—_—

A STUDENT INFORMATION SYSTEM
FOR

MICROCOMPUTERS

A THESIS
SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF SCIENCE
I THE GRADUATZ SCH0OCL OF THE

TEZAS WCHAN'S IRIIVERSITY

COLLEGE OF IATUTAL AND SOCIAL SCIENCES

BY

DOUGLAS A. WAECHTER, B. MATHEMATICS

DENTON, TEXAS
DECEMBER 1981

95

ACKNOVILEDGEMENTS

I wish to thank the members of my committee for their
help and understanding. I thank Dr. Saffer for sharing his

expertise, WMs, Ferrell for her many comments and useful
suggestions, and 15§ 8 Christy for his patience,

understanding, and thoughtfulness.

A special thanks to Norma Burgert for all her helpful

hints and comments during our many "DOS" conversations., I

also thank my wife, Ruth, for her wunderstanding,

encouragement, and patience.
This study is dedicated to my daughter Trisha. May she

accept and conquer the challenges of the future.

iii

TABLE OF CONTENTS
ACRKNOVWLEDGEMENTS o e e e o .
LIST OF FIGURES e o e . .
Chapter
I INTRODUCTION . . . o .
II THE ARCHITECTURE . o o
2.1 DEFINITICNS . . .
2.2 THE OBJECT ENVIROMNMENT
2,3 THE INFORMATIOMN ENVIRONMENT
2,4 THE STORED ENVIRONMENT

III THE SOFTWARE ENVIRONIMENT

3.1
3.2
33
3.4

Iv CONCLUSIONS

THE INDEX STRUCTURES

THE BALANCE PRCCEDURE

THE

SYSTEM PROGRAMS

SUBROUTINE DOCUMENTATION

iv

ANMD RE!NARK

14
14
18
20
ad
31
31
32
35
38
62

APPENDICES

A

T MM om U N w

PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM

PROGRAM

SYSTEM MENU . .« .+ .
INITIALIZE FILES . .
BUILD SCHEDULES o e
RETRIEVE SCHEDULES .
UPDATE FILES o« e e
ENTER GRADES)

RETRIEVE CLASS LISTS .

69
70
72
31
88
97
103
109

CHAPTER I
INTRODUCTIOCN

Data base management systems (DBMS), and management
information systems (MIS) are terms that are frequently used
in modern computer installations. Although both concepts
originated with the }automation of accounting, production,
and inventory control, they evolved into major systems as
the emphasis in computer processing shifted in an attempt to
meet management's information needs.

The difference between data base management systems and
management information systems is subtle but real. C. J.
Date (1) defines a data base management system as a

collection of stored operatiocnal data used by the

application systems of some particular enterprice, An
appropriate definition of an management information system
is one presented by Riley (2). 2n information management

system 1is a system for collecting, sorting, retrieving, and
processing information which is used, or desired, by one cor

more managers in the performance of their duties, Thus a

data base management system is part of a larger informaticn

management system. This study will focus on data base

managenent systems and will investigate the feasibility of

1

2

using microcomputers to implement and maintain a small,
stand-alone data base system. |

George M, Scott (3) provides a definition of a modern
data base as a collection of computer files of data
structured to enable efficient updating, maintenance,
reporting, and storage of data and to enable rapid retrieval
of all stored data that must be brought together for a
particular operation or managerial purpose. This definition
implies two major dimensions of a data base. The first
dimension relates to structuring data files to enable
efficient updating, maintenance, reporting, and storage of
data. Data base structuring involves complex data-file
design and data retrieval technology. The various data
structural models discussed in this study include the
hierarchical or tree model, the network model, and the
relational model.

The second dimension of data bases referred to in
Scott's definition, enabling rapid retrieval of all stored
data that must be brought together for a particular
operation or managerial purpose, illustrates the

relationship that exists between data base systems and

management information systems. The functions of query

languages and the role they play in cdata base management

design is also included within this second dimension. This

3

study 1is concerned with the design and implementation of a-
data base system. The theoretical discussion of query
languages, their implementation, and completeness is not
included.

To design any data base management svstem, it is
necessary to define the information to be represented within
the system. A. T. F. Hutt (4) defines a "Perceived Field" of
a data base as that part of the real world which is to be
reflected within the system. Hutt stresses the importance
of deciding on the size of the perceived field and the
necessity of allowing the field of perception to grow via a
number of phased expansions of the data system. The "Field
of Perception"™ of the data base to be implemented in this
study is outlined in figure 1. Since the purpose of the
studv is to investigate the feasibility of wusing micro
computers to implement and manage a stand-alone data base, a
small environment has been selected. The data base to be
implemented is to consist of the schedules of students,
class 1lists, and student grade reports for a high school
environment of five hundred students.

In designing a data base management system, several
basic functions of the system must be considered. The
system must be able to retrieve particular records, insert

new records, delete individual records, and update specific

Input data

Student
schedules

Student Class Grade Output

schedules lists reports to
P. records

Information retrieved from the system

Procedures:
1. Input student schedules.

2. Produce class lists,

3. Input student grades. (mid and end of semester)
4., Produce student grades reports.

5. Prepare output for the permanent record file,

" note: An environment of five hundred students is assumed
and although this implementation does allow for reporting
to the permanent record file, this file is not included in

the system system as developed in this study.

igure 1l: Perceived Field

5

information represented within the system. Fundamental to
the design of the data manipulation 1language (DML) which
supports these basic functions is the conceptual view of the
data. 1In particular, the data structure dictates the design
of the corresponding data manipulation language.

At present, the three best known data structural models
are: the hierarchic or tree model, the network model, and
the relational model. The conceptual view of data suggested
bv these models dictates the design of the DML needed to
support the basic functions of inserting records into the
system, deleting data from the system, and updating
information contained within the system. The hierarchic or
tree model employs a hierarchical design of data and was
adapted by the Conference of Data Systems Languages
(CODASYL) and presented in their 1971 DBTG report. This
model suggests that real world data lies within hierarchical
structures with one record at the top of the tree, referred
to as the root node, and other records dependent on it. In

general any record may have any number of dependents and

each of these dependents may have any number of dependents,

and so on. In the hierarchical model each dependent must

have exactly one successor. Figure 2 1illustrates a

hierarchical view of the data represented 1in a student

information system.

Math

Courses

Science

English

Eng9 Engl0

Engll

St.

No.

Address

Parents

elerchone

Figure 2: Hierarchical View of Student Information Data

7

T
YV The DML needed to maintain the basic functions of

insertion, deletion, and updating of information becomes
complex. It is impossible to insert a new student until his
Classes have been defined. The procedure required to delete
an existing student is also complex since the data base must
be <searched in its entirety and all occurrences of the
particular student must be deleted. It also follows that if
we delete all classes of a particular student, we have
deleted the existence of the student., Thus the insert and
delete anomalies reflect a similar problen. The update
procedure also involves searching the entire structure. To
update a particular student's address, for example, the
entire structure must be searched and each occurrence of the
~address modified.

/ The network data structural model is a more general
structure than the hierarchical model. A given record in
the network model may have any number of immediate superiors
whereas a record 1is restricted to exactly one superior in
the hierarchical model. The network approach allows
many-to-many relationships whereas the hierarchical model is
restricted to one-to-many relationships. Figure 3
illustrates a network view of the student record data
The procedures for inserting, deleting, and

representation.

updating information become conceptually simple within the

8

network model and the anomalies discussed with the
hierarchical model do not arise. A new student could be
added to the structure before his schedule is defined and to
delete a student, or update a student's address we need not
search the entire structure. The primevdisadvantage of the
network model, however, 1lies in the complexity of the DML
required. The programming involved becomes extremely
sophisticated resulting in relatively high implementation
and maintenance costs,

. The relational approach, first proposed by Codd (5) in
1571, is a different approach to describing and manipulating
data. It views the data base as a simple collection of two
dimensional tables called relations, Although conceptually
simple, as illustrated in figure 4, a relation can be
explicitly defined as a two dimensional table with m rows,
each made up of a set of n-tuples. Each of the columns in a
relation is a set of values of one attribute and is referred
to as a domain. The power of a relational data base exists

in the data manipulation language rather than in the data

structure. Figure 4 illustrates how the data in the student

information system can be represented by a number of

relations. The inserting, deleting, and updating procedures

become relatively simple. A new student can be inserted

into the student-schedule or student-information relations

Pigure 3: Network View of Student Information Data

Student Number Course Teacher Period
S1 Algl T1 Pl
TSZ b Alg?2
— T2 P2
S3 Pre-Cal
T3 P3
S5
b Sci9 T4 P7
b . Biology . [:::]
. Chemistry . _ [::]
S10(¢
Eng9 . .
. t Engl0 . :
S50 Engl2 T50 .

Room

R1

R39

R10

R3

Student-Schedule Relation:

10

Student courses

Number

Sl Algl Engl0 AT Biology P.E.

S2 Eng9 French Sci9 St. Hall

S3 Engl2 Physics Pre-Cal German

S4 Hist9 Algl Biology French

S5 Am.Prob. P.E. Englo0 Geometry
lrSSOO

Student-Information Relation:

Student Address Parents Telephone

Number

Sl 521 Windsor Dr. John Jones 383-3995

S2 436 Johnson Dr. Jane Smith 452-6547

Pigure 4: Relational View of

Student Information Data

i 3

as required, a student can be deleted from any relation
without affecting other relations, and procedures to update
information require single operations, v

| A historical look at the development of Data Base
Management Systems shows that although recent trends appear
to be moving toward the relational view of data,
commercially available systems generally employ the
hierarchical or network data structural model. Figure 5,
taken from Data Base Management Systems (6), outlines the
general data bases that were commercially available in 1977
and illustrates that the CODASYL hierarchical or tree
structural design is the most widely used data model. IBM's
Information Management System (IMS2) also uses a
hierarchical data model but does not follow CODASYL
standards and thus receives a classification of its own.
Although there are no general relational data base systems
commercially available, several experimental relational
systems have been implemented with promising results. IBM's
IS/1 shows the feasibility of supporting relational algebra,

a data manipulation language proposed by Codd (5), and the

experimental SYSTEM R, being developed at the IBM Research

Laboratory, does classify as a pure relational system.
The specific aims of this study are to investigate the

feasibility of using microcomputers to implement and

SYSTEM SUPPLIER CLASSIFICATION
DMS-11 Burroughs Network
DMS-170 Control Data CODASYL DBTG
TOTAL CINCOM Network
IDMS Cullinane CODASYL DBTG
DBMS/ 10 DEC CODASYL DBTG
IMS2 IBM Hierarchical
SYSTEM 2000 MRI Tree, Inverted
ADABAS Software AC Network
inverted
DMS 1100 UNIVAC CODASYL DBTG

Pigure 5: A partial list of Data Management Systems

12

commercially available

maintain a stand-alone data base to be used in a high school
environment. A data base management system, with the field
of perception as outlined in figure 1, will be implemented
using the relational data model. The multi-step design

methodology, presented by Hutt (4), is followed. The steps

involved in Hutt's multi-step methodology are:

1.

THE OBJECT ENVIRONMENT: The perceived field is
identified and real world objects that exist

within it are defined.

THE INFORMATION ENVIRONHMENT: A number of
relations in third normal form, as defined 1in

chapter two of this document, are def ined.

THE STORED ENVIRONMENT: The indexes and storage

structures are defined.

THE SOFTWARE ENVIRONMENT: The development of the
computer software which operates on the stored

data to perform the required results.

13

CHAPTER II

THE ARCHITECTURE

2.1 Definitions

C. J. Date (1) defines a relation R on a collection of
N sets D1, D2,...,Dn as a set of ordered n-tuples
<dl,d2,...,dn> such that dl belongs to D1, d2 belongs to
D2,...,dn belongs to Dn. Sets D1, D2,..., Dn are called the
domains of the relation R and the value of n is the degree
of the relation. It is important to distinguish between a
domain and an attribute which is drawn from the domain. An

attribute represents the use of a domain within a given

relation. To emphasize this distinction; the attributes for

the relation Student-Schedule given in figure 4 of chapter 1

consist of coursel, course2, course3, and course4, which are

all taken from the domain of courses offered. Generally

speaking, if a relation is considered to be a table of

values with m rows and n columns, the attributes can be

considered to be the names given to the individual columns.

In any relation there will be at least one attribute,

or a combination of attributes, that are unique within the

relation. If the relation contains one such attribute, this

attribute is known as the primary key of the relation, 1In

14

15

the relation Student-Schedule the attribute (student number)
serves as the primary key since each occurrence of a
specific student number uniquely defines a 5-tuple. If a
relation contains more than one attribute combination
possessing this unique identification property, one
attribute combination is arbitrarily chosen as the primary
key while the remaining "candidate keys" are referred to as
alternate keys.

The problem of defining what relations are needed and
what their attributes should be is the fundamental problem
of designing a relational data base. The concept of
necrmalization of relations plays an important role in
defining appropriate relations to adequately represent the
data. The following discussion introduces the concept of
normalization and discusses why it is important to properly
define the relations in third normal form when designing a
relational data base.

Every relation is considered to be in first normal form
if each entry in the relation is atomic (i.e. if each entry
is nondecomposable as far as the system is concerned). This
definition is fundamental in defining relations and simply

means that each entry in the table consists of precisely one

value, never a set of values. A relation that is only in

first normal form leads to anomalies similar to those

16

encountered by hierarchies discussed in chapter 1. For
example, the relation given in figure 6(a) is in first
normal form and problems occur with the three basic
operations of inserting, deleting, and updating information.
We cannot enter the fact that a new student exists until he
has defined at least one class, if we delete all classes we
delete the student, and if the teacher of a particular
course 1is changed the entire structure must be searched and
all appropriate changes made.

In order to resolve some of these difficulties, first
normal form relations are transformed into second normal
form relations. Before we can define second normal form
relations, the concepts of functionally and fully
functionally dependencies must be understood. An attribute
Y of a relation R is said to be functionally dependent on
attribute X of R if and only if each X-value in R is
associated with precisely one Y-value in R. Furthermore,
attribute Y is fully functionally dependent on attribute X

if it is functionally dependent on X and not functionally

dependent on any proper subset of X. In the relation given

in figure 6(a) the attribute (Sname) 1is functionally
dependent on the primary key (student number,course number)
but it is not fully functionally dependent on this attribute

since (Sname) is also dependent on (student number) which is

17

a proper subset of the attribute combination (student

number,course number).

We now define a relation to be in second normal form if
and only if it is in first normal form and every nonkey
attribute 1is fully functionally dependent on the primary
key. It is clear that the relation Student-Information
given 1in figure 6(a) is not in second normal form since the
nonkey attribute (Sname) is not fully dependent on the key
(Snumber,Cnumber) . A relation in first normal form can
always be transformed into equivalent relations in second
normal form. The process involves eliminating the non-full
functional dependencies. The functional diagram given in
figure 6(b), gives functional dependencies and leads to
defining the relations in second normal form given in figure
7 The anomalies discussed above do not exist with

relations in second normal form since a student can exist

before <classes are defined by simply inserting the

appropriate tuple into the student-name relation. The

relation Teacher (Cnumber, Tnumber, Tname), however, still

creates problems. To be specific, the dependency of (Tname)

on the primary key is transitive. Each (Cnumber) determines

a (Tnumber) which in turn determines a (Tname). The

anomality created by the transitivity exists 1in that we

cannot insert a teacher into the data base until a specific

18

class has been defined for him to teach.

To overcome the above anomality we further reduce the
second normal form relations to third normal form. A
relation is in third normal form if and only if it is in
second normal form and every nonkey attribute is
nontransitively dependent on the primary Kkey. This
reduction process is accomplished by eliminating transitive
dependence and the relation Teacher(Cnumber, Tnumber,Tname)
is reduced to two relations, The relations
CT (Cnumber, Tnumber) with primary key (Cnumber) and
TN(Tnumber,Tname) with primary key (Tnumber) replace the
relation Student-Information. Figure 8 gives the four
relations in third normal form equivalent to the given
Student-Information relation.

Several other normal forms have been defined which deal

with relations with more than one candidate key but since

all relations used in the design and implementation of the

data base discussed in this study contain a single key,

relations defined in third normal form will ensure that the

above anomalies will not occur when implementing the insert,

delete, and update procedures.

2.2 THE OBJECT ENVIRONMENT

As illustrated in figure 1, the student courses and

19

grades are to be input‘ into the system and the system is to
produce student schedules, class 1lists, semester grade
reports, and output to the permanent record file. This
system does not include the permanent record file but
produces output containing c¢lass codes, grades, teécher
codes, and teacher comment codes. The object environment of
the relational data base to be implemented is:

Student number: A five digit integer. The first two digits
identify the graduation year and the
remaining three digits identify the student.
Student number 85123, for example,
identifies that student number 123 will
graduate in 1985,

Course number: A three digit integer representing a
particular course. The specific departments
are identified by the 1leading digit and
individual courses within the department are
identified by the remaining two digits. In

this study the departments are identified by

the following scheme.

1 identifies an elective.
2 identifies an English course.

3 identifies a history course.

Teacher Number:

Grades:

20
4 identifies a mathematics course.
o identifies a physical education course.
6 identifies a science course.

This identification is random and has no
bearing on the design of the system. A
course such as 421 will imply mathematics
course number 2, section 1.

A two digit integer identifying the teacher
of a particular course.

An integer, maximum of two digits,
representing the student grade in a
particular course. The system allows for a

mid-semester and end of semester grades.

Teacher comment: A one digit integer (0-9) representing a

Room Number:

teacher comment code. Two comments are
represented; a mid-semester comment and a
end of semester comment.

A two digit number identifying the room

number for a particular class.

2.3 THE INFORMATION ENVIRONMENT

The information is represented within the system by a

number of relations in third normal form. The relations

21

required are the Student-Schedule relation, the
Teacher-Schedule relation, and the Class-Information
relation. Although the relation Student-Name is given here
for completeness it is not included within the system as
implemented in this study.

The Student-Schedule relation has domains student
number, course number, grades, and teacher comment. Since a
seven pericd day is assumed, the domains course number,
grades, and teacher comment are repeated to form several
attributes. Figures 9 and 10 give a detailed description of
these relations including the primary keys and descriptions

of the attributes of each of the relations.

2.4 THE STORED ENVIRONMENT
In this section the storage structures are defined.
The Student-Schedule relation 1is stored externally as a

random access file with a defined record length of one
hundred and four bytes. Each record contains one 36-tuple
of the relation as outlined in figure ll. Since the system
is designed to accommodate a maximum of five hundred
students, this file contains five hundred records. The file
is indexed by the key attribute student-number. The index

is structured as a binary tree and is stored in core memory

as a five hundred by four array and on auxiliary disk as a

22

sequential file.

The Teacher-Schedule relation has a structure similar
to the Student-Schedule relation with each 8-tuple stored as
one record of a random access file. This file has a defined
record length of thirty one bytes and figure 12 gives a
detailed description of one record of this file. The
Teacher-Schedule index is also structured as a binary tree
and is stored in core memory as a fifty by four array and on
the disk storage as a sequential file.

