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ABSTRACT

Tera Daun Smith

Data Mining EPA’s Green Vehicle Guide:
Profiling and Prediction Using

k-Means Clustering and
Neural Networks

August 2012

This thesis is designed to study data mining techniques and explore the predictive value

of data from the EPA’s Green Vehicle Guide which supplies pertinent information regarding

environmental performance for each vehicle sold in the United States from 2000 to 2010.

Using IBM R© SPSS R© Modeler to discover patterns most advantageous to statistical anal-

ysis of the data set, each vehicle’s various variables and scores in relation to emission, air

quality and SmartWay status are modeled using two techniques, k-means clustering and ar-

tificial neural networks. Predictions based on analysis of this data set are as expected with

all models claiming greenhouse gas scores to be the greatest predictor variable for Smart-

Way status. Therefore, technological focus to improve greenhouse gas scores by reducing

emissions is essential if SmartWay status for vehicles and environmental consciousness is a

goal.
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CHAPTER I

INTRODUCTION

Data mining is the process of discovering interesting information or patterns in data, for-

merly unidentified or hidden, and discovering the relationships between them. The process

can find potentially useful predictor variables and trend patterns when large, observational

data sets or repositories, such as databases and data warehouses, are mined (Larose, 2005).

The Cross-Industry Standard Process for Data Mining, or CRISP-DM, sets the stan-

dard process for business or research ventures to incorporate data mining into their overall

problem-solving approach. This is a six phase iterative and adaptive process where each

phase builds from one phase to the next and also revisits phases as necessary for reassessment

and modification. The six phases are Business/Research Understanding, Data Understand-

ing, Data Preparation, Modeling, Evaluation and Deployment (Larose, 2005, p.5-6).

The first phase of the process is the Business or Research Understanding phase where

objectives, limitations and a preliminary solution strategy are defined. Questions are asked

to aid in defining a research objective. What processes will the data undergo? What

data mining tasks will be best suited for analysis? Where do statistics and data min-

ing overlap or more specifically, how is statistics used in data mining and vice versa?

The Environmental Protection Agency (EPA) Green Vehicle Guide for Consumers pro-

vides the data set under investigation for this study which is available to the public at

http://www.epa.gov/greenvehicles.

Understanding the data is the primary task of the second phase of the CRISP-DM

process. Data is collected and explored to familiarize oneself with the data set, its quality

and any patterns noticeable on the surface. Overall, the data set in this study is a large,

complete, high quality set with limited missing values and several variables to consider for

analysis.
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Some research questions of particular interest regarding this study are as follows: What

are the implications of the EPA scores data set and what pattern subsets can be observed

in the study?

To use data mining tools to find specific patterns and trends, the data set must be cleaned

by deleting duplicate records, handling missing values, and integrating similar variables of

records. This process is a part of the Data Preparation phase, the third phase, and can

be the most time consuming. Exploratory Data Analysis (EDA) of the variables in this

study will be analyzed using IBMR© SPSS R© Statistics 19. Once the data has undergone this

process, different data mining techniques such as association rules, classification, clustering

and segmentation can be applied. During this phase, MicrosoftR©Excel will be used to clean

and prepare the data for the next phase in the process, the modeling phase. The modeling

phase incorporates the selection and use of one or more modeling techniques for optimized

conclusions. Previous phases may be revisted to prepare data as needed for use with a

particular technique.

For modeling data, IBM R© SPSS R© Modeler will be used to discover patterns most ad-

vantageous to statistical analysis of the data set. Modeler is a graphical interface that aids

in visualizing the data-mining process, accesses predictive capabilities using IBM R© SPSS R©

Statistics data transformation, conducts hypothesis testing and reports capabilities on a

single interface. Once transformation and predictive variables are identified, models can be

built and employed. In our data set, each vehicle has various variables and scores in relation

to emission and air quality. A SmartWay status is awarded to those considered to be clean,

green vehicles. In this paper, these data will be mined and modeled for the data-mining

problem previously defined in the first phase.

