whether or not the lattice of all R0 -

t o p o 1 o g i e s forms a s u b 1 at t i c e of t he 1 at t i c e o f a 11 top o 1 o -

gies over an infinite set is not known. 

Theorem 2.9: A topology is T
1 

if and only if it is 

bot h R 0 and T 0 • 
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Proof: Suppose Tis a T1-topology on a set X. 

Thus, Tis also T 0 • Also for every {x}, {x} = {x}. Thus, 

if x 'I y, {x}(\ {y} = cp, and Tis R0 • 

Suppose T is a topology which is both T 0 and R
0

• 

If x r y, {x} f {y}, since Tis T 0 • So {x} fl {y} = ~' 

since Tis R0 • Thus y E {x}' E T, and x E {y}' E T. 

Therefore T is T 1 • 

Definition 2.8: A topological space (X, T) is 

an R 1 -space [4] if and only if {x} r {y} implies there exist 

open sets Gx E T and Gy E T such that {x} ~ Gx and {y} ~ Gy 

and such that Gx n Gy = ~. 

Theorem 2.10: If (X, T) is Rl' then it is R0 • 

Proof: If (X, T) is an R 1-topological space in which 

for all points x andy elements of X, {x} = {y}, then Tis 

R0 • Consider {X, T), an R1 -space and points x and y such 

that {x};. {y}. Thus, there exist Gx STand Gy ~ T such 

that {x} ~ Gx and {y} ~ Gy and Gx () Gy = ~- Therefore, 

{x} /a {y} =~and T is R0 • 

Theorem 2.11: For any principal topology Ton a 

set X, Tis R1 if and only if Tis R0 • 

Proof: Suppose Tis R1 ; then by Theorem 2.9, it 

is R 0 • 

Suppose T is R0 • ·There are two cases to consider: 
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Case I: For every x, y E X, {x} = {y} . Then T is 

R1 vacuously. 

Case II. Suppose {x} 1 {y}. Therefore, since T is 

R0 , {x} n {y} = cp. By Note 2.6, .{x} and {y} are open as 

well as closed. Thus {x} and {y} are contained in open 

sets (respectively {x} and {y}) which are disjoint. 

Theorem 2.12: The principal R1-topologies on a 

set X form a sub 1 at t i c e of the 1 at t i c e of top o 1 o g i e s . 

Proof: See Theorems 2.8 and 2.11. 

Note 2.8: A topological space which is R1 may or 

may not also be T 1 and/or T0 • For example, consider the 

following topologies on the set X= {a, b, c}: 

T 1 = {<j>, X, {a}, {a, c}}; 

T 2 = {<j>, X, {b}, {a, c}}; 

T
3 

= {<j>, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. 

Of ~hese, T1 is To but not R1 ; T 2 is R1 but not T1; and 

T 3 is both T1 and R 1 • 

Definition 2.9: . A topological space (X, T) is a 

T 2 -space (or Hausdorff space) if and only if, for distinct 

points x andy in X, there exist disjoint open sets, one 

containing x and the other containing y. 

Note 2.9: A T
2
-topological space is automatically 
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Theorem 2.13: A topological space (X, T) is T2 if 

and only if it is T 1 and R1 • 

Proof: Suppose (X, T) is Tt and R1. Let x and y 

be distinct points in X. Then {x} "' {y} since singletons 

are closed in T1 -topologies. By the property of being R1 , 

there exist Gx and Gy such that {x} ~ Gx and {y} £ Gyand 

Gx n Gy = ~. Thus T is T2. 

Now suppose T is T2. Let x andy be distinct points 

in X. Then there exist open sets Gx and Gy such that x E Gx 

andy E Gy and Gx (\ Gy = ~. By being T2' Tis also Tp which 

implies that singletons are closed. Therefore, {x} = {x} C 

Gx, {y} = {y}S Gy, Gx n Gy = cf>, and Tis R0 • 

Theorem 2.14: The collection of all T 2 -topologies 

on an arbitrary set· X does not form a lattice (and hence is 

not a sublattice). 

Proof: Let X equal the set of real numbers. Con

sider the following topologies on X: 

Tt = {G: 0 ~ G or 0 E G and G' is finite}; 

T2 = { H : 1 ~ H or E H and H' is finite}. 