The Class-Information relation with attributes

(Cnumber, Tnumber, Rnumber, Csize,S1,S2,...,S35) 1is also

stored as a random access file where each record has a

defined length of two hundred and twenty five bytes. Each
record of the file stores the course number, teacher number,
period number, room number, class size, and the list of

students currently enrolled in the class. The

Class-Information index is also structured as a binary tree

and is stored in core in an one hundred by fifty array and

on the disk as a sequential file.

Relation:

23
-a—

Student-Information

Attributes (Snumber,Sname,Cnumber,Tnumber,Tname)

Primary key (Snumber,Cnumber)

Snumber Sname Cnumber Tnumber Tname
S1 John Smith ; C7 T6 Mr. White
S5 Jack Jones C9 Tl Ms. Brent
S46 Sam Bright c?7 T6 Mr. White
S498 Howard Go Cls8 T15 Mr. Black
b

Functional Dependencies

key
» Sname
Snumber
.
Cnum er}

Pigure 6: Relation Student-Information in
"First Normal Form"

Function
Dependency

—a—-
Relation: Student-Name
Attributes: (Snumber,Sname)
Key: (Snumber)

Snumber Sname
S1 John Smith
S5 Jack Jones
S45 Sam Bright
S498 Howard Go
Snumber] Sname
-b—-

Relation: Teacher

Attributes: (Cnumber, Tnumber,Tname)

Cnumber Tnumber Tname
C7 T6 Mr. White
c9 TL Ms. Brent
cl T6 Mr. White
Cl8 T15 Mr. Black

Functional Dependencies

W

Cnumber

A 4

24

Figure 7: Relation Student reduced to "Second Normal Form"

Relation: Student
Attributes: (Snumber, Sname)
Key: (Snumber)
Snumber Sname
S1 John Smith
S5 Jack Jones
S498 Howard Go

Relation: CT
Attributes: (Cnumber, Tnumber)

RKey: (Cnumber)
Cnumber Tnumber
C7 T6
C9 T1
C1ls8 T15

25

Relation: Schedule
Attributes: ({Snumber,Cnumber)

KRey: (Snumber)
Snumber Cnumber
Sl Cc7
S5 Cc9
S498 Cl1l8

Relation: TN
Attributes: (Tnumber, Tname)

Key: (Tnumber)
Tnumber Tname
T6 Mr. White
Tl Ms. Brent
T15 Mr. Black

Figure 8: Relations in "Third Normal Form"

26
-—a—
Relation: Student-Schedule
Attributes:
e o0 00 mriodl ® ® o o ° 0 0 ® 00 0 0 0 periOdz ® e 0 0 00
(SNumber,cl, gll, coll, glf, colf, c2, g21, co2l, g2f, co2f,

9 0 00 periOd 7 ® 09 000
r97, 971, co71, g7f, co7f)

Key: Snumber
Ci....implies...course number corresponding to

appropriate period (7 period day) .
gil...implies...the mid-semester grade.
coil..implies...the mid-semester comment.
gif...implies...the end of semseter grade.

coif..implies...the end of semester comment.

-b-
Relation: Teacher-Schedule
Attributes: (Tnumber, Cl, C2, C3, C4, C5, C6, C7)

Key: Tnumber
Tnumber...implies...Teacher number

Ci veeseeoimplies..,.Course number of the ith class
period.

Figure 9: Relations Student-Schedule and Teacher-Schedule

27

Relation: Class-Information

Attributes: (Cnumber, Tnumkter, Phnumber,Rnumber,Csize,S1,...,Sn)
RKey: Cnumber

Cnumber..represents the course number.
Tnumber..represents the teacher number.
Pnumber..represents the period number.
Rnumber..represents the room number.
Csize....represents the current class size.

Si.eeee...represents a student number.emacs
-b-

Relation: Student-—Name

Attributes: (Snumber, Sname, Pname, Address, Telephone)
Key: Snumber
Snumber...represent the student number.
Sname.....represents the student name.
Pname.....represents the parent's name.

Address...represents the student's address.

Telephone.represents the student's phone number.

Pigure 10: Relations Class and Student

¢BeDele2.3.) a8.10l.)eB.9.) o54) o7 e26)664) ela3als)sBu5:)064)

0 5 10 15 20 25
.8.1.).1.)0 L] . L o L] L] L] L] L] L] L] L] L] L] : L] L] L] L] L] L]
30 35 40 45 50 55
60 65 70 75 80
. > L L] . L] LJ LJ L] L] L] . L] .).
90 95 100
bytes: 0.....4 student number.
5 ernd of field marker.
6,7,8 course number (period 1).
9 end of field marker.
10,11 mid-semester grade.
12 end of field marker.
13 mid-semester comment.
14 end of field marker.
15 end of semester dgrade.
17 end of field marker.
18 end of semester comment.
19 end of field marker
104 end of record marker.

Pigure 11: Byte map of Student-Schedule File

09¢44) ¢9.9:9,) 6541 01.) 0561424) 6969.9.5.1.3:) 45,1

0

e o
._l

e o
L] L]

[

bytes:

5

30

Figure 12: BYTE MAP OF TEACHER SCHEDULE

10

15 20

teacher number.
end cf field marker.
course (period 1).

end of field marker.

end of record marker.

04') .5.1.
29

29

15-224
223

Figure 13: BYTE MAP OF CLASS-INFORMATION FILE

course number.

end of field marker.
teacher number.

end of field marker.
pericd number.

end of field marker.
room number.

end of field marker.
class size.

end of field marker.

student numbers (maximum of 35).

end of record marker.

30

CHAPTER III
THE SOFTWARE ENVIRONMENT

The student information system develcped in this study
consists of a series of eight programs as outlined in figure
14 and listed in appendices A through H. Each program is
structurally designed and documentation on the programs and
subroutines is given in this chapter. Although most of the

procedures are self explanatory, two procedures are
documented separately in sections 3.1 and 3.2 of this

chapter.

3.1 THE INDEX STRUCTURES

The system programs access the random access files by
storing the key elements and file record numbers in an index
structured as a binary tree. The index structures are
stored externally as sequential files and internally as n by

four arrays. The four entries per element represent the

left pointer, key element, right pointer, and the randomn

access file recordé number corresponding to the key element.

Figure 15 gives the internal matrix representation of a

random selection of class numbers 1in terms of both the

matrix anéd the abstract binary tree representation., It is

31

32

possible to search the index to find a given key by
following pointers in the array structure. Figure 16 gives
the BASIC program for searching the matrix representation of

a binary tree.

3.2 THE BALANCE PROCEDURE

The advantage of using a binary tree structure to store
an 1index 1is a reduction in time required to search the
index. The time required to search a binary tree 1is
directly proportional to the length of the tree. Since it
is possible to construct various binary trees using the same
nodes, as illustrated by figure 17, it 1is important to
optimize the structure of the tree by minimizing its length.
The student informatiorn system developed in this study
contains a tree balancing procedure which produces the

optimal tree structure, a balanced binary tree. The

procedure, included within the BUILD program listed 1in

appendix III, wutilizes the in-order, length, and position
pointers subroutines and the algorithm for the procedure 1is
documented below. Figure 18 further documents the balance
algorithm by presenting the step by step calculations

peformed when the index given in figure 17(a) is balanced to

produce the structure presented in figure 17 (b).

STEP 1: Traverse the tree structure in left-node-right order

33
STEP 1l: Traverse the tree structure in left-node~right orcer
and store the row numbers in a vector ODR.
STEP 2: Calculate the maximum length of the largest full
balanced tree that can be created with the
given nodes. The maximum £full balanced tree
size, number of elements, will be a positive
integral power of two minus one.

3: Determine the number of elements to temporarily

)]
-3
(&)
"

delete from the CDR vector, store the first
0dd elements in a vector OIMIT and pack ODR.

STEP 4: Create a full balanced tree by inserting approvriate
pointers into the structure.

STEP 4a: Set the left and right pointers of all odd numbered

nodes to Zero. That is nodes
ODR(1) ,ODR(2) yeeseee,CDR(2i-1) left and right
pointers are set to zero.

STEP 4b: Place pointers in the index matrix in a number of

passes as outlined below.

PASS 1l.-n = 2,
-left pointer of node ODR(n) = node ODR(n-1).

-right pointer of nocde ODR(n) = node ODR(n+l).

-repeat until n is greater than the length

PASS 2.

PASS I:

34

of packed ODR,

-left pointer of node ODR(n) = node ODR(n-2).
-right pointer of node ODR(n) = node ODE(n+2).
-n=n + 8,

-repeat until n is greater than the length of
of packed OLR.

where 2 to the power I is less than the length

of packed ODR.

-n 2 to the power I.

-K n+lo

-left pointer of node ODR(n) = node n - 2 " (i-1).
-right pointer of node ODR(n) = node n + 2 " (i+l).
-n=n + 2 to the power K.

-repeat until n is greater than the length of

packed ODR.

Place the omited nodes intc the tree by extending

the lower left nodes.

-left pointer of node ODR(1l) = node omit (1)
-right pointer of node ODR(1l) = node OMIT(2).
-left pointer of node ODR(2) = node O!NIT(3).
-continue until all nodes deleted in step 3 are

inserted.

35

STEP 6: Set both 1left and right pointers of the inserted
nodes to zero.

STEP 7: Define the root node. The root ncde will be node

ODR(k), where k = (length of packed ODR + 1)

divided bv two.

3.3 THE SYSTEM PROGRAMS

The eight programs of the student information system
are documented 1in this section with all subroutines
documented in section 3.4, Ficure 14 outlines the
information system in terms of the programs accessed by the
system and figure 19 gives a description of the fundamental
variables used in the system software.

3.3.1 PROGRAM SYSTEM MENU: This program, listed in appendix
A, controls the system scftware. The menu,
which consists of the system programs,
appears on the screen when the system is

booted and the user selects which program to

-

execute.,

3.2.2 PROGRAM INITIALIZE FILES: This program, listed in
appendix B, initializes the random access
files as outlined in figures 11, 12, and 13,
All fields are set equal to =zero to allow

for error processing., The index files are

36
opened and the first three fields of each
index file are set to zero. These fields
contain the root node of the binary indezx,
the number of elements in the index, and the
number of elements in the index contained
wvhen is was last balanced.

3.3.3 PROGRA! BUILD SCHEDULES: This program, listed in
appendix C, builds the student and teacher
schedule files. The program accepts the
schedules from the user, en*ers the Kkey
element into the appropriate index, and
writes the schedule to the correct file and
record. The class index is also maintained
by this program and the class information
file 1is updated as & given teacher or
student is added to the data base. Figure
20 gives the structural design of the build
schedules program.

3.3.4 PROGRAN, RETRIEVE SCHEDULES: This program, cutlined 1in
figure 20 and listed in appendix D, allows
the user to print one student's schedule,
one teacher's schedule, all student

or 211 teacher schedules. If the

schedules,

user chooses to print all schedules the

37
schedules will be produced in order of
increasing student or teacher number.

3.3.5 PROGRAlY UPDATE: This program allows the user to mnake
changes in the student schedules, student's
grades and teacher comments, teacher
schedules, or room numbers. The design, by
subroutines, is outlined in figure 22 and
the program listing is given in appendix E.

3.3.6 PROGRAlM ENTER GRADES: This program asks the user if
end of semester or mid-semester grades and
comments are to be entered, produces class
lists, inputs the grades and comments, and
writes the student grades and comments to
the student schedule file. Figqure 23 gives
the structural design of this program and a
program listing of the enter grades program
is given in appendix F.

3.3.7 PROGPAM PRINT GRADES: A program which prints either

+he mid-semester or the end of semester

rade reports. The program will produce

0

rade reports for an individual student, or

W

ali grade reports will be produced in order

of increasing student number. The

structural design of the print grades

pProgram 1is given in figure 24 and a listing
of the program is included in appendix G.
3.3.8 PROGRAM RETRIEVE CLASS LISTS: This program allows the
user to retrieve class lists. The user can
access lists for onrne class, 2ll classes for
one teacher, or =2ll <classes that exist
within the data base. Figure 25 gives the
structural design of this program and the

program listing is given in appendix H.

3.4 SUBROUTINE DOCUMENTATION
The various subroutines accessed by the programs cf the
tudent information system are documented in terms of the
function performed by each subroutine. The subroutines are
standard in design and the documentation given presents an
overview of the purpose of the subroutine rather than a
Getailed description of the algorithme employed.
3.4.1 SUBROUTINE READ TEACHER INDEX: A subroutine which
reads the teacher index from the seguential

teacher index file and internally stores the

index as the TINDX array.

38

w

SUBROUTINE READ STUDEMNT INDEX: A subroutine which

.
S
.

N

reads the student index from the sequential
student index file and stores the index
internally as the SNDX array.

3.4.3 CSUBROUTINE READ CLASS INDEX: A subroutine which reads
the class index from the sequential <class
index file and internally stores the index
in the CINDX array.

3.4.4 SUBROUTINE CHANGE SCHEDULE: This subroutine allows
the wuser to make changes in the schedule
during the input process. This subroutine
calls the display schedule, change number,
and change classes subroutines.

3.4.5 SUBROUTINE DISPLAY SCHEDULE: This subroutine is
called by the change schedule subroutine and
displays the «current teacher or student
schedule.

3.4.6 SUBROUTINE CHANGE NUMBER: This subroutine allows the
user to correct the teacher or student
number before the number is stored in the
appropriate file.

3.4.7 SUBROUTINE CHANGE CLASSES: This subroutine allows the
user to change the classes, by period, in

the schedule before it 1is stored in the

40
appropriate file.

3.4.8 SUBROUTINE FIND STUDENT RECORD: This subroutine
searches the student index and inserts the
given student into the student index
structure, The corresponding record number
of the student schedule fiie 1is also
recorded in the index.

3.4.9 SUBROUTINE WRITE STUDENT SCHEDULE: A subroutine that
writes the given stucdent's schedule to the
appropriate record of the student schedule
file,

3.4.10 SUBROUTINE UPDATE CLASS INDEX: This subroutine
searches the class index and returns the
corresponding record number of the class
information file if a given course exists in
the index. If the course does not exist the
class is added to the index and the course
and period numbers are printed to the

appropriate record of the class information

ile.

Hh

3.4.1] SUBROUTINE REVISE CLASS INFO (STUDENT): A subroutine

which increments the class size and adds the

given student to the class list,

3.4.12 SUBROUTINE REVISE CLASS INFO (TEACHER): A subroutire

41
which adds the given teacher to the
appropriate record of the class information
file.

3.4.13 SUBROUTINE EXIT: This subroutine <controls the exit
process, All index structures are balanced
1f more than five elements have been added
to the index since it was last balanced.

3.4.14 SUBROUTINE BALANCE INDEX: This subroutine controls
the balance procedure as outlined in section
3.2 of this chapter by calling the in order,
lencth, and the position pointers
subroutines.

3.4.15 SUBROUTINE IN-ORDER: A subroutine to traverse the

binary tree index structure in
(left-node-right) order and produce the
vector ODR. The vector ODR contains

pointers to the node elements of the index
tree to 2llow processing 1in order of
increasing student, teacher, or course
numbers.

3.4.16 SUBROUTINE POSITION POINTERS: This subroutine uses
the ODR vector formulated by the in-order
subroutine to build a balanced tree

structure. This subroutine uses the

3:4.,17

3.4.138

3.4.20

3.4.21

3’4 .22

w
.
2N
.
N
w

42
algorithm presented in section 3.2.

SUBROUTINE LENGTH: This subroutine calculates the
size of the largest balanced tree that can
be constructed.

SUBROUTINE WRITE TEACHER INDEX: This subroutine
writes the teacher 1index to the teacher
index file.

SUBROUTINE WRITE CLASS INDEX: This subroutine writes
the teacher index to the class index file.,

SUBROUTINE WRITE STUDENT INDEX: This subroutine
writes the student index to the student
index file.

SUBROUTINE RETRIEVE STUDENT SCHEDULE (OHE STUDENT) :
Thies subroutine reads the student schedule
for a given student from the student
schedule file.

SUBROUTINE FIND CLASS RECCRD: A subroutine which
searches the class index and returns the

corresponding record number of the class

information file.
SUBROUTINE READ TEACHER-ROCOM NUMBERS: A subroutine

which reads the teacher and room number from

the appropriate recora of the <class

information file.

43

3.4.24 SUBROUTINE PRINT STUDENT SCHEDULE: A subroutine to
display the student schedule for a given
student. The teacher and room numbers are
also displayed.

3.4.25 SUBROUTINE RETRIEVE TEACHER SCHEDULE (ONE TEACHER) :
This subroutine reads the teacher schedule
for & given teacher from the teacher
schedule file.

3.4.26 SUBROUTINE RETRIEVE STUDENT SCHEDULES: A subroutine
to control the processing of all student
schedules. The subroutine first calls
subroutine in order and then processes each
student's schedule by reading the schedule
and calling the find class record, read
teacher-roomn numbers, and print student
schedule subroutines.

3.,4.27 SUBROUTIME RETRIEVE TEACHER SCHEDULES: A subroutine
to control the processing of all teacher
schedules. The subroutine calls subroutine
in-order to produce a list of all teachers
in order of increasing teacher number. The
class schedule for each teacher 1is then
processed by calling subroutines read

teacher schedule, read teacher-room numbers,

44

and print teacher schedule.

3.4.28 SUBROUTINE PUSH STACK: This subroutine is used by

subroutine in-order. The current node and a
direction (D = 1 represents a left pointer
and D = 2 represents z right pointer) are

pushed onto the stack.

3.4.29 SUBROUTINE POP STACK: This subroutine returns the

3.4.30

3.4.31

3.4.32

w

W

W

node and direction from the top of the

stack.
SUBROUTINE DPRINT TEACHER SCHEDULE: A subroutine to

print the teacher schedule and room numbers

for a given teacher,
SUBROUTINE BYTE POINTERS MID-SEMESTER: A subroutine

to set Bl and B2 to ten and thirteen
respectively to allow access to the

mid-semester grades and comments.

n

SUBROUTINE BYTE POINTERS FINIAL: A subroutine to set

Bl and B2 to fifteen and eighteen

respectively to allow access to the end of

semester grades and conments.

SUBROUTINE FIND TEACHER RECORD: A subroutine to

U 34

search the teacher index for & given teacher

and return the record number of the teacher

schecule file where the teacher's schedule

3.4.36

3.4.37

45
is stored.

SUBROUTINE READ TEACHER SCHEDULE: A subroutine which
reads a teacher's schedule from the teacher
schedule file.

SUBROUTINE READ CLASS LIST: This subroutine reads the
class 1list of a given class. The student
numbers of all students enrolled in the
class are stcred as the vector LST,

SUBROUTINE INPUT AlID WRITE GRADES: This subroutine
inputs student grades and comments and
writes the grades and comments to the
student schedule file.