The final stages of processes are the Evaluation and Deployment phases. Effective

models are assessed for potential application and in that case the models will be used

and simple deployments made such as generating reports and graphs with more complex

statistical analysis and prediction. Ineffective models wil be reassessed and/or eliminated.
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Problems in Environmental Research

A common problem in data mining in general and more specifically in the field of

environmental research is the problem of missing values. Many environmental data sets

date back to a pre-technological era where a complete data set will have variables from

post-technology combined with pre-technological data. These types of data sets contain

values and new variables collected more recently integrated with dated collections resulting

in missing values where data for variables were not collected or recorded due to lack of

technology. Also, human or computer errors in data entry and collection are important

factors limiting accurate and effective data analysis and mining pattern deficiencies. Other

problems include structural organization of variables within the data set. In particular, the

EPA data set under study contains variables on a single line that should be separated into

two lines of usable information and scores. These problems will be addressed in the most

efficient way by cleaning and preparing the data set in MicrosoftR© Excel. Variable values

not addressed manually in Excel will be taken care of internally with the modeling software

using various algorithms and transformations explained in detail by way of a case study of

the process.

Case Study: EPA Green Vehicle Guide Data

The proposed data set comes from the EPA’s Green Vehicle Guide which supplies per-

tinent information regarding environmental performance for each vehicle sold in the United

States from 2000 to 2010. The guide itself was created as a database for users to customize a

search to access and compare up to three vehicles at a time based on fuel economy and emis-

sion scores and can be found on the web at http://www.epa.gov/greenvehicles/Index.do.

Variables include but are not limited to various makes and models and their specific

ratings with regards to standardized emissions in relation to air pollution, greenhouse gas,

fuel economy and SmartWay scores.

Comparisons of air pollution and greenhouse gases use scores ranging from 0-10 for

emission ratings. Major pollutants in vehicle exhaust are monitored by emission standards

set up by the EPA. These include types of hydrocarbon and other carbon-containing com-
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pounds such as non-methane organic gases (NMOG), non-methane hydrocarbons (NMHC),

and total hydrocarbons (THC). Nitrogen oxides (NOx) combine with hydrocarbons to form

smog and particulate matter (PM), which are tiny particles of solid matter that inbed in

the lungs, are also measured. Further air contaminants are carbon monoxide (CO) and

formaldehyde (CH2O), a carcinogenic lung irritant . A vehicle with a score of 10 emits none

of the pollutants and is considered the cleanest.

The greenhouse gas score refers to CO2 emissions. Vehicles with greater fuel economy,

using less gas to travel the same distance than other vehicles, have a higher greenhouse gas

score. The fuel economy (mpg) rating variable combines city and highway gas milieage to

a single score by regression analysis. The combined score, or average of city and highway

gas mileages, references an approximate relation between the fuel economy ratings and

greenhouse gas scores. Again, a higher score is cleaner.

The SmartWay variable specifies the vehicles with the best environmental performance

measured against other vehicles. The EPA verifies that these vehicles have exceeded envi-

ronmental thresholds on air pollution and greenhouse gas scores.

Data Mining Tasks and Proposed Statistical Models

Data mining tasks applied in this study are clustering and classification, using the k-

means clustering method, and estimation and prediction using a neural network model.

Clustering methods attempt to group records based on similarities in the variables. The

k-means method is a relatively fast method though it does not yield optimal results. In this

study, using the results of the k-means clustering method discussed in detail in Chapter IV,

variables from the Green Vehicle Guide will be classified by similarity to one another and

clustered as a preliminary step, then those results are used as inputs into a neural network.

This speeds the network modeling process by limiting the input variables by reducing the

number of variables to be smaller than the original variables.

Neural networks are modeled after animal brains’ feed forward network of layered levels

of neurons or nodes. At a minimum, a neural network consists of an input, output and one

or more hidden layers. The nodes in each layer connect to all the nodes of the next layer
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by edges. Each edge initially receives a randomly assigned weighted value. Combination

functions, which are frequently summations, and activation functions, most commonly sig-

moid functions, serve as nonlinear processes similar to the biological neurons in our own

brains, signaling and firing other neurons. Outputs from one layer become inputs to the

next layer in the network. This permits the model to have a more flexible range of tasks

including classification, estimation and prediction. This paper will include two neural net-

work models, one with inputs from the original data set and one with inputs obtained from

the k-means clustering model.