By P ervin [ 6' p. 79], each of these topologies (known as 

Fort • s space) is T2. Then T1 1\ T2 = 
T 1 {) T2 = {K: 0 ~ K, 1 i K, or 0 or 1 E K and K' is finite} • 

Consider the points 0 and 1 and open sets Ko and K1 such that 

0 E Ko E T 1 (\ T2 and 1 E K1 E T 1 (\ T2. Si nee their 
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complements are finite, Ko and K1 must be infinite. How

ever, K0 (\ K1 t- ¢ since this would imply that one of them 

would be contained in the complement of the other (that is, 

an infinite set contained in a finite set). Therefore, there 

do not exist disjoint open sets, one containing x and the 

other y; thus T1 A T 2 is not Hausdorff. 

Theorem 2.15: The set of all R1-topol ogies does 

n o t f o rm a sub 1 a t t i c e o f the 1 a t t i c e o f top o 1 o g i e s • 

Proof: Let {Tr} be the set of R1 -topologies and 

{T;} be the set of T 1 -topo1ogies on a set X. Then the 

set of topologies in the intersection of {Tr} and {T;} is 

composed of T2 -topologies by Theorem 2.13. Suppose {Tr} 

is a sublattice; by Theorem 2.3, {T;} is a sublattice. 

Therefore {pr}() {Ti} is a sublattice by Theorem 2.6. 

But this contradicts Theorem2.14; therefore, {Tr}must 

not be a sub1 atti ce. 

Note 2.10: The counterexample given in Theorem 2.14 

also illustrates that the infimum of two R1-topologies need 

not be R1 • 

Definition 2.9: A topological space (X, p) is an 

R2-space if and only if it satisfies the following: If 

F is a closed subset of X and x EX, x·~ F, then there 

exist open sets GF and Gx such that F ~ GF, x E Gx, and 

GF (\ Gx = <j>. 
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·Note 2.11: An R2 -space is sometimes referred to -.--·-
as a regular space. Also note that since the trivial 

topology is Rdvacuously), an R2 -topological space need 

Theorem 2.16: If (X, T) is R2 , then it is R1 

(and hence R0 ). 

Proof: Let (X, T) be R2 • Let x, y EX. If 

{x} = {y}; then T is R1 • Suppose TXT 1 T.Yf. Then 

x ~ {y} or y £ {x}; else {x} ~ {y} and {y} ~ {x}. Since 

T is R2 , there exist open sets Gx such that x E Gx and 

Gy such that {y} c Gy ,· and Gx () Gy = <1>. 

Suppose {x} ¢ Gx. Then {x} () (Gx) 1 "f cp. So 

t h e r e ex i s t s an e 1 em en t z s u c h t h a t z E (TXT () ( G x ) 1 
) • 

Thus z E (Gx)', a closed set, but x ~ (Gx) 1
• So there 

exist open sets U and V such that (Gx)'~U, x E V, and 

U () V = <)l. But this implies U\{z} (\ {x} = ¢, so 

z ~ {x} for any z E (Gx) '. Thus {x} <;. Gx. Si nee 

G y (\ G x = <I>, T is R 1 • 

Theorem 2.17: In a principal topology Ton X, 

Tis R2 if and only if Tis R1 • 

Proof: Suppose T is R2 • Then by Theorem 2.16, 

it is R1. 

Suppose Tis R1 • By Theorem 2.10, it is also 

Ro. let F be a closed subset of X and x EX, x ~F. 



20 

For any y E F, {Y} c: F, so {Y} f. {x}. Thus there exist 

open sets Gx and Gy such that {X} c Gx and 'fYT c Gy· 

Since Tis principal and R0 , every open set is also closed 

by Theorem 2.7. Therefore y is an element of a closed set, 

Gy, which is contained in an open set, Gy; also x E Gx and 

Gy (l Gx = <P·. Thus T is R2 • 

Theorem 2.18: The principal R2 -topologies form a 

sublattice of the lattice of topologies. 

Proof: See Theorems 2.8 and 2.12. 

Theorem 2.19: The subset of all R2 -topologies on 

an infinite set does not form a sublattice. 