SUBROUTINE UPDATE STUDENT SCHEDULE: This subroutine
updates the student schedule stored on the
student schedule file and corrects the

corresponding class size and class lists in

the class information file.

3.4.38 SUBROUTINE IMISSING PERSON: This subroutine displays a

message that the required teacher, or

stucdent, is not currently defined in the

data base.

46

3.4.39 SUBROUTINE UPDATE TEACHER SCHEDULE: This subroutine
updates the teacher's schedule in the
teacher schedule file and adds the teacher
number to appropriate recoréd of the <class
information file.

3.4.40 SUBROUTINE UPDATE GRADES: A subroutine to find the
recoré number of the student schedule file
for a given student, display the current
grades, input corrected grades and comments,
and store the corrected grades and comments
in the student schedule file.

SUBROUTINE SET BYTE POINTERS: El, B2, B3, and B4 are

LIS]
.
N
.
oS
}=

set to ten, thirteen, fifteen, and eighteen
respectively Eo allow access to the

nid-semester and end of semester grades and

comments.

3.4.42 SUBROUTINE PRINT GRADES (CHE STUDEKT): A subroutine
to contrcl inputing and processing of the
grades for an individual student. The

-

subroutine calls subroutines £find student

recoré, read grades, and returns control to

the program menu.

3.4.43 SUBROUTINE READ GRADES: A subroutine to read the

s+ udent schedule and existing grades from

the student schedule file.

3.4.44 SUBROUTINE PRINT MID-SEMESTER GRADES: A subroutine
to print the schedule, teacher numbers, room
numbers, and mid-semester grades.

3.4.45 SUBROUTINE PRINT FINIAL GRADES: A subroutine to print
the student schedule, teacher number, roon

number, and end of semester grades and

comments.

3.4.,46 SUBROUTINE INPUT CLASS NUMBER: A subroutine wnich
inputs a class number and searches the class
index to find the record number of the class

information file corresponding to the given

class.
3.4.47 SUBROUTINE READ CLASS DATA: A subroutine to read the
class number, teacher number, period number,

class size, and <class list from the class

information file.
3.4.48 SUBROUTINE PRINT CLASS LIST: A subroutine to display

~“he teacher number, period number, rocom

“i

number, class size, and the student numbers

of all students currently enrolled 1in a

given class.

3.4.49 SUDROUTINE PROCESS LISTS DY TEACHER: A subroutine

which inputs @& teacher number, finds the

48
corresponding record number of the teacher
schedule file, and reads the teacher
schedule from the file. This subroutine
then calls the £ind class record, read class

ata, and print class

[aR

class

o)

a

a

record, ¢
list subroutines for eachk <¢lass.

3.4.50 SUBROUTINE PROCESS ALL CLASS LISTS: A subroutine to
print all class lists. The subroutine calls
subroutine in-order to produce a list of all

rs 1in order of increasing teacher

M

teach
number. The subroutine then reads each
teacher's schedule and calls subroutines
find class record, read class record, read
class data, and print class 1lists for all
classes defined in the data base.

3.4.51 SUBROUTINE CEAIGE CLASS INDEX: A subroutine to copy
the CINDX array into the IIDX array ¢to

enable the balance routine to balance the

class index structure.
OUTINE PRINT GRADES (ALL STUDENTS): A subroutine

to control the processing of all student
rades. The subroutine first calls
subroutine in-order to produce a list of all

students in orcer of 1increasing student

49

number, Subroutines read student grades and
print student grades are then called for all

students contained in the data base.

3.4.53 SUBROUTINE UPDATE ROO!1 NUMBERS: A subroutine that

nputs a class number, £finds the existi

3
[Ce]

-

rocm number, inputs a new room number and

%

updates the class information file.

Program programs
SYSTEM MENU

-Iritialize files
-Build Schedules
-Retrieve Schedules
-Retrieve Class Lists
-Enter Grades

-Print Grades

-Update

Pigure l14: Programs of the Student Information System

50

312 614

15-a Class-Index as a binary tree

Left Class Right Record
pointer Number Pointer Number

4 311 2 0

8 412 3 1

0 512 6 2

0 112 5 3

7 215 9 4

v} 614 0 5

0 122 0 6

9 411 0 7

0 312 0 8

15-b Class-Index as an Array

Figure 15: Index Structure as a Binary Tree and an Array

10
20
30
40
50
60
70
80
90
100
110
120

Line

Line

Line

Line

Line

Line

Line

F

22

ggM ngCEDURE TO SEARCH BINARY TREE INDEX
IF PT = 0 THEN GOTO 110

IF NUMB < INDEX(PT,2) THEN IK =1
IF NUMB > INDEX(PT,2) THEN IK = 3
IF NUMB = INDEX(PT,2) THEN GOTO 90
PT = INDEX(PT, IK)

GOTO 30

REC = INDEX(PT,4)

GOTO 120

PRINT "CLASS IS NOT IN THE INDEX"
RETURN

20 Initializes the pointer PT to SP,the root cf
node of the index tree.

30 Tests to determine if the current node is a
terminal node of the tree. If the current node is a
terminal node NUMB is not contained in the index.

40 If NUMB is less than the current node set IK,
a temporary pointer, to 1.

50 If NUMB is greater than the current node set
the temporary pointer to 3.

60 If NUMB is equal to the current node the
record has been found,

70 Move down :the tree by setting the pointer PT equal
to the left or right pointer as determined above.

80 Repeat until NUMB is located or a terminal node
is located.

igure 16: Basic code for searching an index structure

311

312

412

17-a

212

611

61

613

614

Unbalanced Binary Tree Structure

512

/

312

e

311

17=b

412

Balanced Binary Tree Structure

611

613

614

615

Pigure 17: Binary Tree Structures

B3

Step l: Traverse in order and create the ODR vector:
ODR(3 , 2,1, 4,5 ,6 ,7 , 8,09

Step 2: Calculate the maximum length of the full tree.
LF =7 = (2 73 - 1)

Step 3: Determine the number of elements of delete.
ND = 2 = (length of index - length of full tree)
Create the OMIT vector and pack ODR.
OMIT(1) = ODR(1l) = 3
OMIT(2) = ODR(3) =1
Pack ODR,
ODR(2 , 4 , 5,6 , 7 , 8, 9)

Step 4a: Set all odd pointers to zero.

INDEX (ODR(I),1) = INDEX(ODR(I),3) = 0; I odd.
Step 4b: Position pointers in following pacsses:
pass 1l: INDEX(ODR(2),1) = ODR(1l)...INDEX(4,1) = 2
INDEX (ODR(2) ,3) = ODR(3)...INDEX(4,3) =5
INDEX (ODR(6) ,1) = ODR(5)...INDEX(8,1) =7
INDEX (ODR(6) ,3) = ODR(7)...INDEX(8,3) =9
pass 2: INDEX(ODR(4),1) = ODR(2)...INDEX(6,1) = 4
INDEX (ODR(4) ,3) = ODR(6) ...INDEX(6,3) = 8
Step 5: Place omitted nodes into the tree.
INDEX(CDR(1),1) = OMIT(l)...INDEX(2,1) =3
INDEX (ODR(1) ,3) = OMIT(2)...INDEX(2,3) =1
Step 6: Set pointers of the inserted nodes to zero.
INDEX (OMIT(1),1) = Ceeeess.INDEX{(3,1) =0
INDEX (OMIT(1),1) = OeeecessINDEX(3,3) =0
INDEX (OMIT(2),2) = OeeeseesINDEX(1,1) =0
INDEX (OMIT(2),3) = 0ceeeessINDEX(1,3) =0

Step 7: Define the root node:
Root node = ODR((7 + 1)/ 2) = ODR(4) =6

Unbalanced index. Balanced index,

2 412 4 0 0 412 0 0
0 312 3 1 2 312 1 1
0 311 0 2 0 311 o0 2
0 512 5 3 2 512 5 3
0 611 6 2 0 611 O 4
0 612 7 5 4 612 8 5
C 513 8 6 0 613 0 6
& 211 o 7 7 614 9 7
o 615 0 8 0 615 0 8

Pigure 18: Balance Routine

Variable
INDX (500,4)

STACK (256 ,2)

OMIT(256)
ODR(256)

SCHD(7)

CINDX (150,4)
SNDX (500,4)

TINDX (50,4)

CREC(7)
TCH(7)
GMT (7)
GF (7)
CMT (7)

CF(7)

INFO(5)

LST(35)

GDE (35)

COM(35)

Description

Array to internally store the student
index structure.
Array used as a stack by the in-order
subroutine.

Vector to temporarily store nodes
deleted in the balance procedure.
Vector to store the pointers to the
nodes in increasing order.
Vector to internally store the
student or teacher schedule.

Array tc internally store the class
index structure,
Array to internally store the student
index structure.
Array tc internally store the
teacher index structure.

Vector to store the record numbers
of the class information file.
Vector to store the teacher schedule.

Vector to store the mid-semester
grades.

Vector to store the end of semester
grades.

Vector to store the mid-semester

teacher comments.
Vector to store the end of semester
commerits.

Vector to store class information:
course number, teacher, period number
room number, and class size.

Vector to store class lists,

Vector to store agrades for a class.

Vector to store comments for a class.

Figure 19: Variable Documentation

Program

BUILD SCHEDULES:

Figure 20:

Subroutines
—-Read Student Index (3.4.2)
—-Read Teacher Index (3.4.1)
-Read Class Index (3.4.3)
-Change Schedule (3.4.4)
-Display Schedule

(3.4.5)

-Change Number (3.4.6)
-Display Schedule
(3.4.5)

-Change Classes (3.4.7)
-Display Schedule
(3.4.5)

-Find Student Record (3.4.8)
-Write Student Schedule (3.4.9)

-Upcéate Class Index
(3.4,10)

56

-Revise Class Info(student)

(3.4.11)

—Write Teacher Schedule (3.4.30)
-Update Class Index
(3.4.10)

-Revise Class Info(teacher)

(3.4.12)

-Balance Index (3.4.14)
-In-Order (3.4.15)

—-Push Stack(3.4.28)

-Pop Stack (3.4.29)

-Length (3.4.17)
-Position Pointers

(3.4.16)

-Write Class Index {3.4,19)

—-Write Teacher Index (3.4.18)

—Wirite Student Index (3.4.20)

-Change Class Index
(2.4.19)

pProgram Build Schedules (Structure)

Program:

Retrieve Schedules:

Figure 21:

Subroutines

-Read Student Index (3.4.2)
-Read Teacher Index (3.4.1)
-Read Class Index (3.4.3)

-Retrieve Student Schedule
{one student) (3.,4.21)

-Retrieve
(one

-Retrieve

-Retrieve

Program

~Find Class Record (3.4.22)

—-Read Teacher/Room number
(3.4.23)

-Print Student Schedule
(3.4.24)

Teacher Schedule

teacher) (3.4.25)

-Find Class Record (3.4.22)

-Read Teacher/Room number
(3.4.23)
-Print Teacher Schedule
(3.4.30)
Student Schedules
(3.4.26)
-Push Stack (3.4.28)
-Pop Stack (3.4.29)
-Find Class Record (3.4.22)

~Read Teacher,/Room number
(3.4.23)
-Print Student Schedule
(3,4.24)
Teacher Schedules.
(2.4.27)
-In Order (3.8.15)
-Push Stack (3.4
-Pop Stack (3.4.29)
-Find Class Record (3.4

-Print Teacher Schedule
(3.4.30)

Retrieve Schedules (Structure)

57

Program:

Update

Subroutines
-Read Student Index (3.4.2)
-Read Class Index (3.4.3)
-Read Teacher Index (3.4.1)

-Update Student Schedule

(3.4.37)
-Missing Person
(3.4.38)
-Find Class Record
(3.4.22)
-Update Teacher Schedule
(3.4.39)
—-Missing Person
(3.4.38)
-Find Class Reccord
(3.4.22)
-Update Grades (3.4.40)

-Update Room numbers (3.4.53)

Figure 22: Program Update (Structure)

58

Program

Enter Grades:
-Read

-Read
-Read

-Byte

-Byte
-Find
-Read
-Find

-Find

Subroutines
Teacher Index (3.4.1)
Class Index (3.4.3)
Student Index (3.4.2)
Pointers mid-semester
(3.4.31)
Pointers finial (3.4.32)
Teacher Record (3.4.33)
Teacher Schedule (3.4.34)
Class Record (3.4.42)
Student Records (3.4.8)

-Input and write grades

Figure 23: Program

(3.4.36)

Enter Grades (Structure)

59

60

Program Subroutines

Print Grades:
-Read Student Index (3.4.2)

-Read Class Index (3.4.3)
-Set Byte Pointers (3.4.41)

~-Print Grades (one student)
{(3.4.42)

—-Find Student record (3.4.8)

—Print mid-semester grades
(3.4.44)

—-Print finial grades (3.4.45)

-Print grades (all students)
(3.4.52)

—In Order (3.4.15)
-Push Stack (3.4.28)
-Pop Stack (3.4.29)

—Read Grades (3.4,43)

-Print mid-semester grades
(3.4.44)

-Print finial grades (3.4.45)

Figure 24: Program Retrieve Grades (Structure)

Program Subroutines

Retrieve Class Lists:
-Read Teacher Index (3.4.1)

-Read Class Index (3.4.3)
-Input Class Number (3.4.46)

-Find Class Record
(3.4.22)

—-Read Class Data
(3.4.47)

-Print Class Lists
(3.4.48)

-Process All Class Lists
(3.4.,50)

-Push Stack
(3.4.28)

-Pop Stack
(3.4.29)

-Find Class Record
(3.4.22)

-Read Class Data
(3,4.47)

-Print Class List
(3.4.48)

Figure 25: Program Retrieve Class Lists (Structure)

CEAPTER 1V
CONCLUSION AIID REMARKS

The purpese of this study was to investigate the
feasibility of using microcomputers to maintain a student
information system to serve a small high school. The memory
limitations, both <core and direct access, and the time
required to retrieve information where the primary concerns

in the =system's design and implementation. To discuss the

results of the study it is first necessary to discuss the

specifications of the specific micro computer used in the

implementation of the system developed. The system

developed in this study was implemented on an Apple II PLUS

micrc computer with 48K random access memory and external

storage in the form of five and a quarter inch magnetic
flcppy diskettes. The 48K RAM proved to be sufficient to

execute the system software and the maximum number of

students the system can maintain is dependent upon the

external storage limitations. To analysis the maximum

; i lysis the storage
capacity of the system we must first anaiysi g

capacity of a floppy diskette when initialized on an Apple

II micro computer.

C sl ati vstem initializes a
When the Apple's disk operating SY

62

63
diskette, the diskette is divided into thirty five tracks
with each track containing sixteen sectors. Each sector will
store two hundred and fifty six bytes of data and four
tracks are reserved to store the disk operating system and
disk directory. This leaves thirty one tracks or four
hundred and ninety six sectors available to the user to
store software or data files. The number of sectors required
to store a file is given 1in the catalog 1listing of the
directory of the diskette. The catalog listing of the
diskette which stores the system software for the system
developed in this study is given in figure 26 and shows that
a total of one hundred and seventy three sectors are
required to store the system software. This leaves three
hundred and twenty three sectors available to store the

student schedule, teacher schedule, class information, and

the three 1index files. Figure 27(a) gives the disk
directory when the six data files contain the data for three

hundred students, fifty teachers, and one hundred and twenty

classes., As figure 27(a) illustrates, the system developed

in this study will maintain a student information system for

three hundred students when implemented on an Apple II micro

computer with 48K RAM and a single disk drive. Further

analysis of the unused forty eight sectors on the disk imply

that the student information system designed in this study

64
can accommodate a mazimum of thres hundred and fifty
students when implenented on a one disk drive Apple II PLUS

micro computer configuration.

The addition of a seccnd disk drive greatly increases
the capacity of the system. If the system software is stored
on diskette number one, operating in drive one, ard the data
files are stored on diskette number two, operating in drive
two, the maximum number of students increases to over five
hundred. Figure 27(b) shows the catalog 1listing when the

data files contain the data for five hundred students, fifty

teachers, and one hundred and fifty courses. A total of

three hundred and ninety six sectors are required to store

the data files which leaves one hundred unused sectors.

Further analysis of the available space indicates that a two

disk drive Apple II PLUS with 48K RAM hardware

. - A
confiocuration, will maintain a data base for six hundred and

fifty students. An added advantage of using a dual dis!

drive system is that the three hundred and twenty three

unused sectors on diskette number one could be utilized to

. fe %
store the student and teacher name relations.

Three hundred and twenty three sectors represents

approximately 82K bytes of storage. If each name 1is
restricted to thirty characters, each record (number,name)
when end of field and

would require thirty seven bytes

65

record markers are included. Since the analysis above gives
the maximum size of the system as six hundred and fifty
students with sixty five teachers, the name relations would
require a total of approximately 30K bytes. Thus diskette
number one would accommcdate the files required to store the
name relations. The addition of these relations would allow
student schedules, teacher schedules, and student grade
reports to be printed by name.

Although the above analysis of the direct access
storage capabilities of the Apple II indicate that a maximum
of six hundred and fifty students could be maintained with
this system, problems do occur with the software. The
system, as designed, will accommodate a maximum of five
hundred students since the program update files, listed in
appendix V, utilizes the complete 48K of random access
The system, as presented in this study, wculd have

memory.

to be slightly modified to accommodate more than five

hundred students.

In conclusion, this investigation did find that the

microcomputer is a viable alternative for maintaining a

small stand-alone data base. It is indeed feasible for a

school, enrollment around five hundred students, to consider

implementing its student information system on a dual disk

drive micro computer hardware configuration, The stucdent

66

information system presented in this study will maintain the
data base required for five hundred students and slight
modifications of the system design would increase the
maximum number of students to six hundred and fifty. This
study further indicates that student and teacher name
relations could be added to the system to allow for schedule
and grade reports to be printed by teacher and student name.
Further modifications should be made to the system software
before it is implemented. The system contains all the
information needed to assist in the scheduling process of a
school. The system could easily be modified to allow student
and teacher classes to be entered without regard to period.

The system could supply the period and room numbers and

report schedule conflicts.

036
020
005
026
020
024
036

L T . R

006

BUILD SCHEDULES
RETRIEVE CLASS LISTS
MENU

RETRIEVE SCHEDULES
ENTER GRADES

PRINT GRADES

UPDATE FILES

INITIALIZE DATA FILES

67

Total of 173 sectors required to store the system software.