Summary

In conclusion, in the research understanding phase of this project, applications of knowl-

edge discovery patterns from mining the EPA Green Vehicle Guide data are used to create

classification and predictive models by means of k-means clustering and neural network

modeling. The process will be mostly hidden due to the propietary software, however,

mathematical analysis will be applied at each step from the modeling phase to the de-

ployment phase. Definitive assumptions may or may not be determined but the general

functions processes will be shown. The following chapters will include an in depth analysis

of the the Data Preparation Phase complete with an overview of the IBMR© SPSS R© Modeler

software, and creating models using the k-means clustering technique and artificial neural

networks.
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CHAPTER II

DATA PREPROCESSING

Data preprocessing is a preliminary stage in data mining and is essential to developing

sound models. Poor or insufficient data can skew outcomes and yield misleading results, if

any at all. Many problems observed in raw data sets are mistakes in data entry, ambiguous

and/or contradictory coding of variables, and missing values. A common rule of thumb

when planning a modeling strategy is “garbage in, garbage out,” meaning if the data fed

into a model is skewed then the output will be as well. Therefore, this preprocessing phase

is not only important but necessary if the final output is to be usable. The data set must

be as clean, organized and accurate as possible before applying any data mining tasks and

modeling techniques.

Variables Background

The data collected from the EPA was originally downloaded as a text file, and imported

to Excel with tab delimited settings and a general data format. The first task was to become

familiar with the data set. This meant looking over the variables and further researching

each according to the EPA at http://www.epa.gov/greenvehicles/Aboutratings.do.

The variables in the data set are as follows, including a few mentioned previously in the

first chapter:

• Model: vehicle makes and models from 2000-2010 and sold in the United States

• Displ: engine displacement by liters of air

• Cyl: cylinder values ranging from 4-12 cylinders

• Trans: transmission type (manual, automatic or semi-automatic and number of gears)

• Drive: drivetrain type (2WD or 4WD)

• Fuel: fuel type (gasoline or ethanol)
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• Sales Area: CA (California) or FA (any other state in the U.S.)

• Stnd: emissions standard levels defined by the EPA

• Stnd Description: emissions standard description defined by the EPA

• Underhood ID: vehicle model number

• Veh Class: vehicle class (SUV, pickup, small car, etc.)

• Air Pollution Score: calculated by EPA

• City MPG: fuel mileage measured by driving in the city

• Hwy MPG: fuel mileage measured by driving on the highway

• Cmb MPG: average MPG of city and hwy per model

• Greenhouse Gas Score: calculated by EPA

• SmartWay: yes or no status

These variables contain information and measurements representing the causes and ef-

fects of greenhouse emissions and pollution as the result of burning fossil fuels by indi-

vidual transportation (not including busses, vans, commercial delivery, etc.). Providing

a database for consumers to search for fuel efficient and clean vehicles is the main pur-

pose for the EPA’s formulation of this data set. Via EPA’s Green Vehicle Guide online

at http://www.epa.gov/greenvehicles/Index.do, searching for vehicles in general, vehicles by

type or the vehicles by state is simple and fast and gives values retrieved from the same

data set analyzed in this study.

For example, in searching for a vehicle in general, the year, state, make and model are

selected. The results for choosing the year 2009, Texas, Ford, and Explorer are shown in

Figure 1. Four types of Ford Explorers are listed with ranges of air pollution, fuel economy
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and greehouse score differences. None of the vehicles are SmartWay, because of low gree-

nouse scores and poor fuel economy. The best vehicle to choose from the list, however,

would be Explorer with a 4.6L, 6 cyl. engine and 2WD since out of the four listed, this

model has the best fuel economy value.

Figure 1. Vehicle search output

However, if you wanted to search for the greenest vehicle by state, the database allows

selection of the SmartWay status, an indicator of good environmental performance. In

particular, SmartWay Elite is selected to narrow the search and displays top performing

vehicles in Texas in 2009 and shown in Figure 2.

Figure 2. SmartWay elite search output
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Only two vehicles were top performers in 2009, the Honda Civic, and the Honda Civic

Hybrid, each with nearly perfect scores on gas mileage and greenhouse gas scores.

Scoring

Air pollution and greenhouse gas scores are based on fuel economy and emission levels

of each vehicle and range from 0 to 10. Fuel economy uses a combined highway and city

gas mileage calculated as:

MPG =
1

0.55
CityMPG + 0.45

HwyMPG

SmartWay status is determined by the best performance on both air pollution and

greenhouse scores and is limited only to vehicles from the same year and scoring basis.