Proof: Let X equal the set of real numbers. Let 

T1 and T2 be defined as in Theorem 2.14. Each of these 

topologies is R2 , as can be seen by considering either of 

them. Therefore, consider 

T 1 = {G: 0 ~ G or 0 E G and G' is finite}. 

Let F be a closed subset of X. Let x EX such that x ~F. 

There are three cases to consider. 

Case I,· x = 0. Then for any open set G which 

contains 0, G' is finite and closed since G is open. 

However, G' is also open since 0 i:. G'. So there exist 

disjoint open sets G' and G such that G' (closed) is 

contained in G' (open) and 0 E G. 
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Case I I . X 1 0, 0 f. F. Since F is closed and 

0 f. F' F' is open and contains 0. As in Case I ' since 
' 

0 f. F' F is an open set. So there exist an open set F which 

contains F and an open set F 1 such that x E F', and 

F () F' = ~. 

Case III. x 10,0 E F. Since x r 0, {x} is an 

open set. So {X} 1 is a closed set. But since 0 E {x} 1 

and ({x}')' is finite, {x}' is open as well as closed. 

Therefore, there exist open sets {x} and {x} 1 such that 

x E {x} and F c {x}' and {x} () {x}' = ~. 

Now consider T 1 1\T2 = 

T 1 () T 2 = {K: 0 ~ K and 1 f. K, or 0 or 1 E K and K' is 

finite}. Consider the singleton set {0}. This is a 

closed set since K = {0}' is such that 0 f. K, 1 E K, and 

K1 is finite. Certainly, there exists an open set K* such 

that 1 E K*, 0 ~ K* and (K*)' is finite. However for any 

open set K0 such that {0} c.K 0 , (K 0 )' is finite; therefore, 

K*tl K0 ~~since this would imply that one of them would 

be contained in the complement of the other. Therefore, 

T1 1\ T2 is not R2. 

Definition 2.10: A topological space (X, T) is a 

T3-space if and only if it is R2 and T1. 

Theorem 2 . 2 0 : The p r i n c i p a 1 T 3 -to p o 1 o g i e s form a 

sublattice of the lattice of topologies. 
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Proof: S e e Theorems 2 . 3 , 2 . 6 , and 2 . 1 8 . 

In summary, the collections of T0 - and T 2 -

topologies on a set are not lattices {and hence not 

sublattices), while the set of T 1 -topologies is a sub

lattice of the lattice of topologies. The set of R0 -

t o p o 1 o g i e s form a 1 a t t i c e , a n d t h e s e t of p r i n c i p a 1 

R0 -topologies (hence all R0 -topologies on a finite set) 

is a sublattice. The question of whether all R 0 -topologies 

form a sublattice is not answered. Though principal R1 -

and principal R2 -topologies are sublattices of the lattice 

of topologies, neither the sets of R1 -nor R2 -topologies are 

lattices in general. 



CHAPTER I I I 

MISCELLANEOUS TOPOLOGICAL PROPERTIES 

AND SUBLATTI CES 

While the separation axioms help to identify 

topological spaces, topologies are further character

ized as being connected, compact, Lindelof, scattered, 

or metrizable. In the lattice of topologies, the sub

sets composed of connected topologies, compact topolo

gies, Lindelof topologies, and scattered topologies 

fail to be lattices because the supremum may fail to be 

connected, compact, or Lindelof, respectively. The sub-

set of metrizable topologies is a sublattice with respect 

to the supremum; however, it is not known if the infimum of 

two metrizable topologies is metrizable. 

The notation and definitions are those of Pervin. 

[ 6 J • 

Definition 3.1: If given a topological space 

(X, T) and sets A, B, and E contained in X, then sets 

A and B form a separation of E if and only if A 'f 4>, 

B 'f <f> , A () B = ~·, A {) d (B) = ~, B n d (A) = <1> , and 

AU B =E. 

Definition 3.2: A set is connected if and only 

if it has no separation. 
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Theorem 3.1: In the lattice of all topologies on 

a set· X, the subset consisting of all topologies which are 

connected does not form a sublattice. 

Proof: Let X= {a, b, c}. Let 

Tl = {cj>, X ' {a}, {a , b}, {a' c}} and 

T2 = {cj>, X' { b}' {c}' {b, c}}. 