Figure 26: Storage requirement for the system software

H = I | =] H 13

H =3 13 43 13 93

68

025 STUDENT-INDEX
005 TEACHER-INDEX
008 CLASS-INDEX
008 TEACHER-SCHEDULE
106 CLASS-INFORMATION
123 STUDENT-SCHEDULE
27-a Files initielized for 300 students (275 sectors)
033 STUDENT-INDEX
005 TEACHER-INDEX
010 CLASS-INDEX
008 TEACHER-SCHEDULES
134 CLASS-INFORMATION
206 STUDENT-SCHEDULE

27-b Files initialized for 500 students (396 sectors)

Figure 27: Data files storage requirements

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
28C
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430

HOME
DS =

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

APPENDIX A

PROGRAM SYSTEM MENU

PRINT : PRINT

CHRS (4)

PRINT "

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
INPUT

TAB(7) "STUDENT INFORMATION SYSTEM"
TAB(15) "CREATED BY"

TAB(13) "DOUG WAECHTER"
PRINT : PRINT
MENU"

PRINT
l.....BUILD SCHEDULES"
2.¢++.RETRIEVE SCHEDULES"
3¢eee . RETRIEVE CLASS LISTS"
4.....ENTER GRADES"
5¢ees.PRINT GRADES"
6e¢s. .0PDATE FILES"
7 eeee EXIT SYSTEM"

PRINT
ENTER THE NUMBER OF YOUR CHOICE ";ANS

IF ANS < 1 OR ANS > 7 THEN GOTO 100

HOMNE :
PRINT
PRINT
PRINT
IF ANS
IF ANS
IF ANS
IF ANS
IF ANS
IF ANS
IF ANS
GOTO 1
HOIIE

END

0

PRINT : PRINT
TAB(13) "LOADING PROGRAM"

PRINT

TAB(14)"PLEASE WAIT"

= 1 THEN PRINT DS$;"RUN BUILD SCHEDULES"
THEN PRINT DS;"RUN RETRIEVE SCHEDULES"

= § THEN PRINT DS$; "RUN RETRIEVE CLASS LISTS"
= 4 THEN PRINT DS;"RUN ENTER GRADES"

= 5 THEN PRINT DS$;"RUN PRINT GRADES"

= ¢ THEN PRINT DS$S;"RUN UPDATE FILES"

= 7 THEN GOTO 420

0

€9

100
110
120
130
140
150
169
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
3380
390
400
410
420
430
440
450
460
470

APPENDIX B
PROGRAM INITIALIZE FILES

REM PROGRAI TO INITIALIZE FILES.

REM

DS = CHRS (4)

PRINT D$; "OPEN STUDENT-INDEX"

PRINT DS$; "WRITE STUDEMNT-INDEX"

PRINT 0: PRINT 0: PRINT O

PRINT DS$; "OPEN TEACHER-INDEX"

PRINT D$; "WRITE TEACHER-INDEX"

PRINT 0: PRINT 0: PRINT O

PRINT DS$; "OPEN CLASS-INDEX"

PRINT DS$; "WRITE CLASS-INDEX"

PRINT 0: PRINT 0: PRINT O

PRINT DS$; "CLOSE"

PRINT DS$; "OPEN TEACHER-SCHEDULE,L31"

FOR I = 1 TO 65

I1=1I-1

PRINT DS$; "WRITE TEACHER-SCHEDULE,R";Il;",B0
PRINT O

FOR K
PRINT
PRINT
NEXT K
NEXT I
PRINT D$; "CLOSE"

REM

PRINT DS; "OPEN CLASS-INFO,L225"
FOR I = 1 TO 150

3 TO 27 STEP 4
S:; "WRITE TEACHER-SCHEDULE,R";I1l;",B";K

SO

I1=I-1

PRINT DS; "WRITE CLASS-INFO,R";I1;",BO"
PRINT O . . .
PRINT DS; "WRITE CLASS-INFO,R";Il; B4
PRINT O . . .
PRINT D$; "WRITE CLASS-INFO,R ;I1;",B7
PRINT O .
PRINT D$; "WRITE CLASS-INFO,R";I1;",B9"
PRINT O

PRINT D$; "WRITE CLASS-INFO,R";I11;",B12"

PRINT O

70

480 NEXT I
490 PRINT DS; "CLOSE"

500 D$ = CHRS (4)

510 PRINT DS$; "OPEN STUDENT-SCHEDULE,L104"
520 FORI =1 TO 500

530 BYT = 0

540 GOSUB 700

550 FORK =1 TO 7

560 BYT =6 + 14 * (R - 1)

570 GOSUB 7C0

580 BYT = 10 + 14 * (X - 1)

590 GOSUB 700

600 BYT = 13 + 14 * (K - 1)

610 GOSUB 700

620 BYT = 15 + 14 * (R - 1)

630 GOSUB 700

640 BYT = 18 + 14 * (K - 1)

650 GOSUB 700

660 NEXT K

670 NEXT I

680 PRINT D$; "CLOSE STUDENT-SCHEDULE"
650 END

700 REM SUBROUTINE
710 PRINT DS; "WRITE STUDENT-SCHEDULE,R";I - 1;",B";BYT

720 PRINT O
730 RETURN

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
385
390
400
410
420
430
440
450
460

APPENDIX C
PROGRAM BUILD SCHEDULES

REM PROGRAM BUILD-SCHEDULES
REM

DIM INDXS(500,4)

DIM STACK(400,2)

DIM OMIT(256)

DIM ODR(500)

DIM SCED(7)

DIM CINDX(150,4)

DS = CHRS (4)

HOME : PRINT : PRINT

PRINT " THIS PROGRAM BUILDS BOTH"
PRINT

PRINT "THE STUDENT-SCHEDULE AND THE
PRINT " THE TEACHER-SCHEDULE FILES."

"

PRINT :

PRINT : PRIMNT : PRINT "ENTER THE NUMBER OF YOUR CHOICE"
PRINT : PRINT : PRINT

PRINT "1..FOR STUDENT-SCHEDULE.."

PRINT : PRINT

PRINT "2..FOR TEACHER-SCHEDULE,."

PRINT : PRINT : INPUT ANS

GOSUB 1470

IF ANS = 1 THEN GOSUB 1190

IF ANS = 2 THEN GOSUB 1340

IF ANS < > 1 AND ANS < > 2 THEN GOTO 190
IF ANS = 1 THEN N$ = "STUDENT"

IF ANS = 2 THEN N$ = "TEACHER"

GOSUB 1470

HOME : PRINT : PRINT
PRINT "THIS PROGRAM BUILDS THE ";N$; "-SCHEDULE";

PRINT " AND THE ";NS;"-INDEX FILES,"
PRINT : PRINT : PRINT
PRINT "YOU CAN TERMINATE THIS PROGRAM AT ANY"

PRINT .
PRINT "TTIME AND THE DATA WILL BE SAVED

PRINT : PRINT : PRINT
PRINT "SIMPLY PRESS THE 'E' KEY AT THE PROMPT"

PRINT : PRINT : PRINT .
PRINT " <PRESS 'E' TO EXIT>

72

470
480
490
500
510
520
530
540
550
560
570
580
590
600
€10
620
630
640
650
660
670
6 80
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920

73

PRINT : PRINT : PRINT

PRINT " PRESS THE RETURN KEY TO CONTINUE ":INPUT Z$
HOME : PRINT : PRINT : PRINT : PRINT : PRINT

PRINT "ENTER 'E' TO EXIT.+eee..": PRINT

INPUT "RETURN TO CONTINUE.....";AS$

IF A$ = "E™ THEN GOTO 720
HOME
PRINT : PRINT : PRINT "ENTER THE ";N$;" NUMBER T

INPUT STUNO

PRINT : PRINT "ENTER COURSES BY PERIOD :
PRINT

FORI =1 TO 7

PRINT : PRINT "PERIOD “;I;" "3

INPUT SCHD(I)

NEXT I

PRINT

PRINT "DO YOU WANT TO MAKE ANY CHANGES"
INPUT "....ENTER (Y/N)...";Z$

IF 28 = "Y" THEN GOSUB 2500

NST = NST + 1

GOSUB 900

IF ANS = 1 THEN GOSUB 1040

IF ANS = 2 THEN GOSUB 3510

n

GOTC 490
REM
GOSUB 760

PRINT D$; "RUN MENU,D1"
REM ***t s kk*k kXA hhkkk k%

REM SUBROUTINE EXIT
M R 2 2 2 2 2 2 2 S L R R LR R RS RS kb
L

Ak khkrkdkhkrkrkkhkkhkdhikhhkkhdh kb hhdxk

RE

PT = SS

IF ANS = 1 AND NST - OBAL > 25 THEN GOSUB 3750
IF ANS = 1 THEN GOSUB 3960 '
IF ANS = 2 AND NST - OBAL > 10 THEN GOSUB 3750
IF ANS = 2 THEN GOSUB 4080

GOSUB 3660

FLAG = 1

IF NCLASS - OCBAL > 5 THEN GOSUB 3750

GOSUB 3850

RETORN kkkkkkkhkhkkhkkkkkkdkhkk*

REM **************************

{ TUDENT-RECORD
;g: *Eigfggfigf*iigg*i*********************************

PT = SS
IF PT < > 0 THEN GOTO 940
PT = 1:S8 = 1

930

940

950

960

970

980

990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390

74

GOTO 1010

IF STNO < INDXS(PT,2) THEN IK
IF STNO > INDXS(PT,2) THEN IK
IF STNO = INDXS(PT,2) THEN RETURN
LAST = PT

PT = INDXS(PT, IK)

IF PT < > 0 THEN GOTO 940

INDXS(LAST, IK) = NST

INDXS(NST,2) = STNO

INDXS(NST,4) = NST - 1

RETURN

REM ***k*xkkkkxukhhkdkrkd ko hh bk Ak AR A kA hkkkkkhkhhkkhhxh*

REM SUBROUTINE WRITE STUDENT-SCHEDULE

REM **kkkkkhkkkhhhhkhh kA Ak hkhhkhrhk A A h kA hhkhrxrrhkhhkhk
PRINT DS$; "OPEN STUDENT-SCEEDULE,L104"

PRINT D$; "WRITE STUDENT-SCHEDULE,R";NST - 1

PRINT STNO

FORI = 1 TO 7

BYT =6 + (I - 1) * 14

PRINT D$; "WRITE STUDENT-SCHEDULE,R";NST - 1;",B";BYT
PRINT SCHD(I)

NEXT I

PRINT D$; "CLOSE STUDENT-SCHEDULE"

GOSUB 3000

RETURN
REM ****kkkkkkkhhhhhkhhkhhhehhhrinhrhhhhhrrrorhdkhrkrdds

E READ STUDENT-INDEX
ggg *igéfggziﬁ**

REM
PRINT D$; "OPEN STUDENT- INDEX"

PRINT DS; "READ STUDENT-INDEX"
INPUT NST: INPUT SS: INPUT OBAL
IF NST = 0 THEN GOTO 1310

1
3

FORI = 1 TO NST
FORJ =1 TO 4

INPUT INDXS(I,J)

NEXT J

NEXT I

PRINT DS; "CLOSE STUDENT- INDEX"
gg:UET**

INDEX

REM SUBROUTINE READ TEACHER_*************************

REM T T 2 L A R R
PRINT D$; "OPEN TEACHER—INDEX:
PRINT D$; "READ TEACHER- INDEX
INPUT NST: INPUT SS: INPUT OBAL
IF NST = 0 THEN GOTO 1440

1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860

75

FOR I 1 TO NST

FOR J 1 TO 4

INPUT INDX(I,Jd)

NEXT J: NEXT I

PRINT D$; "CLOSE TEACHER- INDEX"

RETURN

REM **dkkkdkhkkkhkhkhhkhhkhhkhhhhhhhhrkhkhhhhhkhkhhhhhrhrhdd

REM SUBROUTINE READ CLASS-INDEX

REM **kkkkhkkhhhhhhhhkhhhhrhdhrhhhkhhhhkkrkkhhhrkokhhhkxkk
PRINT DS$; "OPEN CLASS-INDEX,D2"

PRINT D$; "READ CLASS-INDEX"

INPUT NCLASS: INPUT S2C: INPUT OCBAL

IF NCLASS = 0 THEN GOTO 1580

FOR I = 1 TO NCLASS

FOR J =1 TO 4

INPUT CINDX(I,J)

NEXT J

NEXT I

PRINT DS; "CLOSE CLASS-INDEX"

RETURN

REM *kkkkkkhhhkhkhhhh ok hhrhhhhrhkhhhhhkhhhorhhhhhhhkdkk

REM SUBROUTINE IN-ORDER

REM **kkkkhkkkhkkhhhhhhhkhhhhhhhhhhhhrohkhhhhhhrhkhekhx
PT = SS

IF INDXS(PT,1) < > 0 THEN GOTO 1760

LN =LN + 1

ODR(LN) = PT

D=1
GOSUB 1850
D=20

PT = INDXS(PT,3)

IF PT < > 0 THEN GOTO 1640
GOSUB 1820

IF D 3 THEN GOTO 1810
IF D = 1 THEN GOTO 1720
GOTO 1650

D=2

GOSUB 1850

D=0

PT = INDXS(PT,1)

GOTO 1640

N
EEEUB;**
{

gg: *EEEE?EEEHE*EEEE**********************************

LST = LST + 1
STACK(LST,1) = PT

1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
198C
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330

76

STACK(LST,2) =D
RETURN
REM ***xkkhkkdhkhhhkhhhhhhhhhhhhhhhdhhhhkkkrhrkkkkkkkhhkk

SUBROUTINE POP
REM **kkhhkhhkkhkkhhhhhhrhhhhkhkhrrk bk hhkhhhhkhhkhhkhkhk

IF LST = O THEN GOTO 1970
PT = STACK(LST,1)

D = STACK{LST,?2)

LST = LST - 1

RETURN

D=3

RETURN
REM *** kkhkkkhkhhhkhkhhhhhhkhdkrhhkhhhhrhhhhhhhhhkrhhhkrksx

REM SUBROUTINE LENGTH
REM ***kkkkkkhkkhhhhhhh kb hhhdkhrkhhrhhhhrhhhkrrrhhhhhhdhk

Kl =1

IF 2 © K1 > LN THEN GOTO 2050
Kl = K1 + 1: GOTO 2030

EX =K1 - 1

LF =2 " EX -1

ND = LN - LF

K2 = C

FOR K1 = 1 TO 500 STEP 2

K2 = K2 + 1

OMIT(K2) = ODR(KI)

IF K2 = ND GOTO 2140

NEXT K1

K5 = 2 * ND

FOR K3 = 1 TO LN

IF X3 > ND THEN GOTO 2190
ODR(K3) = ODR(2 * K3)

GOTO 2210

K5 = K5 + 1

ODR(K3) = ODR(K5)

NEXT K3

RETUR
RE:L*f**

j NTER- POINTERS
gg: *§2§§EEE£§E*EYEEI}'*********************************

FOR K1 = 1 TO LF STEP 2

INDX (ODR(K1) ,1) 0

INDX (ODR(K1) ,3) 0

NEXT K1

PASS = 1

RS = PASS + 1

K =2APASS a
pgg I = KB TO LF STEP 2 KS

2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2615
2620
2630
26 40
26 50
2660
2670
26 80
26 90
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790

77

INDX (ODR(I) ,1)
INDX (ODR(I) ,3)
NEXT I

PASS = PASS + 1
IF 2 ~ PASS < LF THEN GOTO 2310
KD = 1

INDXS (ODR(KD) ,1)
INDXS (ODR{KD) ,3)
KD = KD + 2

IF KD < = ND THEN GOTO 2400
SS = ODR(2 " (EX - 1))

FOR KZ = 1 TO ND

ODR(I - 2 " (PASS - 1))
ODR(I + 2 © (PASS - 1))

» Nl

OMIT (KD)
OMIT (KD + 1)

INDXS(OMIT(KZ),1) =0
INDXS (OMIT (KZ) ,3) = 0
NEXT K2Z
RETURN

REM **kkthkdkhdthkdhhkdbhhdbdhhhhhhkhhbhhhhhhhhhhddkhhdhrhokhrdsd

REM SUBROUTINE CHANGE-SCHEDULE
REM **kdkhkhkhkkkhhhkhhhhhhhhhhhhhhhhrkkkkrhhhhhrrr kb hrdss

PRINT : PRINT

GOSUB 2660

PRINT "DO YOU WANT TC CHANGE THE"

PRINT " ";NS$;" NUMBER (Y/N)"

INPUT HS

IF H§ = "Y" THEN GOSUB 2890

IF HS = "N" THEN GOSUB 2800

IF HS < > "Y" AND H$ < > "N" THEN GOTO 2550

PRINT : PRINT "DO YOU WANT TO MAKE ANY MORE CHANGES"
PRINT ";: INPUT "(Y/N) ";HS
IF HS "Yy" THEN GOTO 2530

IF HS "N" THEN RETURN
IF HS < > "Yy" AND HS < > "N" THEN GOTO 2610

GOTO 2610

REM khkhkhkhkdhkhkrrdkhkxrhkhkhkhkhkhkkhkkhkhkhkhkhhkhkhhhdhhdhkhkdthkkhtdhkhhhkk

5 E DISPLAY SCHEDULE
ggg *§2232235§**

HOME

PRINT "SCHEDULE GIVEN IS: "
PRINT

PRINT " ";NS$;" NUMBER ";STN
PRINT

PRINT "PERIOD COURSE"
FORI =1 TO 7

PRINT

PRINT I,SCHD(I)
NEXT I: PRINT
RETURN

2795
2800
2810
2820
2830
2840
2845
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250

78

REM
REM **%k*xkhkkhhhhhkhhhdhhhhhhhhhhhhhhhhkhrhhkhkhdkhdhhhhdhkxk

REM SUBROUTINE CHANGE CLASSES

REM **hkkkhkkk kA hhkkk kA AR Ak kA Xk AR AR kA Ak Ak ks ko khk*k*
GOSUB 2660

PRINT : PRINT

PRINT "ENTER PERIOD NUMBER, COURSE NUMBER"

INPUT J,COU

SCHD (J) = COUD

GOSUB 2660

RETURN

REM **kkkkhkkhkhhkkhhhhhhkhhrhhhhhhhhhhhkhhhhhhhhhhhhhxk

REM SUBROUTINE CHANGE-NUMBER

REM **kkkdrkkhkhhkhhhkhhhh A Ak AhhkhkhhhArkhkhhhhhdhhhbhkhhhdhs
HOME : PRINT : PRINT : PRINT : PRINT

PRINT "OLD ",N$;" NUMBER IS: ";STUNO: PRINT

PRINT : PRINT : PRINT : PRINT

PRINT : PRINT : PRINT : PRINT

PRINT "ENTER NEW ";N$;"NUMBER ";
INPUT STNO

GOSUB 2660

RETURN
REM ***kkkkkkkkhkhhrhhhhkhhhrhhhrhhhhhkhhhhrhhhrrhhhsdd

REM SUBROUTINE UPDATE-CLASS-INFO
REM ***kkkkrhkakhkhhhkhhhhhhhhrhhhhhhhhhhhhhhhhhhkhhhrrs