These scoring thresholds are available to the public at the EPA’s Green Vehicle Guide

website, http://www.epa.gov/greenvehicles/Aboutratings.do.

Several resources are available to the public. Figure 3 represents air pollution scores

from emmisions standards for 2009 and 2010. All the vehicles in the guide meet standard

emission requirements for the EPA. Air pollution scores and vehicle identification status

are shown in Figure 3.

If a vehicle’s emission standard in the United States (excluding California) is identified

as Bin 1 then an air pollution score of 10 is assigned; such vehicles are therefore on their

way to gaining smartway status.

In California, this same vehicle with a ZEV emissions standard description would receive

a score of 10. Of importance is that in 2009, Bin’s 9,10 and 11 were phased out representing

a possible permanent reduction of low emission standards. With the data set ranging from

2000-2009, however, some vehicle models from previous years fit into the 2008 and earlier

standards as shown Figure 4.

9



Figure 3. Air pollution score 2009-2010

Figure 4. Air pollution score 2008 and earlier
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Raw Data

After reviewing the different aspects of the database including definitions and purposes,

the raw data were assessed. After importing the raw data into Excel, many problems were

apparent immediately. Figure 5 shows a portion of the raw data set with both formatting

and data entry errors.

Figure 5. Raw data
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The most noticible errors are missing values, which are labeled N/A. Another readily

apparent problem is the vehicles that are the same in all variable values, except differences

in fuel type. These differ in that one make and model will have two fuel types, one being

ethanol and the other gasoline. Each vehicle’s air pollution, various mpg and greenhouse

scores have individual scores for each type resectively. However, if the number value is less

than 12, they are being interpreted as dates instead of numbers. (See Figure 6).

Figure 6. Missing values and date errors

Therefore, the first task implemented involved conversion from dates to general number

values. Where dates were listed instead of numerical scores, they were formated to date

such that 6/6 would replace the original 6-June. The second task was to delete N/A values,

leaving a blank cell because the modeling software used to perform the datamining tasks in

this study cannot handle missing values as N/A. The results of this process can be seen in

Figure 7.

Figure 7. Clean data part 1
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The next task was to separate the vehicles with combined Ethanol/Gasoline fuel types

and their respective data. This step was the most time consuming but simple.

For every vehicle that had both an ethanol and a gasoline fuel choice, a new row would

be inserted as shown in Figure 8.

Figure 8. Clean data part 2 step 1

After all vehicles with these combined fuel types were separated with a new line, the

data was copied and pasted leaving ethanol on the top line due to correlation with the first

mpg values and emission scores on the line. The first number of each score stays on the

top line and the second number of each score was copied to the second data line so that

each score column contains a single fuel type and associated score. Once the numbers were

seperated per line they were still formatted in date format so each cell manipulated had to

be reformatted back to number with zero decimal places to fit with the other data. The

result is shown in Figure 9.

Figure 9. Clean data part 2 step 2
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Processed Data

After all the processing was complete, the final cleaned data set was prepared for mod-

eling. Figure 10 is a sample of the processed data and as shown. Fuel types have been

separated and listed individually, scores have been entered as appropriate values instead of

dates and all missing values are left blank.

Figure 10. Processed data

14



Exploratory Data Analysis

Since there is not any clear hypothesis regarding the relationships between the variables

in the data set, exploratory data analysysis (EDA) was performed using IBMR© SPSS R©

Statistics 19 and IBM R© SPSS R© Modeler softwares. Several interesting correlations and

interrelationships were discovered and a few target variables for modeling appeared as well.

First, correlations between the numerical variables, particularly air pollution and green-

house gas scores, as well as city, highway and combined gas mileages are compared in a

matrix scatter plot. Figure11 shows this scatter plot for these variables, and strong corre-

lations exist between greenhouse gas scores and the various types of gas mileages. The air

polution scores have no correlation and therefore can be modeled with the others. Some

caution may need to taken when modeling with gas mileages and greenhouse scores. Par-

ticularly, city and highway gas mileages could be eliminated because of the combined mpg

variable.