Thus, Tl and T2 are connected; however, T1 V T2 equals 

the discrete topology which is not connected. 

Definition 3.3: If {A;\} is a family of sets and 

S C U)...A;\, then {A)) is called a covering of~· If each 

A;\ is open, then {A)...} is called an open covering of S. 

Definition 3.4: Given (X, T) and Sc. X, Sis 

compact if and only if every open covering of S contains 

a finite subcovering. 

Theorem 3.2: In the lattice of all topologies on 

an uncountable set X, the subset consisting of all compact 

topological spaces does not form a sub lattice. 

Proof: Let X = Reals. Let 

T = {cj>, X, {Ga: Ga = [a, 00)}} and 
1 

T2 = {cj>, X' {Hb: Hb = { -oo' b]}} • 

Consider [m, n] a closed interval of X. Certainly [m, n] 

is compact with T 1 , since for any open cover of [m, n], 

say 0 = {[a;, oo): i E I}, there exists a finite subcover, 
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which is the single open set [a;, oo) where a; = m. Simi

larly, [m, n] is compact with T
2

• 

The supremum of T 
1 

and T 
2 

is formed by the subbase 

(.T
1 

U T
2
). There exists an open cover consisting of single

ton s e t s for w hi c h the r"e does not · ex i s t a f i n i t e s u b cover . 

Thus T
1 

V T
2 

is' not compact. 

Definition 3.5: A topological space (X, T) is a 

Lindelof space if and only if every open ·covering is re

ducible to a countable subcovering. 

Theorem 3.3: In the lattice of all topologies on 

an uncountable set X, the subset of LindeHif topologies 

do e s n o t form a s u b 1 a t t i c e . 

Proof: See the proof of Theorem 3.2. 

Definit.ion.3.6:' A subset E of a topological space 

( X , T ) i s dense- i n - i t. s e 1 f . i f a n d o n 1 y if every poi n t of E 

is a limit point of E; that is, if E c; d(E). 

Definition 3.7: The nucleus of a set E is the 

union of all de'nse-i.n.-itself subsets of E. 

Definit-ion· 3.8: A set whose nucleus is empty is 

called scattered. 

Theorem 3.4: In the lattice of topologies on any 

set X, the subset of scattered topologies does not form a 

subl attice. 
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Proof: Let X = {0, 1}. Consider the following 

topologies on X: 

T
1 

= {¢, X, {0}} and 

T 2 ={¢,X, {1}}. 

Therefore, (X, T 1 ) is scattered since E ~ d(E) for any 

nonempty E ~X, which implies that there exist no non

empty dense-in-itself sets and the nucleus of X is empty. 

Similarly, T
2 

is scattered. However, T 1 I\T 2 = T 1 (\ T2 = 

{<P, X}, the trivial topology which is not scattered since 

for the subset X, X c d(X) = {0, 1}, and the nucleus of X 

is not empty. 

Definition 3.9: A metric for a set X is a mapping 

d of X x X into the non-negative reals satisfying, for a 11 

X' y, z E X, the following axioms: 

(a) d (X, x) = 0; 

(b) d (X, y) ~ d(x, y) + d(y, z) ; 

(c) d (X, y) = d (y' X) ; 

(d) if X f. y, then d (X, y) > 0. 

Definition 3.10: If x EX with metric d and£ is 

any positive real number, then the set of all y EX, where 

d(x, y) < £will be called the ball with center at x and 

radius E. This ball is denoted B(x, £). 

Note 3.1: By Pervin [6, p. 100], the collection of 

all balls of points on a set X induces a topology for X. 
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Definition 3.11: A topological space (X, T} is 

metrizable if and only if there exists a metric for X which 

induces T. 

Note 3.2: Not all topologies are induced by metrics, 

and those topologies that are metrizable may be induced by 

many metrics, but a single metric induces a unique topology. 
I 

Theorem 3.5: In the lattice of topologies on a set 

X, th:e supremum of any subset consisting of metrizable topol

ogies is metrizable. 

Proof: Consider Td and Tp, metrizable topologies 

on X. Thus there exists a metric d which induces Td and 

a metric p which induces Tp. Then T = Td V Tp is formed 

by the subbase Td U Tp. Define a metric q such that 

q (X' y) = max(d(x, y) ' p(x, y)) 

for all x, y E X. 