PRINT D$; "OPEN CLASS-INFO,L225"
FORJ =1 TO 7

PT = S2C

IF PT < > 0 THEN 3110

S2C = 1:CSIZE =1

PT = 1

NCLASS = 1: GOTO 3190

IF SCHD(J) < CINDX(PT,2) THEN IK 1

IF SCHD(J) > CINDX(PT,2) THEN IK 3

IF SCHD(J) = CINDX(PT,2) THEN GOTO 3260
LAST = PT

PT = CINDX(PT, IK)

IF PT < > 0 THEN 3110

NCLASS = NCLASS + 1

CINDX (LAST, IK) = NCLASS

CINDX (NCLASS,2) SCHD (J)

CINDX (NCLASS,4) = NCLASS - l"
PRINT DS; "WRITE CLASS-INFO,R ;NCLASS - 1

PRINT SCHD(J) . '
PRINT D$; "WRITE CLASS-INFO,R";NCLASS - 1l;",B7"

PRINT J
PT = NCLASS

3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700
3710
3720

79

REC = CINDX (PT,4)

IF ANS = 1 THEN GOSUB 3320

IF ANS = 2 THEN GOSUB 3450

NEXT J

PRINT DS$; "CLOSE CLASS-INFO"

RETURN

REM #**kkkhhkh ok k kA ko h ko hh ko ke ok sk ke ke ok k kkkkkhhk ko hkkkkh*
REM SUBROUTINE REVISE CLASS-INFO

REM (STUDENT)

REM **hkk ok k kA Ak kkk ke kA Ak ok kA k ke kA Ak kh ok kkkkk ke kk ke kk®
PRINT D$; "READ CLASS-INFO,R";REC;",Bl2"

INPUT CSIZE

CSIZE = CSIZE + 1

PRINT DS$; "WRITE CLASS-INFO,R";REC;",Bl2"

PRINT CSIZE

BYT = 15 + (CSIZE - 1) * 6

PRINT DS$; "WRITE CLASS-INFO,R";REC;",B";BYT

PRINT STNO

RETURN
REM ***kkkdkkkhhhhhhhhhhhk ko hhhkhhdhhh kb khhhrhhhhk ok krrkk

REM SUBROUTINE REVISE CLASS-INFO (TEACHER)
REM **kkkkkkkhhhhhhA ARk A XAk hhrhhhh kR hk Ak hh bk ko hhkh ok
PRINT DS$; "WRITE CLASS-INFO,R";REC;",B4"

PRINT STNO

RETURN
REM **hkhkhkkkhkkdkhhr ARk kA kA kA RAk A Ak k ko hhhhkh kK k kK%
—

REM SUBROUTINE WRITE TEACHER-SCHEUDLE
REM *hkkkhkkhkhkhhhhhh kR Ahhhhhhdhhhk Ak hhh kb k ko ko kh

PRINT D$; "OPEN TEACHER-SCHEDULE,L31"

REM

PRINT DS; "WRITE TEACHER-SCHEDULE,R";NST - 1

PRINT STNO

FOR I = 1 TO 7

BYT = 3 + (I -1) * 4 ., -
PRINT DS; "WRITE TEACHER-SCHEDULE,R";NST - 1",B";BYT
PRINT SCEHD(I)

NEXT I .

PRINT D$; "CLOSE TEACHER-SCHEDULE

GOSUB 3000
RE;‘U};\:T**

RE

NGE CLASS INDEX)
ggg *§E§§923£§§*S§é***********************************

FOR I 1 TO NCLASS

FCR J 1 TO 4
INDX (I,J) = CINDX(I,J)

NEXT J: NEXT I

3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3610
3920
3930
3940
3950
3960
3970
3980
3990
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190

80

SS = S2C
RETURN
REM ***kkkhkhhkhhhhkhhhhhhhkhkhkkhhk ok khkkkhkkhhhkhk Ak kkhk

REM SUBROUTINE BALANCE-INDEX

REM *Xdkhkkhhkkkhhhhhhhhh kA hhhokhhhkhkkrhhhkhhkkhhhhhhx
GOSUB 1610

GOSUB 2000

GOSUB 2240

IF ANS = 1 OR ANS = 2 THEN OBAL = NST

IF FLAG = 1 THEN OCBAL = NCLASS

RETURN

REM **kkhkkhhhhhkhhhhhhkhkkhk Ak hkhk Ak ko hkhhhhhr ke ke kkhhx

REM SUBROUTINE WRITE CLASS-INDEX

REM ***khkkhkkkhhhkkhkhkkhkhhkkhhrhhhhkkhkkhkkhhhrhhhhhhktx
PRINT D$; "OPEN CLASS-INDEX"

PRINT D$; "WRITE CLASS-INDEX"

PRINT NCLASS: PRINT SS: PRINT OCBAL

FOR I 1 TO NCLASS

FORJ =1 TO 4

PRINT INDX (I,J)

NEXT J: NEXT I

PRINT D$; "CLOSE CLASS—INDEX

RETURN
REM **kkkkkkhkhhrhhhhkhhhkhhhhhhkhhhhhhhhkhrhhhhhrrhhs

REM SUBROUTINE WRITE STUDENT-INDEX"

REM **kkkrkkkhhhhkr kA kAKX RARKKIIKR KRR KRR KKK R IR KR KKK K
PRINT D$; "OPEN STUDENT-INDEX"

PRINT DS; "WRITE STUDENT-INDEX"

PRINT NST: PRINT SS: PRINT OBAL

FOR I = 1 TO NST

FORJ = 1 TO 4

PRINT INDX({(I,J)

NEXT J: NEXT I
PRINT D$; "CLOSE STUDENT-INDEX"

RETURN
M P 2 2 2 2t a2 22 S S R R 2 R SR L R R hE E E

RE
REM SUBROUTINE WRITE TEACHER-INDEX

REM * k% *******************'k***************************
PRINT DS$; "OPEN TEACHER-INDEX"

PRINT DS; "WRITE TEACHER-INDEX"

PRINT NST: PRINT SS: PRINT OBAL

FOR I = 1 TO NST

FORJ = 1 TO 4

PRINT INDX (I,J)

NEXT J: NEXT I

PRINT DS; "CLOSE TEACHER-INDEX"

RETURN

45
50
52
55

65

70

75

80

85

S0

85

105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230

REHN
REHN
REN
REM
DIM
DIM
DIM
DIN
DIM
DIM
DIM
DIM

APPENDIX D

PROGRAM RETRIEVE SCHEDULES LISTING

PROGRAI1 RETRIEVE SCHEDULES

SNDX (500, 4)
TINDX (50 ,4)
CINDX (150,4)
CREC(7)
RM(7)

TCH(7)
SCHC(7)
ODR(500)

DIM STACK(256,2)

DS

= CHRS (4)

GOSUB 235
GOSUB 295
GOSUB 360

HOME
PRINT " THIS PROGRAM DISPLAYS EITHER

PRINT

PRINT : PRINT

n

PRINT

PRINT "l.+¢...STUDENT SCHEDULE,..

PRINT : PRINT
PRINT “2.+...TEACHER SCHEDULE., ..

PRINT : PRINT
PRINT "3.....TO PRINT ALL STUDENT SCHEDULES"

PRINT : PRINT

PRINT

"4,....T0O PRINT ALL TEACEER SCHEDULES"

PRINT : PRINT
PRINT "5.....TO END THE PROGRAM"

PRINT : PRINT
PRINT " ENTER THE NUMBER OF YOUR CHOICE...."

PRINT : PRINT

PRINT : INPUT ANS

.

IF ANS = 1 THEN GOSUB 425
IF ANS = 2 THEN GOSUB 560
IF ANS = 3 THEN GOSUB 1080
IF ANS = 4 THEN GOSUB 1620
IF ANS = 5 THEN GOTO 233
GOTO 130

81

233
234
235
240
242
243
245
250
255
260
265
270
275
280
285
290
293
295
300
305
310
315
320
329
330
335
340
345
350
352
353
360
365
370
375
380
385
390
395
400
405
410
415
420
422
425

82

REM TERMINATE EXECUTION AMND RUN MENU PROGRAM

PRINT DS$; "RUN MENU,D1"

REN

PEM **kkkkkrhkhhkhhkkhhh kb drddrhh ke hhhArdhhhd ook bk ok hhkd

REM SUBROUTINE READ STUDENT INDEX
REM¥ **dkkkkkhhhhhhhhh Ak kkhhhkohhhhhdohhrrhrhdhsordhkrddbsn
PRINT D$; "OPEN STUDEMT-INDEX,D2"
PRINT DS$; "READ STUDEMNT-INDEX"
INPUT NST: INPUT SP: INPUT OBAL
FOR I = 1 TOD NST

FORJ =1 TO 4

INPUT SNDX (I, J)

NEXT J

NEXT I

PRINT D$; "CLOSE STUDENT-INDEX"

RETURN
REI] ***%kkkkhkkkhrhxhhhhhrhobhhhaharhhhrdddhrrhhhrrshss

REM SUBROUTINE READ TEACHER INDEX

DEM ** XAk krkkhkxkhkrhhhhkkkhkhhhk Ak hh kb hddhbhk bk Ak S AR A*
PRINT D$; "OPEN TEACHER-INDEX"

PRINT D$; "READ TEACHER-INDEX"

INPUT NTEA: INPUT TP: INPUT OBAL

IF NTEA = 0 THEN GOTO 350

FCR I = 1 TO NTEA

FORJ = 1 TO 4

INPUT TINDX(I,J)

NEXT J
NEXT I
PRINT D$; "CLOSE"

by
§E§U§i***
pE STTN NDEX
RBJ SUBROLT‘LEB PEAD CLAsis\'*‘]k:***************************

REN ***k sk Ak khkdhhhhrkdrrs
PRINT DS; "OPEN CLASS—INDEE';
IN . "nEAD CLASS—-INDEX'
?ﬁgljg SCSSI:A;;S: INPUT CP: INPUT OCBAL
IF NCLASS = 0 THEN GOTO 415
FOR I = 1 TO MNCLASS
FORJ =1 TO 4
INPUT CINDX(I,J)
NEXT J
NEXT I
PRINT DS$; "CLOSE"
sE:I:UI;G:****************-k********************************
REM

REM SUBROUTINE RETREIVE STUDENT

426
430
435
440
445
4438
450
455
460
465
470
475
480
481
482
483
485
486
487
488
490
495
500
505
510
515
520
525
530
335
540
542
544
546
548
550
285
560
565
570
575
580
582
585
590
595
600

REN
REM
HOME :

PRINT "
PRINT
SNUMB

83

(ONE STUDNENT)

PRINT

ENTER STUDENT MNUMBER
PRINT : IITPUT NUNB
NULB

n

R R R R L T e T T T T 2
PRINT :

DT =
IF PT
IF NUIMB
IF NUMB
IF NUIB =
PT = SNDX
GOTO 455
PRINT : PRINT
PRINT "STUDENT
PRINT PRINT
PRINT : PRINT
INPUT "PRESS RETURN TO CONTINUE
GOTO 550

REC = SNDX (PT,4)

PRINT DS; "OPEN STUDENT-SCHEDULE,Ll oa"

FORI =1 TO 7

BYT =6 + (I - 1) * 14

PRINT DS; "READ STUDENT-SCHEDULE,R";REC;",B";BYT
INPUT SCHD(I)

NEXT I

PRINT DS$; "CLOSE"

FORM =1 TO 7

CNUMB = SCHD (I1)

PT = CP
GOSUB 1430
CREC(M) =
MNEXT M
GOosus 1500
GOsSUB 1560
RETURN

RE!N t********************
.

SUBROUTINE FIND TEACHER

6)]
oG N e

431
THEDIl IK =
THEN IK =
THEN GOTO 488

THEN GOTO
SNDX (PT, 2)
SNDX(PT, 2)
SNDX (PT, 2)
PT, IX)

I VAO
W

";NUMB
"IS NOT IN THE DATA BASE"

“;Zzs

REC

Sk kkkkk Ak hhkdrkkhkkkhhkkhdhkrrk
RECORD

ggg} ***
HOME : PRINT : PRINT .

PRINT " ENTER TEACHER MNUMBER

PRINT : PRINT PRINT : INPUT NUMB

TNUMB = !NUMB

PT = TP

IF PT = 0 THEN GOTO 615 . -

IF NUMB < TINDX(PT,2) THE:I IE\ -

IF uore > TILDX(PT,2) THEN IX = 5

605
610
612
615
618
620
625
628
630
635
640
645
650
655
660
670
675
680
685
690
695
700
710
1070
1080
1085
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210

84

IF NUMB = TINDX(PT,2) THEM GOTO 625

PT = TINDX(PT, IK)

GOTO 590

PRINT:PRINT"TEACHER ";NUMB;" IS NMOT IN THE DATA BASE"
PRINT : PRINT : INPUT "PRESS RETURN TO CONTINUE ";ZZ§
GOTO 710

REC = TINDX (PT,4)

PRINT D$; "OPEN TEACHER-SCHEDULE,L31"

FORI =1 TO 7

BYT = 3 + (I - 1) * 4

PRINT DS; "READ TEACHER-SCHEDULE,R";REC;",B";BYT
INPUT SCHD(TI)

NEXT I

PRINT DS$; "CLOSE"

FOR I 1 TO 7

CNiuMB SCHED (M)

PT = CP

GOSUB 1430

CREC(M) = REC

NEXT M

GOSUB 1500

GOSUB 1800

RETURN
REM ***kxkxkkkk%

N NE RETREIVE ALL STUDENT SCHEDULES
gg;j tgggﬁegzzl**********************************

PT = SP
GOSUB 1220

FORT = 1 TO NST

PRINT DS; "OPEN STUDENT-SCHEDULE,L}'OZE" . .
PRINT DS: "READ STUDENT-SCHEDULE,R ;ODR(T);",BO
INPUT SNUNMB

FOR M = 1 'I‘O7l) . 14

Y = + M - i . + R
gﬁm gs;"z(zEAD STUDENT-SCHEDULE, R ;ODR(T);",B";BYT
INPUT SCHD (I1)

NEXT M .
PRINT DS; "CLOSE STUDENT- SCHEDULE

FORM =1 TO 7
CNUMB = SCHD (!M)

nou

dkkkk*

PT = CP

GOSUB 1425
CREC(M) = REC
NEXT N

GOSUB 1495
GOSUB 1555
NEXT T

1215
1220
1225
1230
1232
1235
1240
1242
1245
1250
1252
1255
1260
1265
1270
1275
1277
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1327
1330
1335
1340
1345
1350
1385
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420

85

RETURN
REM *hEd ko h bk hhh kA kA A A Ak hhFhhhkh kb kTt hhhhkkr b AR kb h ks

REM SUBROUTINE IN-ORDER
IR R R R R R R R T R R T T T R L LT

LN = 0

LT =0

IF ANS = 3 AND SNDX(PT,1l) < > 0 THEN GOTO 1310
IF ANE = 4 ANID TINDX(PT,l1) < > 0 THEN GOTO 1310
LN = LN + 1

IF ANS = 3 THEN ODR(LMN) = SMNDX(PT,4)

IF ANS = 4 THEN ODR(LMN) = TINDX(PT,4)

D=1

REM PUSH STAACK

GOSUB 1340

D=0

IF ANS = 3 THEN PT = SMNDX(PT,3)

IF ANS = 4 THEN PT = TIMDX(PT,3)

IF PT < > 0 THEN GOTO 1240

REM POP STACK
GOSUB 1375

IF D=3 THEN GOTO 1335

IFD =1 THEN GOTO 1285

GOTO 1245

D=2

GOSUB 1340

D=0

IF ANS = 3 THEN PT = SNDX(?PT,1)

IF ANS = 4 THEN PT = TINDX(PT,1)

GOTO 1240
ggg;U}}“:**
REN SUBROUTINE PUSH Sk kkkkhkkkhkkkhhhrhrkhrhhhk T dhiks

RENM *******************

LT = LT + 1

STACK(LT,1) = PT

STACK(LT,2) =D
EE:I;USE*************k***-k******************************
REMN SUBP‘OUTINE PoP ***************************

REM *****************'k*****

IF LT = 0 THEN GOTO 1415
PT = STACK(LT,1)

D = STACK(LT,2)

LT = LT - 1

GCTO 1420

D=3

RETURN

1426
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1450
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
2575
1580
1585
1586
1590
1595
1600
1605
1605
1610
1615
1620
1625
1630
1635
1660

86

REM
REM **

REIl SUBROUTINE TO FIND CLASS RFCORD

N R I T™ ™™
IF PT = 0 THEN GOTO 1470

IF CNUMB < CINDX(PT,2) THEN IX
IF CNUIB > CINDX(PT,2) THEN IK =
IF CNUNB = CINDX(PT,2) THEN GOTO 1485
PT = CINDX (PT, IX)

GOTO 1440

REM COURSE IS NOT IN DATA BASE

FLAG = 1

GOTO 1490

REC = CINDX(PT,4)

RETURN
AR R R R EEREEEEEE S PERESEEEESEELE LSS EEEEEEE S SR EEE T

REM SUBROUTINE TO READ TEACHER AMND ROOM MNUMBER

REM **khkkhkkkhhhrxha b kA X b rAhihohrrhbhdhbbdhhhhrdhdhhhdrs
PRINT D$; "OPEN CLASS-INFO,L225"

FOR I =1 TO 7

PRINT DS$; "READ CLASS-INFO,R";CREC(I);",B4"

INPUT TCH(I)

PRINT DS$; "READ CLASS-INFO,R";CREC(I);",B9"

INPUT RM(I)

NEXT I

PRINT D$; "CLOSE CLASS—-INFO"

RETURN
REM *Akkkhkkkhhkkhrhhhxhkdhbhhdrhhhhhhhdrhrrrehrrrhsnss
ot

! NT R INE
gg;: *E%Efi*EEEEQEE:************************************

HONE : PRINT : PRINT .
PRINT "SCHEDULE FOR STUDENT ;SNUMB

PRINT : PRINT i} .
PRINT "PERIOD"; TAB(13) COURSEr;" -
PRINT TAB(24)"TEACHER"; TAB(35) "ROOHM
FORI =1 TO 7

PRINT .
PRI;XT TAB(3)I; TAB(15) SCHD(I);

PRINT TAB(26)TCH(I); TAB(36) RM(I)

L

1
3

gg)l("l;"‘l- BRINT : INPUT "PRESS RETURN TO CONTINUE";ZZ$
§E?:U§::**
REM SROUTINE RETRIEVE ALL TEACHER SCHEDULES
“E“ *EE**t***:*****************************

REM

IF NTEA = 0 THEN GOTO 1770

PT = TP

1665
1670
1675
16 80
16 85
1690
1695
1700
1705
1710
1715
1720
1125
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1806
1809
1810
1815
1820
1825
1830
1835
1840
1845
1850

87

GOSUB 1220

FOR T = 1 TO NTEA

PRINT DS; "OPEN TEACHER-SCHEDULE, L31"

PRINT DS$; "READ TEACHER-SCHEDULE, R" ;ODR(T);",BO"
INPUT TNU!MB

FOR M = 1 TO 7

BYT = 3 + (11 - 1) * 4

PRINT DS$; "READ TEACHER-SCHEDULE,R" ;ODR(T); ",B";BYT
INNPUT SCHD (1)

NEXT M

PRINT DS$; "CLOSE TEACHER-SCHEDULE"

FOR M = 1 TO 7

CNUMB = SCHD ()

PT = CP

GOSUB 1425

CRC(!1) = REC

HEXT I1

GOSUB 1495

GOSUB 1800

NEXT T

GOTO 1795
REM TEACHER-INDEX HAS NOT BEEN BUILD

HOMNE : PRINT : PRINT : PRINT

PRINT "TEACHER-INDEX HAS NOT BEEN BUILD"
PRINT : PRINT
PRINT :PRINT:INPUT "PRESS RETURN TO CONTINUE “;zZ$

RETURN
REM ** %k kkkhhhhhhkhhhhkhhhhdhh kb khhhhhdhhdkh ko khbrk

REM St NE PRINT TEACHER SCHEDULE
:g:} **:]»}359[;]31;**

HOME : PRINT : PRINT '
PRINT "SCHEUDLE FOR TEACHER ";TNUNB

PRINT : PRINT , .
PRINT "PERIOD"; TAB(15) "CLASS"; TAB(25) "ROOM

FOR I = 1 TO 7

PRINT .

PRINT TAPR(3)I; TAB(16)SCHD(I); TAB(26)RM(I)

NEXT I .
;’RINT : PRINT : INPUT "PRESS RETURN TO CONTINUE ;228
RETURN

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470

APPENDIX E
PROGRAM UPDATE FILES

REM PROGRAM TO UPDATE RECORDS
REM

DI} SNDX (500 ,4)

DIM TINDX (50,4)

DIM CINDX (150,4)

DIM SCHD(7)

DIM CH(7,2)

DS = CHRS (4)

GOSUB 450

GOSUB 570

GOSUB 700

HOME : PRINT : PRINT

TRINT "THIS PROGRAM UPDATES:"
PRINT : PRINT

PRINT "ENTER THE NUMBER OF YOUR CHOICE"

PRINT
PRINT "1.....STUDENT-SCHEDULE"

PRINT
PRINT " 2 e o 0 o .TEACHER-SCIiEDULE "

PRINT
PRPINT "3.....STUDENT GRADES"

PRINT
PRINT "4.....RO0M NUMBERS"

PRINT .
PRINT "5.....ENTER 5 TO END PROGRAM

PRINT : PRINT : INPUT AlNS

IF ANS = 1 THEN GOSUB 830
IF ANS = 2 THEN GOSUB 1810
IF ANS = 3 THEN GOSUB 2960
IF ANS = 4 THEN GOSUB 3680
IF ANS = 5 THEN GOTO 430

IF NCLASS < > CLASSO THEN GOSUB 2840

GOTO 2190
REM EXIT PROGRAM AND RUN MENU PROGRAM

L AT L
EE‘.\IIN'E*Ei‘I;*Egrj*igig':'e%**********************************
o ST-INDEX"

J READ
ggg ’Eggfggfﬁg*g“***********************************

88

480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930

89

PRINT D$; "OPEN STUDENT-INDEX,D2"

PRINT DS$; "READ STUDENT-INDEX"

INPUT NST: INPUT SP: INPUT OBAL

FORI = 1 TO NSTU

FORJ =1 TO 4

INPUT SNDX (I, J)

NEXT J: NEXT I

PRINT D$; "CLOSE ST-INDEX"

RETURN

REM ***kkkkhkhhhkhhhk kA hhkkh Ak khhhhkhkhkhkkkkhhkhh ke krdh

REM SUBROUINE TO READ CLASS-INDEX"
REM ***kkkkkkhkhhkhkhhhkhhkhhhhhdhhhhhhhhhhkhhhkkhhhkhhhhhths
PRINT D$; "OPEN CLASS-INDEX"

PRINT D$; "READ CLASS-INDEX"

INPUT NCLASS: INPUT CP: INPUT OCBAL
CLASS0O = NCLASS

FOR I 1 TO NCLASS

FOR J 1 TO 4

INPUT CINDX (I, J)

NEXT J: NEXT I

PRINT D$; "CLOSE CLASS-INDEX"

RETURN
REM *tkkkkkhhhkhhhhhhhhhhkhhhhhkhhhkhhhhhhhrhhhhhrrhrass

- INDEX"
gg: *EEEEQEE‘EQEJE*E‘Q*EEQE*EEI:‘SEEE*P-E********************
PRINT D$; "OPEN TEACHER- INDEX"

PRINT D$; "READ TEACHER- INDEX"
INPUT NTEA: INPUT TP: INPUT OBAL
IF NTEA = 0 THEN GOTO 810

FOR I = 1 TO NTEA

FORJ =1 TO 4

INPUT TINDX (I,J)

NEXT J: NEXT I .
PRINT DS; "CLOSE TEACHER-INDEX

Eggug{f***

T - SCHEDULE
gg: *iggljgg;IEE*EEEEE\EZ********************************
HOME : PRINT : PRINT .
PRINT "ENTER STUDENT NUMBER
PRINT : PRINT : INPUT NUMB
REM FIND STUDENT RECORD NUMBER
PT = SP
IF PT = 0 THEN GOTO 970
IF NUMB < SNDX(PT,2) TX?EN IK
IF NUMB > SNDX(PT,2) THEN IK

w =

940

950

960

970

980

990

1000
1010
1020
1030
1040
1050
1060
1070
1030
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400

IF NUMB = SNDX(PT,2) THEN GOTO 1000
PT = SNDX (PT, IK)
GOTO 910
REM STUDENT IS NOT IN DATA BASE
GOSUB 2490
GOTO 1800

REC = SNDX(PT, 4)

TREC = REC

PRINT D$; "OPEN STUDENT-SCHEDULE,L104"

FORI =1 TO 7

BYT =6 + (I - 1) * 14

PRINT DS$; "READ STUDENT-SCHEDULE,R";REC;",B";BYT
INPUT SCHD(I)

NEXT I

PRINT DS; "CLOSE STUDENT-SCHEDULE"

HOME : PRINT : PRINT

PRINT "STUDENT ";NUMB;" CURRENT SCHEDULE IS:": PRINT

PRINT "PERIOD CLASS"

FORI = 1 TO 7

PRINT

PRINT " ";I;" ",SCHD(I)
NEXT I

PRINT : PRINT
INPUT "ENTER PERIOD, NEW COURSE " ; PN, COURSE
CNUMB = SCHD (PN)
FLAG = 1
GOSUB 2630
IF FLAG = 3 THEN GOTO 1720
FLAG = O -

h = COUR
gg?gépgg:"OPEN STUDENT- SCHEDULE,L104"
BYT = 6 + (PN - 1) * 14
PRINT D$; "WRITE STUDENT-
PRINT SCHD (PN)
REM UPDATE CLASS-INFO RELATION .
PRINT D$; "CLOSE STUDENT-SCHEDULE
REM UPDATE OLD CLASS LIST .
PRINT DS$; "OPEN CLASS-INFO,L225
REM DECREMENT CSIZE
PRINT D$; "READ CLASS-
INPUT CSIZE
CSIZE = CSIZE - 1
PRINT DS$; "WRITE CLASS-—
PRINT CSIZE
FOR I = 1 TO (CSIZE + 1)

yr = 15 + (I - 1) * 6 -
gR?NT D$; "READ CLASS—INFO,R";REC, ,B";BYT

SCHEDULE,R" ; TREC;",B";BYT

INFO,R";REC;",Bl2"

INFO,R";REC;",BIZ“

90

1410
1420
1430
1440
1450
1460
14790
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1725
1726
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850

INPUT LST(I)
NEXT I
REM FIND AND DELETE STUDENT
FORJ = 1 TO (CSIZE + 1)
IF NUMB = LST(J) THEN GOTO 1470
NEXT J
IF J = (CSIZE + 1) THEN GOTO 1540
FOR I = J TO CSIZE
BYT = 15 + (I - 1) * 6
PRINT D$; "WRITE CLASS-INFO,R";REC;",B";BYT
PRINT LST(I + 1)
NEXT I
GOTO 1570
BYT = 15 + CSIZE * 6
PRINT D$; "WRITE CLASS—INFO,R";REC;",B";BYT
PRINT 0
REM ADD STUDENT TO NEW CLASS LIST
CNUMB = SCED (PN)
FLAG = 0
GOSUB 2630
PRINT D$; "READ CLASS-INFO,R";REC;",B12"
INPUT CSIZE
CSIZE = CSIZE + 1
PRINT DS; "WRITE CLASS—INFO,R";REC;",B12"
PRINT CSIZE
BYT = 15 + (CSIZE - 1) * 6
PRINT DS$; "WRITE CLASS-INFO,R";REC;",B";BYT
PRINT NUMB
PRINT DS$; "CLOSE CLASS—INFO"
GOTO 1740
PRINT D$; "CLOSE CLAss—I§Fo"MB
: INT "STUDENT " ;NUMB;
ggigg . §§ NOT ENROLLED IN COURSE " ;COURSE;
PRINT " 1IN PERIOD ";PN

bous ;P RINT PRINT
HOME : PRINT : P : I
PRINT "DO YOU WANT TO MAKE ANY MORE CHANGES"

PRINT " FOR THIS STgDENT o
INPUT "...(Y/N)..";A
IF AS = "Y" THEN GOTO 1090

IF AS Z > "N" THEN GOTO 1750

et **

REM *%**%xx x*
REM SUBROUTINE TEACHER-

REM *********************

HOME : PRINT : PRINT .
PRINT "ENTER TEACHER NUMBER

SCHEDULE

2L

* k%

1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2155
2160
2170
2180
2185
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300

PRINT : PRINT : INPUT NUMB

PT = TP

IF PT = 0 THEN GOTO 1940

IF NUMB < TINDX(PT,2) THEN IK = 1

IF NUMB > TINDX(PT,2) THEN IK = 3

IF NUMB = TINDX(PT,2) THEN GOTO 1970
PT = TINDX (PT, IK)

GOTO 1880

REM TEACHER IS NOT IN DATA BASE
GOSUB 2490

GOTO 2480

TREC = TINDX(PT,4)

PRINT DS; "OPEN TEACHER-SCHEDULE,L31"
FORI =1 TO 7

BYT = 3 + (I - 1) * 4

PRINT D$; "READ TEACHER-SCHEDULE,R";TREC;",B";BYT
INPUT SCHD (I)

NEXT I

PRINT D$; "CLOSE TEACHER-SCHEDULE"
HOME : PRINT : PRINT : PRINT

PRINT "TEACHER ";NUMB;" CURRENT SCHEDULE IS:

PRINT : PRINT "PERIOD CLASS"
FORI =1 TO 7

PRINT

PRINT I;" ";SCHD(I)

NEXT I

PRINT : PRINT
INPUT "ENTER PERIOD, NEW COURSE"; PN, COURSE

0
IF SCHD(PN) < > COURSE THEN GOTO 218
PRINT "TEACHER ALREADY ASSIGNED TO CLASS
PRINT " 1IN PERIOD ";PN

INPUT "PRESS RETURN TC CONTINUE";ZZ$
GOTO 2235

FLAG = 1

CNUMB = SCHD (PN)

GOSUB 26 30

IF FLAG = 3 THEN GOTO 2420

SCHD (PN) = COURSE .
PRINT D$; "OPEN TEACHER—SCHEDULE,L3_L"

= + (PN - 1) * 4 ",
SIY&‘NT ?)S- "‘SJRITE.‘ TEACHER—SCHEDULE,R";TREC;",B ;s BYT

PRINT SCHD (PN)
PRINT DS$; "CLOSE TEACHER- SCHEDULE"

":CN

ROLD = REC
CNUMB = SCHD (PN)
FLAG = 0

GOSUB 2630

92

2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2415
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
26 40
26 50
2660
2670
26 80
26 90
2700
2710
2720
2730
2740
2750
2760

93

RNW = REC

PRINT D$; "OPEN CLASS-INFO,L225"

PRINT DS$; "READ CLASS-INFO,R";ROLD;",B4"

INPUT TEMP

IF TEMP < > NUMB GOTO 2380

PRINT D$; "WRITE CLASS-INFO,R";ROLD;",B4"

PRINT O

PRINT DS; "WRITE CLASS-INFO,R";RNW;",B4"

PRINT NUMB

PRINT DS$; "CLOSE CLASS-INFO"

GOTO 2430

PRINT : PRINT "TEACHER " ;NUMB;

PRINT " IS NOT IN COURSE ";COURSE;" IN PERIOD ";PN
PRINT : PRINT :"DO YOU WANT TO MAKE ANY MORE CHANGES"
PRINT : PRINT " FOR THIS TEACHER"

PRINT : INPUT "....(Y/N)....";A$

IF AS = "Y" THEN GOTO 2050

IF AS < > "N" THEN GOTO 2430

RETURN

REM R T R st s 22 22 L SRS e R b bbbl

REM SUBROUTINE MISSING-PERSON
REM A s 2 2 E it A R R 2 A LS L R kb

HOME : PRINT : PRINT : PRINT : PRINT : PRINT
IF ANS = 1 THEN PRINT "STUDENT";

IF ANS = 2 THEN PRINT "TEACHER";

PRINT " ";NUMB;" IS NOT IN THE INDEX"

PRINT : PRINT : PRINT : ;
PRINT "USE THE BUILD PROGRAM TO ENTER

PRINT : PRINT

PRINT "TEACHERS AND STUDENTS INTO THE DATA BASE"
PRINT : PRINT : PRINT : PRINT .

INPUT "PRESS RETURN TO CONTINUE";ZZ$

R
gg;ﬁu*bj**

D CLASS RECORD NUMBER
gg: *Egéfeez‘fff*fg*iw********************************

PT = CP

IF PT = 0 THEN GOTO 2750

IF CNUMB < CINDX(PT,2) THEN IK 1

IF CNUMB > CINDX(PT,2) THEN IK = 3 "

IF CNUMB = CINDX(PT,2) THEN GOTO 273
)

PT = CINDX(PT,IK
GOTO 2670
REC = CINDX(PT,4)

GOTO 2830
IF FLAG = 1 THEN GOTO 2820

NCLASS = NCLASS + 1

2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
28790
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3185
3190
3200
3210
3220

94

CINDX (LAST, IK) = NCLASS

CINDX (NCLASS,2) SCHD (PN)

CINDX (NCLASS, 4) NCLASS -1

REC = NCLASS -1

GOTO 2830

FLAG = 3

RETURN

REM ** %k kkhkhkhrkhrkhhkrhkhhhkhhkkhkh kb kkkrkkhrkhkkhkkhhhkkk

REM SUBROUTINE WRITE CLASS-INDEX

REM **khkkkkhkthkhkhhhkhkh kA khhhhrhhkhkhh ok hhkohkhkhhohkrhks
PRINT DS$; "OPEN CLASS-INDEX"

PRINT DS$; "OPEN CLASS-INDEX"

PRINT NCLASS: PRINT CP: PRINT OCBAL

FOR I = 1 TO NCLASS

FORJ = 1 TO 4

PRINT CINDX(I,J)

NEXT J: NEXT I

PRINT D$; "CLOSE CLASS—INDEX"

RETURN

REM **kkkkkhkhkkhkhdkhhhhhhkhhhrhodhhhhhhrhorhhhrdhrrdrsd

REM SUBOUTINE UPDATE-GRADES

REM ***kkkkhkkkkkrkhkhhhhhkhhrhhrhhhhhhhrhhhhrhrrkrrrdss
HOME : PRINT : PRINT : PRINT)

PRINT "1.....TO UPDATE MID-SEMESTER GRADE

PRINT : PRINT .,

PRINT "2.....TO UPDATE FINIAL-GRADE

PRINT : PRINT : PRINT .
PRINT "ENTER THE NUMBER OF YOUR CHOICE

INPUT BANS

IF BANS = 1 THEN GOSUB 32623

IF BANS = 2 THEN GOSUB 3

IF BANS < > 1 AND BANS < > 2 THEN GOTO 2990

HOME : PRINT : PRINT : PRINT .
INPUT "ENTER STUDENT NUMBER ; NUMB

PT = SP

IF PT = 0 THEN GOTO 3180

IF NUMB < SNDX(PT,2) THEi\II %? = 3

IF NUMB > SNDX(PT,2) THE =

IF NUMB = SNDX(PT,2) THEN GOTO 3210
PT = SNDX(PT,IK)

GOTO 3120 ", NOMB;

PRINT : PRINT "STUDENT
PRINT m IS NOT IN THE DATA BASE" I
PRINT INPUT "PRESS RETURN TO CONTINUE";Z

GOTO 3550
REC = SNDX(PT,4)

PRINT DS; "OPEN S'I'UDEN'I'—SCHEDULE,L104"

3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3385
3390
3400
3410
3405
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3670

95

FORI =1 TO 7

BYT = 6 + (I - 1) * 14

PRINT DS$; "READ STUDENT--SCHEDULE,R";REC;",B";BYT
INPUT SCHD(I)

BYT = Bl + (I - 1) * 14

PRINT D$; "READ STUDENT-SCHEDULE,R";REC;",B";BYT
INPUT GDE (I)

BYT = B2 + (I - 1) * 14

PRINT DS$; "READ STUDENT-SCHEDULE,R";REC;",B";BYT
INPUT COM(I)

NEXT I

PRINT DS$; "CLOSE STUDENT-SCHEDULE"

HOME : PRINT : PRINT

PRINT "CURRENT GRADES FOR STUDENT " ;NUMB;" ARE:"
PRINT : PRINT

PRINT "PERIOD"; TAB(11) "CLASS"; TAB(20)"GRADE";
PRINT TAB(30) "COMMENT"

FOR I =1 TO 7

PRINT

PRINT TAB(3)I; TAB(12)SCHD(I); TAB(22)GDE(I);
PRINT TAB(33)COM(I)

NEXT I

PRINT

PRINT "ENTER PERIOD, NEW GRADE, NEW COMMENT"
INPUT PN,GD,CM

IF PN > 7 OR PN < 1 THEN GOTO 3440

PRINT D$; "OPEN STUDENT-SCHEDULE,L104"

BYT = Bl + (PN - 1) * 14

PRINT DS$; "WRITE STUDENT-SCHEDULE, R";REC; ",B";BYT

PRINT GD
BYT = B2 + (PN - 1) * 14 .,
PRINT D$; "WRITE STUDENT-SCHEDULE, R" ; REC;

PRINT CM .
PRINT DS$; "CLOSE STUDENT-SCHEDULE

RETORN ***

-t olabellle MID-SEMESTER
POINTERS FOR -
RES *Eegfggfzﬁg*gzzf**********************************