This is a metric since it satisfies the · axioms of 

Definition 3.6: 

(a) q (X' x) = max(d(x, X) ' p{x, x)) = 

max ( 0 , 0) = a. 
. ( b} Consider the fallowing: 

d (X, y) ~ max{d(x, y) ' p{x, y) ) ; 

p (X' .Y) ~ max(d(x, y) ' p{x, y} ) ; 

d( y' z) ~ max(d(y, z) ' p(y, z}); 

p (y' z) ~ max(d(y, z) ' p(y, z}). 
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Certainly, d(x, z) ~ d(x, y) + d(y, z) ~ 

max(d(x, y), p{x, y}) + max(d(y, z ) ' p(y, z) ) ' 

and p(x, z) ~ p(x, y) + p{y' z) ~ 

max(d(x, y)' p(x, y)) + max ( d ( y, z) ' p (y' z) ) • 

So, max(d(x, z), p(x, z)) ~ 

max(d(x, y), p(x, y}) + max(d(y, z), p(y, z)) which, 

by definition of q, is q{x, z) ~ q(x, y) + q(y, z). 

(c) q ( x , y) = max ( d ( x , y) , p ( x, y) ) = 

max(d(y, x), p{y, x)) = q(y, x). 

(d) If x :; y, then 

q(x, y) = max(d(x, y), p(x, y)) > 0, since both 

d(x, y) > 0 and p(x, y) > 0. 

Thus q is a metric. Now it is necessary to show 

that Td V Tp is the same topology on X as that generated 

by the metric q. 
D 

LetT= Td V Tp = {U[ 1 Q1 {Gi: Gi E (Td V Tp)}]}. 

Let Tq be the topology induced by the metric q 

where q{x, y) = rnax(d(x, y), p{x, y}). 

(I) Choose G E T, and 1 et x E G. So 
D 

x E 1 Q- 1 {G;} ~ G, for some intersection. For every i 

such that X E Gi ' there exists an e: • 
1 such that 

Bd (X, e: • ) , c G· 
- 1 

for G . , E Td, or 

Bp (X, e: • ) 
1 c G· 

- 1 
for G . 

1 E Tp• 
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Let e: = min{s;}. If G; E Td, then 

Bq{x, e:) c Bd(x, £) C Bd(x, s;) C G;. 

Similar·ly, if. G • 1 E Tp, then 

Bq (X, e:) C Bp(X, e:) C Bp (X, e:;)cG;. 

Therefore, Bq (X, e:) C G;, for every i . So, Bq(X, e:} is 

contained in the intersection of all G; which contain X • 
II 

This implies Bq(x, e:) c 1 ~\tG;: x E G;} f G. Thus, 

T ~ Tq. 

(I I) Now, choose G* E Tq and let x E G*. There 

exists a Bq(x, e:) C G*. Consider 

Bd (X, e:) (\ Bp(X, e:) E Td V Tp = T. 

Let y E Bd{x, e:) n Bp(X, e:). So d(x, y) < e: ' and 

p(x, y) < e:. Since q(x, y} = max(d{x, y), p(x, y)), 

q(x, y) < e:. Soy E Bq{x, e:}, and 

Bd(X, e:) (\ Bp(X, e:) C. Bq(x, e:) C. G* E Tq· 

Thus, 

Tq ~ T. 

Combin.ing the results of (I) and {II), T = Tq; 

therefore, the su.premum of any two metrizabl e topologies 

is metrizable and the topology induced by the metric is 

equivalent to the sup topology. 

· Note 3.3: Consider the following construction: 

For topologies T1 and T2 such that Axioms (a), (b), and 

(c) are satisfied, define a function f such that 
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f(x, y) = min(d(x, y), p(x, y)). 

Then let 
II 

f*(x, y) = inf{ 1 ~ 1 f(xi, Xi+l): x 0 = x and X11 + 1 = y}. 

By B i rkhoff [3], the function f* is the infimum of the 

"distance functions .. d and p, However, f* does not 

satisfy Axiom (d), so f*, though 11 close 11 to being a 

metric which would induce the infimum of any two metriz-

able topologies, is not sufficient. Whether such a metric 

does exist is not known. 
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