", BY:;BYT

RE

Bl = 10

B2 = 13

RETURN e S L A A A R R R R b bk

REM *****************

REM SUBROUTINE BYTE-

REM **t****************

-MID-SEMESTER
POEEEEEE*************************

Bl = 15
B2 = 18
RETURN

96
3675 REM

36 80 REM ***kkhkhkhhhhkhkhhhhhhh Ak hhhhhhkhkhhhhdhhhhrdhhthdhhrdrs

3690 REM SUBROUTINE CHANGE-ROOM

3700 REM **
3710 HOME : PRINT : PRINT : PRINT

3720 INPUT "ENTER THE CLASS NUMBER ";CNUMB
3730 PT = CP

3740 IF PT = 0 THEN GOTC 3800

3750 IF CNUMB < CINDX(PT,2) THEN IK = 1

3760 IF CNUMB > CINDX(PT,2) THEN IK = 3

3770 IF CNUMB = CINDX(PT,2) THEN GOTO 3830
3780 PT = CINDX (PT, IK)

3790 GOTO 3740

3800 PRINT : PRINT : PRINT "COURSE ";CNUMB;
3805 PRINT ™IS NOT IN THE DATA BASE"

3810 INPUT "PRESS RETURN TO CONTINUE “;ZZ$
3820 GOTO 3970

3830 REC = CINDX(PT,4)

3840 PRINT DS$; "OPEN CLASS-INFO,L225"

3850 PRINT D$; "READ CLASS-INFO,R";REC;",B9"
3860 INPUT RN

3870 PRINT D$; "CLOSE CLASS-INFO"

3880 HOME : PRINT : PRINT : PRINT

3890 PRINT "CLASS ";CNUMB;" IS CURRENTLY SCHEDULED IN"
3900 PRINT : PRINT " ROOM ":RN

3910 PRINT : PRINT : PRINT : PRINT

3920 INPUT "ENTER NEW ROOM NUMBER " . NRM
3930 PRINT DS; "OPEN CLASS-INFO,L225" .
3940 PRINT DS; "WRITE CLASS—INFO,R";REC;",B9

3950 PRINT NRM i
3960 PRINT D$; "CLOSE CLASS—INFO

3970 RETURN

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
420
440
450
460
470

APPENDIX F
PROGRAM EMNTER GRADES

REM

REM PROGRAM TO ENTER GRADES

REM

DIM TINDX(50,4)

DIM CINDX (150,4)

DIM SCHD(7)

DIM GDE(35)

DIM COM(35)

DIM SREC(35)

D$ = CERS (4)

GOSUB 7 40

GOSUB 870

GOSUB 1000

HOME : PRINT : PRINT

PRINT : PRINT : PRINT : PRINT

PRINT "1.....FOR MID-SEMESTER GRADES"

PRINT : PRINT

PRINT "2.....OR FINIAL GRADES"

PRINT : PRINT

ImInro "ENTER NUMBER OF YOUR CHOICE";ANS

IF ANS = 1 THEN GOSUB 2@8

IF ANS = 2 THEN GOSUB

IF g:s < > 1 AND ANS < > % THEN GOTO 230
. PRINT : PRINT : PRIN

ggbrlg'r . ENTER THE TEACHER NUMBER"

PRINT : PRINT : PRINT

PRINT " PRIgg"

§§§§}¥ 555%%:2'1‘.:-9..1‘0 TERMINATE PROGRAM"

PRINT : PRINT

INPUT NUMB

IF NUMB = - 9 THEN GOTO 600
GosuB 1130

IF FTEAC = 1 THEN GOTO 530
GOsuB 1280

FOR KK = 1 TO 7
NUMB = SCHD (KK)
IF NUMB = 999 GOTO 510

97

480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930

98

GOSUB 1390

GOSUB 1530

GOSUB 1920

NEXT KK

GOTO 310

REM GIVEN TEACHER IS NOT IN DATA BASE

PRINT : PRINT : PRINT

PRINT "TEACHER ";NUMB;" IS NOT IN THE DATA BASE"
PRINT : PRINT : PRINT

INPUT "PRESS THE RETURN KEY TO CONTINUE";ZZ$

FTEACH = 0

GOTO 310

REM EXIT PROGRAM AND RUN MENU

PRINT DS; "RUN MENU,D1"

REM **kkkkkkkkhkkkkhhhkhk Ak hhhhhkkhkhhkkhhkhhkhkhkrhhhkbdk

REM SUBROUTINE TO SET BYTE PCINTERS
REM **kkkkkkhkhhhhhkhhkh kkkkkkkhhkkhhhkhkhk Ak kkh kA hkhk ks

Bl =10
B2 = 13
RETURN

REM **kkkhkhkhkdkhkkhkhdkhhkhhkhhhhhkhkddhddhkdhohddddddkdkrhdhhhddrdsk

TO SET BYTE POINTERS FOR FINIAL GRADES
gg: *§E§QET£§E***

Bl = 15
B2 =18
RETURN

REM R R R R R R R R R E TR Z R 2 2 2 R R RS S S LSS

D TEACHER- INDEX"
gg: *§E§§eg$?j§*;8*§fﬁ********************************
PRINT D$; "OPEN TEACHER-INDEX,D2"

PRINT D$; "READ TEACHER- INDEX
INPUT NTES: INPUT TP: INPUT OBAL
IF NTEA = O THEN GOTO 850

FOR I = 1 TO NTEA

FORJ = 1 TO 4

INPUT TINDX (I, J)

NEXT J: NEXT I]
PRINT D$; "CLOSE TEACHER-INDEX

t*t************-k***********************************
REM

C -INDEX"
e *EEEI}?EE’E?&]E*E?*EE{I}E*:Eéif**************************
REM *
PRINT DS; "OPEN cmsg—%gg)}g"
PRINT DS$; "READ CLASS-
INPUT NCLASS: INPUT CP: INI;gT OCBAL
IF NCLASS = 0 THEN GOTO 9

940

950

960

970

980

990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1382
1385

99

FOR I 1 TO NCLASS

FOR J 1l TO 4

INPUT CINDX (I, J)

NEXT J: NEXT I

PRINT D$; "CLOSE CLASS-INDEX"

RETURN

REM **kkkhkkhkhhhhhhhhhhhhhhhhhhhhhhhkkhkrkkhrdhhkkhhk

REM SUBROUTINE TO READ STUDENT-INDEX"
REM ***kkkkkkkkkkhkhkkkkkkhhhkhhkhkkkhhhkkhhhhkhh kA h Ak kk*
PRINT DS$; "OPEN STUDENT- INDEX"

PRINT DS$; "READ STUDENT- INDEX"

INPUT NST: INPUT SP: INPUT OBAL

IF NSTU = 0 THEN GOTO 1110

FOR I = 1 TO NSTU

FORJ = 1 TO 4

INPUT SNDX (I,J)

NEXT J: NEXT I

PRINT D$; "CLOSE ST-INDEX"

RETURN

REM **

E TO FIND TEACHER RECORD"
gg: *§EE§QE'££§**

PT = TP

IF PT = 0 THEN GOTO 1230

IF NUMB < TINDX(PT,2) THEN IK &

IF NUMB > TINDX(PT,2) THEN IK 3

IF NUMB = TINDX(PT,2) THEN GOTO 1260
PT = TINDX(PT, IK)

GOTO 1170

REM TEACHER IS NOT IN DATA BASE

FTEAC = 1

RETURN

REC = TINDX(PT,4)
RETUI:XE**
st TEACHER SCHEDULE

)| AD
gg: .EEEEQEHQE*H*EE*********************************

PRINT D$; "OPEN TEACHER—- SCHEDULE, L31"

FORJ =1 TO 7 I
- = el 1] oM ",
gg?NT g$'"éEAD TEACHER—SCHEDULE,R';REC, ;B :BYT

’
INPUT SCHD (J)
NEXT J .
PRINT D$; "CLOSE TEACHER—SCHEDULE
RETURN
REM
REM

1387
1350
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1635
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830

100

REM
REM **%khkkkhhkdhhhkdhhhhkrhhhhhkhhhhhhhhkhhhrhkhrhkdohrhhdohhkk

REM SUBROUTINE TO FIND CLASS RECORD
REM *hkkhkkhkhkhhhhhhhhhhkhhkkhkrhkhhkkkhkkkkrhhhkhkkhkhkk

PT = CP

IF PT = 0 THEN GOTO 1490

IF NUMB < CINDX(PT,2) THEN IK =1
IF NUMB > CINDX(PT,2) THEN IK = 3
IF NUMB = CINDX(PT,2) THEN 1510
PT = CINDX(PT, IK)

GOTO 1430

REM CLASS IS NOT IN DATA BASE
FLAG = 1

REC = CINDX(PT,4)

RETURN

REM Akhkkhkhkhkhkhkhkrrkhkkr kA h A kA Fhkhkrkdkhk kb hhkkhkxkdkrddrhdhkhdhd

TO READ CLASS-LIST
gg: *EEEE(BEEE{E**
PRINT D$; "OPEN CLASS-INFO,L225" . .
PRINT DS$; "READ CLASS-INFO,R";REC;",BO
INPUT INFO(1) . .
PRINT DS$; "READ CLASS-INFO,R";REC; " ,B4
INPUT INFO(2) . . .
PRINT DS; "READ CLASS-INFO,R";REC; , B9
INPUT INFO(4) . " .
PRINT DS; "READ CLASS- INFO,R";REC; , B7
INPUT INFO(3)
PRINT DS; "READ CLASS-INFO,R";REC;",B12"
INPUT INFO(5)
IF INFO(5) = 0 THEN 1740
FORI =1 TO INE‘O(SZ.r >
BYT = 15 + (I - 1) . . o,
PRINT DS$; "READ CLASS-INFO,R ;REC:;",B ;s BYT
INPUT LST(I)

NEXT I

GOTO 1740

FLAG = 1

PRINT DS$; "CLOSE CLASS- INFO"

i eI S S A R

REM Ak kk Ak hkhkkhkrhkxk

TINE TO FI
gg: *EEEEQE*EE********************

FOR I = 1 TO INFO(5)
PT = SP

IF PT = 0 THEN GOTO 1890 - 1
IF LST(I) < SNDX (PT,2) THES R
IF LST(I) > SNDX(PT,2) TH

ND STO-SCH REE?%EE***************

L

1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300

101

IF LST(I) = SNDX(PT,2) THEN 1870
PT = SNDX(PT,IK)

GOTO 1810

SREC(I) = SNDX(PT,4)

GOTO 1900

SREC(I) = -9

NEXT I

RETURN

REM ***

REM SUBROUTINE TO INPUT AND PRINT GRADES

REM *hkkkkdkkhkhhh Ak kkhhhhkhhhhkhhkkkkhhkkhhkkkkkkkkkkk
HOME : PRINT : PRINT

PRINT "CLASS TEACHER PERIOD RM# CSIZE"

PRINT

FOR I =1 TO 5

PRINT INFO(I);" "
NEXT I

PRINT : PRINT

IF INFO(5) = 0 THEN GOTO 2320
PRINT "ENTER GRADE, COMMENT"

~e

PRINT

PRINT "STUDENT GRADE,COMMENT"
PRINT

FOR J = 1 TO INFO(5)

PRINT LST(J);" ok

INPUT GDE(J) ,COM(J)

PRINT

NEXT J

PRINT D$; "OPEN STUDENT-SCHEDULE, L104"
REM WRITE TC STUDENT-SCHEDULE FILE

FOR I = 1 TO INFO(5)
PT = SP
IF PT = 0 THEN GOTO 2230

IF LST(I) < SNDX(PT,2) THEN IK = 1

IF LST(I) = SNDX(PT,2) THEN GOTO 2220

IF LST(I) > SNDX(PT,2) THEN IK = 3

PT = SNDX(PT,IK)

GOTO 2160

SREC(I) = SNDX(PT,4)

NEXT I

FOR I = 1 TO INFO(5) 5 14

BYT = Bl + (INFO(2)-1) Y i
PRINT DS$; "WRITE STUDENT-SCHEDULE,R";SREC(I);",B";BYT'
PRINT GDE(I) - 17 & 14

BYT = B2 + (INFO . . .
PRINT DS$; "WRITE STUDENT-SCHEDULE,R";SREC(I);",B";BYT
PRINT COM(I)

2310
2320
2330
2340

NEXT I

PRINT DS$;"CLOSE STUDENT-SCHEDULE"

INPUT
RETURN

"PRESS RETURN FOR THE NEXT CLASS";ZZ$

102

APPENDIX G

PROGRAM PRINT GRADES

100 REM

110 REM PROGRAM PRINT-GRADES
120 REM

130 REM

140 DS = CHRS (4)

150 DIM SNDX(500,4)
160 DIM CINDX(150,4)

170 DIM SCHD(7)

180 DIM TCH(7)

190 DIM GMT(7),GF(7)

200 DIM CMT(7),CF(7)

210 DIM CREC(7)

220 DIM STACK(500,2)

230 DIM ODR({500)

240 FLAG = 0

250 GOSUB 730

260 GOSUB 880

270 IF FLAG = 1 THEN GOTO 580

280 HOME : PRINT : PRINT

290 PRINT "THIS PRCGRAM PRINTS THE: "

300 PRINT : PRINT : PRINT

310 PRINT "l......MID-SEMESTER GRADES."

320 PRINT : PRINT : PRINT

330 PRINT "2.....FINIAL GRADES."

340 PRINT : PRINT : PRINT

350 PRINT "3.....TO END PROGRAM"

360 PRINT : PRINT : PRINT

370 INPUT "SNTER THE NUMBER OF YOUR CHOICE: ";ANS
380 IF ANS = 3 THEN GOTO 630

390 IF ANS < > 1 AND ANS < > 2 THEN GOTO 370
400 GOSUB 650

410 HOME : PRINT : PRINT : PRINT
420 PRINT "DO YOU WANT GRADES FOR:
430 PRINT : PRINT

440 PRINT "l.....ONE STUDENT"
450 PRINT : PRINT

460 PRINT "2.....ALL STUDENTS"
470 PRINT : PRINT

103

475
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800C
810
820
830
840
850
860
870
880
890
900
910
920

104

INPUT "ENTER THE NUMBER OF YOUR CHOICE: ";BANS
IF BANS = 1 THEN GOSUB 1030

IF BANS = 2 THEN GOSUB 1200

IF BANS < > 1 AND BANS < > 2 THEN GOTO 420
HOME : PRINT : PRINT

PRINT "DO YOU WANT TO RETRIEVE MORE"

PRINT : PRINT " STUDENT'S GRADES (Y/N)"
PRINT : PRINT : INPUT CS$

IF C$ = "Y¥Y" THEN GOTO 410

IF C$ = "N" THEN GOCTO 280

GOTO 510

REM EXIT PROGRAM AND RUN MENU PROGRAM

HCME : PRINT : PRINT

PRINT "THE CLASS INDEX HAS NOT BEEN BUILT"
PRINT:PRINT:PRINT " USE BUILD PROGRAM TO ENTER CLASSES"
PRINT : PRINT : INFUT "PRESS RETURN TO CONTINUE ";z2$
REM EXIT PROGRAM AND RUN MENU

PRINT D$; "RUN MENU,D1"

REM *k*kkkhhkhkkhhhrhhhhhhrhkhdhhhhhhrhhhhdkhhdhkhhhhihdhx

REM SUBROUTINE SET BYTE-POINTERS
REM **kkkkhkkihkkhhhhhhkhhhhhhhhhkhhhkkhdhhhhhhhdhhkrtkk

Bl = 10
B2 = 13
B3 = 15
B4 = 18
RETURN

REM AhkkxhkkhkhkhkkhkhhkhkThkhkhddhkhkdhkhhhhrhdhkhhkhrhkrxhkhhhdhhhhrtdx

REM SUBROUTINE READ STUDENT-INDEX
REM **hkkkkkkrkhhhhhhhrhhrdthhhdhhhhhhhhhhhhhhkhhkhksdsk
PRINT DS$; "OPEN STUDENT-INDEX,D2"
PRINT DS$; "READ STUDENT-INDEX"
INPUT NST: INPUT SP: INPUT OBAL

IF NST = 0 THEN GOTO 850

FCR I 1 TO NST

FOR J 1 TO 4

INPUT SNDX(I,J)

NEXT J: NEXT I

GOTO 860

FLAG = 1

PRINT DS$; "CLOSE STUDENT-INDEX"

RETURN
REM **kkkhkkkhkhhkhhkhhhkhhhhhhhhdhkhhhrhhkhhdrkhhhrhdks
“a

E UBROUTINE READ CLASS-INDEX"
ggg *E***

PRINT D$; "OPEN CLASS-INDEX"
PRINT DS$;"READ CLASS-INDEX"

930

940

950

960

970

980

990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1330
1390

105

INPUT NCLASS: INPUT CP: INPUT OCBAL
IF NCLASS = 0 THEN GOTO 1000
FOR I = 1 TO NCLASS
FOR J =1 70 4
INPUT CINDX(I,J)
NEXT J: NEXT I
GOTO 1010
FLAG =1
PRINT DS$; "CLOSE CLASS-INDEX"
RETURN
e R L e I

REM SUBROUTINE PRINT-GRADES (ONE STUDENT)
REM **
HOME : PRINT

INPUT "ENTER THE STUDENT NUMBER ";NUMB

FLAG = 0

GOSUB 1310

IF FLAG = 1 THEN GOTO 1150

GOSUB 1450

IF ANS = 1 THEN GOSUB 2340

IF ANS = 2 THEN GOSUB 2480

GOTO 1190

HOME : PRINT : PRINT

PRINT " STUDENT ";NUMB;" IS NOT IN THE DATA BASE"
PRINT : PRINT : PRINT

INPUT "PRESS RETURN TO CONTINUE F ";ZZ$

RETURN
REM **kkhkhkhkhkhkhkkhkhhhhhkhhhhkhhhhhkhhhrhhkhhrhdhrhhhkhhrhkks

REM SUBROUTINE PRINT-GRADES (ALL STUDENTS)

REM **khkkkkhhhhkkk kAR A A A kAR A A KA XX RXA Ak kXA AR Ik k kK *
GOSUB 1950

FOR JJ = 1 TO NST

REC = SNDX(ODR(JJ) ,4)

GOSUB 1450

IF ANS = 1 THEN GOSUB 2340

IF ANS = 2 THEN GOSUB 2480

NEXT JJ

RETURN
REM ***kkkkhhhkhhXkhhhhhhhhhhhkhhhhhrrhhhhhhrhrhrbkhdhdx

REM SUBROUTINE READ STUDENT-RECORD
REM **kkkkkkahhkhhkhkhhhhhhrhkhhk ko kxhkhhhkhhhhkkkkhkhk

PT = SP

IF PT = 0 TEEN GOTO 1430

IF NUMB < SNDX(PT,2) THEN IK =1

IF NUMB > SNDX(PT,2) THEN IK = 3

IF NUMB = SNDX(PT,2) THEN GOTO 1410

PT = SNDX(PT,IK)

1400
1410
1420
1430
1440
1450
1460
14790
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1595
1600
1610
1615
1620
1630
1640
1645
1650
1660
1665
1670
16 80
1690
1700
1710
1720
1730
1740
1750
1760
1770
17 80
1790
1800
1810
1820

106

GOTO 1350

REC = SNDX(PT,4)

GOTO 1440

FLAG = 1

RETURN

REM **kkkhkhhkdhhhhkhhkkhkkkbkhr ko kkhkkkhkhkhrkhhhhhiks

REM SUBROUTINE READ-GRADES

REM ***kkkkdhhkhhhhhhhhkhhhxhhhhdhhhhhhhhdhhhhhrhhhohhdkk
PRINT DS$; "OPEN STUDENT-SCHEDULE,L104"

PRINT DS$; "READ STUDENT-SCHEDULE,R";REC;",BO"
INPUT NUMB

FOR I =1 TO 7

BYT = 6 + (I - 1) * 14

PRINT DS$; "READ STUDENT-SCHEDULE,R";REC;",B";BYT
INPUT SCHD(I)

NEXT I

PRINT DS$; "CLOSE STUDENT-SCHEDULE"

GOsSUB 1720

PRINT DS$;"OPEN STUDENT-SCHEDULE,L104"

FOR I =1 TO 7

BYT = Bl +(I-1)*14

PRINT D$; "READ STUDENT-SCHEDULE,R";REC;",B";BYT
INPUT GMT(I)

BYT = B2 + (I-1) * 14

PRINT D$; "READ STUDENT-SCHEDULE,R";REC;",B";BYT
INPUT CMT(I)

IF ANS = 1 THEN GOTO 1690

BYT = B3 + (I-1) * 14

PRINT DS$; "READ STUDENT-SCHEDULE,R";REC;",B":BYT
INPUT GF(I)

BYT = B4 + (I-1) * 14

PRINT DS;"READ STUDENT-SCEHEDULE,R";REC;",B";BYT
INPUT CF(I)

NEXT I

PRINT D$;"CLOSE STUDENT-SCHEDULE"

RETURN

REM e X 222 R R R A R R R R b b

REM SUBROUTINE READ CLASS-DATA

REM B T T 2 st a2 22 2 2 L R L AR L AL L bbb
PRINT D$;"OPEN CLASS-INFO,L225"

FOR I =1 TO 7

CNUMB SCHD(I)

PT = CP

IF PT = ¢ THEN GOTO 1910

IF CNUMB < CINDX(PT,2) THEN IK =1

IF CNUMB > CINDX(PT,2) THEN IK = 3

IF CNUMB = CINDX(PT,2) THEN GOTO 1830

1830
1840
1850
1860
1870
1880
1890
1960
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290

107

PT = CINDX (PT, IK)

GOTO 1790

CREC = CINDX(PT,4)

PRINT D$; "READ CLASS-INFO,R";CREC;",B4"
INPUT TCH(I)

PRINT DS$; "READ CLASS—INFO,R"; CREC°" B9 "
INPUT RM(I)

GOTO 1920

TCH(I) = = 1:RM(I) = -1
NEXT I

PRINT D$; "CLOSE CLASS-INFO"
RETURN

REM * %k hk Ak dhkA A XA KA XA A AR AA A ER A A XA A AN LA hd Ak khhkhhkhxk

REM SUBROUTINE IN-ORDER

REM *kkkhkhhkhhhhhhkkkhhhhhdhk kA khhhhhkhhkhhkhhhhkhkdhx
PT = SP

IF SNDX(PT,1) < > 0 THEN GOTO 2110

LN = LN + 1

ODR(LN) = PT

D=1
GOSUB 2170
D =20

PT = SNDX(PT,3)

IF PT < > 0 THEN GOTO 1990

GOSUB 2240

IF D = 3 THEN GOTO 2160

IF D = 1 THEN GOTO 2070

GOTO 2000

D = 2

GOSUB 2170

D=0

PT = SNDX(PT,1)

GOTO 1990

RETURN ‘
REM ***x

REM SUBROUTINE PUSH-STACK

REM **kkkhkatkkhkxh Rk ARk hhrkhhrhhhkhhhhhrkhehhkkhhhkrrrnds
LST = LST + 1
STACK (LST,1)
STACK (LST,2)
RETURN erx
REM *kkkkkkdrkhkkhkhrhhrhrhhhhdhhokkhhkrhkhhhrkdhdhdds

REM SUBROUTINE PUSH-STACK
REM ***%kkhkkhkrhhkhhkhhhhhdhhhhhhhhhhhhrkhrhhhhrdrdhdrs

IF LST = 0 THEN GOTO 2320
PT = STACK(LST,1)
D = STACK(LST,2)

PT
D

2300
2310
2320
2330
2335
2340
2350
2360
2370
2380
2390
2400
2405
2410
2420
2430
2435
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2545
2550
2555
2558
2560
2570
2580
2585
2587
2590
2600
2610
2620

108

LST = LST - 1

GOTO 2330

D =3

RETURN

REM

REM **kkkkhhhkkhhhhh bk ok krhhh kA Ak hhkhkkhkhkhhrkkhkhkk

REM SUBROUTINE PRINT MID-SEMESTER GRADES

REM *H *khkdhkkhhhkkrkk kA Rk hhhdkkkh ko hkkhkkhhhhkhhk ko k ks k
HOME : PRINT

PRINT "MID-SEMSESTER GRADES FOR STUDENT: ";NUMB

PRINT : PRINT

PRINT "PER";TAB(8) ;"CLASS";TAB(16);"TEA"; TAB(22);
PRINT "RM"; TAB(27);"GR"; TAB{ 32);"COM"

FOR I =1 TO 7

PRINT

PRINT TAB(1)I; TAB(9)SCHD(I); TAB(16)TCH(I);
PRINT TAB(22)RM(I); TAB(27)GMT(I); TAB(32)CMT(I)
NEXT I

PRINT : PRINT

INPUT "PRESS RETURN TO CONTINUE: ";ZZI$

RETURN

REM **kkkhhhkkhkhk Ak kAR AKR AR A A KAk hkhkhhhkhhkkh ok khkk

REM SUBROUTINE TO PRINT FINIAL-GRADES

REM ***dkkxktkkkhkhrkhrhrhhkkhhhhrhhrorrrrhhkkhrodirrssk
HOME : PRINT

PRINT "FINIAL GRADES FOR STUDENT: ";NUMB

PRINT : PRINT

PRINT TAB(22) "MID"; TAB(26) "MID"; TAB(33) "FIN";
PRINT TAB(38)"FIN"

PRINT "PER"; TAB(6) "CLASS"; TAB(13)"TEA"; TAB(18)
PRINT "RM";TAB(22) "GR"; TAB(26) "COM"; TAB(33) "GR";
PRINT TAB(38) "COM"

FOR I =1 TO 7

PRINT

PRINT TAB(2)I; TAB(7)SCHD(I); TAB(13)TCH(I);
PRINT TAB(18)RM(I); TAB(22) GMT(I); TAB(27)CMT(I);
PRINT TAB(33)GF(I); TAB(39)CF(I)

NEXT I

PRINT : PRINT

INPUT "PRESS RETURN TO CONTINUE: ";ZZ%

RETURN

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
£70

APPENDIX

PROGRAM RETRIEVE CLASS LISTS LISTING

REM PROGRAM TO RETREIVE CLASS LIST
REM

DIM CINDX(500,4)

DIM TINDX(50,4)

DIM INFO(5)

DIM LST(35)

DIM STACK(150,2)

DIM ODR(150)

D$ = CHRS (4)

GOSUB 440

GOSUB 5490

HOME : PRINT : PRINT

PRINT "THIS PROGRAM WILL FIND CLASS LIST FOR:"
PRINT : PRINT

PRINT "1.....CLASS LIST (ONE CLASS)
PRINT : PRINT

PRINT "2.....CLASS LISTS (ONE TEACHER)"
PRINT : PRINT

PRINT "3.....CLASS LISTS (ALL CLASSES)"
PRINT : PRINT

PRINT "4.....T7O0 EXIT PROGRAM"

PRINT : PRINT

PRINT : PRINT

INPUT “THE NUMBER OF YOUR CHOICE ";ANS
IF ANS = 1 THEN GOSUB 670

IF ANS = 2 THEN GOSUB 820

IF ANS = 3 THEN GOSUB 1160

IF ANS = 4 THEN GOTO 390

GOTO 210

REM EXIT PROGRAM AND RUN MENU

PRINT D$; "RUN MENU,D1"
REM *Axkkkkkkahkkhhh Ak chhhahkh bk hdddkdhhdhbdhhdhhhhhdrdi

f E READ TEACHER INDEX
zgg *EEEE?EEff***

PRINT DS;"OPEN TEACHER-INDEX,D2"
PRINT D$;"READ TEACHER-INDEX"
INPUT NTEA: INPUT S1P: INPUT KOBAL
IF NTEA = 0 THEN GOTO 520

109

480
490
500
510
520
530
540
550
560
570
580
550
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
850
810
820
830
840
850
860
870
880
890
900
910
920

110

FOR I = 1 TO NTEA
FOR J = 1 TO 4

INPUT TINDX(I,J)

NEXT J: NEXT I

PRINT D$; "CLOSE TEACHER-INDEX"

RETURN

REM ¥k kkhkkdkhhhhhkh ok ks h ok kkkhkkkh ko khhhkhkkkhkkkkkkkhhk

REM SUBROUTINE TO READ CLASS-INDEX

REM *xk okt khhkh sk kkok ok k h kA Ak kA kA Ak Ak ke ok kkkh ok Ak ke kkkkkk
PRINT D$; "OPEN CLASS-INDEX"

PRINT D$; "READ CLASS—INDEX"

INPUT NCLASS: INPUT S2P: INPUT OCBAL

IF NCLASS = 0 THEN GOTO 650

FCR I = 1 TO NCLASS

FOR J =1 TO 4

INPUT CINDX(I,J)

NEXT J: NEXT I

PRINT D$; "CLOSE CLASS-INDEX"

RETURN

REM * Ak ko h ko k kA A A A A A A A AR A A AR A A A A AR Ak kA ke ko k khhkkhk*

REM SUBROUTINE FOR CLASS

REM **kkhkkkhkkkkhhk kA A AR A AR A A A AR A ARk Ak Ak Ak kA kh ke khrhkkhkk
HOME : PRINT : PRINT

INPUT "CLASS NUMBER: ";NUMB

PT = S2P

GOSUB 1860

IF FLAG = 1 THEN GOTO 780

GOSUB 1470

GOSUB 1710

GOTO 810

PRINT : PRINT : PRINT "CLASS IS NOT IN THE DATA BASE"
FLAG = 0

PRINT :PRINT

INPUT "PRESS THE RETURN KEY TO CONTINUE:";ZZ$

RETURN

REM **kkkkkdkhhhkkkk kA ARk k kb A d AR Ak ARk kA Xk k kR A KA KKKk K

REM TEACHER SUBROUTINE

REM **khkkdhdhhhhhArkkk kA ARRE AR AR KA KRR AR AR Ak kAR XK &
HOME : PRINT : PRINT

PRINT "ENTER TEACHER NUMBER"
PRINT : PRINT : INPUT NUMB

PT = S1P

IF PT = 0 TEEN GOTO 1110

IF NUMB < TINDX(PT,2) THEN IK
IF NUMB > TINDX(PT,2) THEN IK
IF NUMB TINDX(PT,2) THEN 950

nu
w

930

940

950

960

970

980

990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390

111

PT = TINDX (PT, IK)

GCTO 890

REC = TINDX(PT,4)

PRINT DS$; "OPEN TEACHER-SCHEDULE,L31"

FOR I =1 TO 7

BYT = 3 + (I - 1) * 4

PRINT DS$; "READ TEACHER-SCEEDULE, R";REC;",B";BYT
INPUT SCHD(I)

NEXT I
FOR JJ =1 TO 7
PT = S2P

NUMB = SCHD(JJ)

IF NUMB = 999 THEN GOTO 1090

GOSUB #21860

GOSUB 1470

GOSUB 1710

NEXT JJ

GOTO 1150

PRINT : PRINT : PRINT

PRINT " TEACEER IS NOT IN THE DATA BASE"
PRINT : PRINT

INPUT "PRESS THE RETURN KEY TO CONTINUE: ":Z28

RETURN
REM **kkkhkkhkkhkhhhkhhkhhhhkkhkhhkhhkkrhdhrhdkhhhkhhkkrk

REM PROCESS ALL TEACERS-ALL CLASSES
REM **khkkhkhhhhhkhkhkhkkk kA Xk hhhhkkhkkhhhhkhhhkhdkhhkotkk
IF NTEA = 0 THEN GOTO 1390

GOSUB 1990

FOR IJ = 1 TO NTEA

PRINT D$; "OPEN TEACHER-SCHEDULE,L31"
FOR IK =1 TO 7

BYT = 3 + (IK - 1) * 4

PRINT DS$; "READ TEACHER-SCHEDULE,R";ODR(IJ);",B";BYT
INPUT SCHD(IK)

NEXT IK

PT = S2P

FOR J =1 TO 7

NUMB = SCHD(J)

IF NUMB = 999 THEN GOTO 1350

GOSUB 1860

GOSUB 1470

GOSUB 1710

NEXT J

NEXT IJ

PRINT DS; "CLOSE TEACHER-SCHEDULE"

GOTO 1450
HOME : PRINT : PRINT : PRINT

1400
1410
14290
1430
1440
1450
1460
1470
1480
1450
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
16 80
1690
1700
1710
1720
1730
1740
1750
1755
1760
1770
1773
1775
1780
1790
1800
1810
1820
1830

112

PRINT "THE TEACHER INDEX HAS NCT BEEN BIULD"
PRINT : PRINT : PRINT

PRINT "BUILD TEACHER-INDEX USING BUILD PROGRAM.
PRINT : PRINT : PRINT

INPUT "PRnESS RETURN TO CONTINUE ";2Z$

RETURN

D$ = CHRS (4)

REM *%*kkkkkkkhkdhkhkhhdhkhhrrdhhhdrhhhhdrddhrhrdhrhhhhthhkhrkk

REM SUBROUTINE TO READ CLASS RECORD
REM RS2 E 2R R R R SRR RS EEEILE SRR R R RS SEE S LS R RS LS EEE S
PRINT D$; "OPEN CLASS-INFO,L225"

PRINT DS$;"READ CLASS-INFO,R";REC;",BO"

INPUT INFO(1)

PRINT D$;"READ CLASS—-INFO,R";REC;",B4"

INPUT INFO(2)

PRINT D$;"READ CLASS-INFQ,R";REC;",B7"

INPUT INFO(3)

PRINT DS$;"READ CLASS-INFO,R";REC;",B9"

INPUT INFO(4)

PRINT D$;"READ CLASS-INFO,R";REC;",Bl2"

INPUT INFO(5)

IF INFO(5) = 0 THEN GOTO 1670

FOR I = 1 TO INFO(5)

BYT = 15 + (I - 1) * 6

PRINT D$;"READ CLASS-INFO,R";REC;",B";BYT

INPUT LST(I)

NEXT I

PRINT D$; "CLOSE"

GOTO 1700

FLAG = 1
IR{E;I;UI*QE***************************‘k********************

t DISPLAY SUBROUTINE
gg; **ii**

HOME)
PRINT "CLASS"; TAB(9)"TEACHER"; TAB(19) "PERIOD";

PRINT TAB(28) "RM#"; TAB(34) "CSIZE"
PRINT : PRINT

PRINT TAB(1) INFO(1)
PRINT TAB(21) INFO(3)
PRINT TAB(28)INFO(4)

PRINT : PRINT
IF INFO(5) = 0 THEN GOTO 1840

FOR I = 1 TO INFO(5)
PRINT LST(I)

NEXT I

PRINT : PRINT

TAB(11) INFO(2);

~e “we we

TAB(35) INFO(5)

1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300

113

INPUT "PRESS THE RETURN KEY TO CONTINUE: ";Z2ZS
RETURN
REM *hkkkhkhkkkhhkhdkhhhrhhhhhhhkhhh kb khhkhhhhhhhkkhkkhhrkk

REM SUBROUTINE TO FIND RECORD NUMBER"

REM **kkkhkkkkkhhhkhhkhhhhhhhkkhhkhhdkhhhhhkhh Ak khhhhhkk
IF PT = 0 THEN GOTO 1950

IF NUMB < CINDX(PT,2) THEN IK
IF NUMB > CINDX(PT,2) THEN IK
IF NUMB = CINDX(PT.,2) THEN 1970

PT = CINDX(PT, IK)

GOTO 1890

REM NUMB IS NOT IN INDEX

FLAG = 1

REC = CINDX(ET,4)

RETURN

REM **kkkkhhhhhhhhkkkkhhAAARA AR A AR A AKKAA R KR AR ARk kh*h Kk

REM SUBROUTINE IN ORDER

REM **
LST = 0:PT = S1P

IF TINDX(PT,1l) < > 0 THEN GOTO 2190
PRINT PT

IY = IY + 1

ODR(IY) = TINDX(PT,4)

PRINT ODR(IY),IY

D=1

REM PUST THE STACK

GOSUB 2270

D =20

PT = TINDX(PT,3)

IF PT < > 0 THEN GOTO 2030

REM POOP THE STACK

GOSUB 2340

IF D = 3 THEN GOTO 2240

IF D = 1 THEN GOTO 2140

GOTO 2050

D = 2

GOSUB 2270

D =20

PT = TINDX(PT,1l)

GOTO 2030

FOR KK =1 TC 7

PRINT ODR(KK});
gg};T*EE***

REM SUBROUTINE PUSH

REM **

LST = LST + 1

1
3

2310
2320
2330
2340
2350
2360
2370
2330
2390
2400
2410
2420
2430

PT
D

STACK (LST,1)
STACK (LST,2)
RETURN

REM *hkhkkkhkhhkrhkkkkhhkhkkhhk kA Ak Ak kkkh bk kkk kA kR khhh k&

REM SUBROUTINE POP

REM **hktkhkkkhhkhhkhkhhkhhkhhhhhhkhkkhkhkhkhkkhhhhkhkkkkh
IF LST = 0 THEN GOTO 2420

PT = STACK(LST,1)

D = STACK(LST,2)

LST = LST -1

GOTO 2430

D =3

RETURN

(1)

(2)

\/(4)

(5)

(6)

REFERENCES

DATE C. J.: An Introduction to Data Base System.
Allyn and Bacon, 1979.

Riley M. J. : Management Information Systems.
Holden-Day, 1981.

Scott, George I1.: A Data Base for Your Company?
California Management Review: 13/1, 1976.

Eutt A. T. F.: A Relational Data Base: Management
Sytem. John Wiley & Sons Ltd., 1979.

Codd E. F.: A Relational Model of Data for Large
Shared Data Banks. Communications of the ACM:
13/€é, June 1970,

Alfonso F, Cardenas: Data Base Management Systems:
Allyn and Bacon, 1979.

113

	Copyright Statementr1
	1981Waecheterocr
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122