Figure 11. IBM R© SPSS R© Statistics 19 correlation matrix scatter plot
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Another variable to explore is SmartWay status proportions, which is a catagorical

variable. Each vehicle either has or doesn’t have a SmartWay status. A comparison of

SmartWay proportions are observed and shown in figure 12.

Figure 12. IBM R© SPSS R© Modeler SmartWay proportions

These proportions are quite different with 37.4% of vehicles having a SmartWay status

and 62.5% of vehicles not qualifying. Which variables have a relationship with or influence

SmartWay status?

A quick cross tabulation analysis, using IBMR© SPSS R© Statistics 19, compared Smart-

Way status with gas mileage, fuel type, air pollution score and greenhouse emmision scores

and yielded the following results. Figure 13 illustrates the relationship between SmartWay

status and combined fuel economy scores.

First of all, as one would expect, higher combined gas mileages had smartway status

beginning at 22 mpg, while all the disqualified SmartWay status vehicles had 21 mpg and

lower scores. However, a very small number of lower gas mileage vehicles did make Smart-

Way status, so gas mileage alone is definitely not a predictor variable, although highly

influential.
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Figure 13. IBM R© SPSS R© Statistics 19 SmartWay cross tab with cmb mpg

Figure 14 shows air pollution scores compared with SmartWay status. The most com-

mon air pollution score was 6.0 for vehicles with and without SmartWay status. Vehicles

without SmartWay specification ranged in scores from 1.0-9.5. Those with SmartWay sta-

tus ranged from 6.0-9.5 with no scores below 6.0. Air pollution scores have an apparent

correlation with SmartWay status as lower scores are not considered.

Greenhouse gas scores seem to carry the most weight with regard to gaining SmartWay

status, with a more definite split between higher and lower scores dispursed according to

SmartWay status as shown in Figure 15. SmartWay vehicles had greenhouse gas scores

ranging from approximately 6.0-10 and those without SmartWay status scored in the 0-5.0

range.
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Figure 14. IBM R© SPSS R© Statistics 19 SmartWay cross tab with aps

Figure 15. IBM R© SPSS R© Statistics 19 SmartWay cross tab with ggs
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Summary

In summary, data understanding and preparation phases were performed in this chapter.

At this point, the data is much more familiar, of high quality and a potentially useful source

for creating a model. Preparations were made by cleaning the raw data set so that it may

yield a more effective output. Some variables including fuel, combined mpg, SmartWay, air

pollution and greenhouse gas scores may be particularly useful in the next modeling phase

using k-means clustering and neural network techniques.
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CHAPTER III

FAMILIARIZATION WITH IBM R© SPSS R© MODELER SOFTWARE

Before beginning the modeling process, data preparation had to be completed. The

data was saved from Excel as a text file to be brought into IBM R© SPSS R© Modeler software.

Modeler is a graphical user interface(GUI) which allows the user to drag and drop various

nodes to stream together in an interactive model. The GUI is depicted in Figure 16.

Figure 16. IBM R© SPSS R© Modeler GUI
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The first node necessary for the model imports the data into the software. As shown

in Figure 17, the “Sources” tab in the program allows a “Var. File” to be selected and

dragged to the workspace.

Figure 17. IBM R© SPSS R© Modeler sources variable file ep

Double clicking on the node will open it up and allow browsing for the desired file.

File extensions include text, SPSSR© and SAS R©. Once the file is selected, the text can be

previewed and modified for legibility, such as selecting whether columns are tab delimited,

comma or space etc. (See Figure 18). When using files other than those accepted by the

program, it’s best to save the raw data in a text file for import. When importing, most

following operations in the general process will follow this simple drag and drop procedure

on the interface and the software will inform of errors or problems that may occur when

importing a file. Theses are usually as simple as selecting the correct delimiter.
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Figure 18. IBM R© SPSS R© Modeler opening data file

Figure 19. IBM R© SPSS R© Modeler field operations auto data prep and type
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Once the file is uploaded, select the “Field Ops” tab and drag the “Type” node to the

stream as shown in Figure 19. Right click on the “EPA.txt” node to connect the nodes. A

small symbol with an arrow appears where the arrow is clicked, then dragged to the “Type”

node and they are connected. Most nodes can be controlled using the right click feature.

The values are then read into the stream through the node by importing values from the

text file and organizing them into fields. Of particular importance, are the measurement

and role classes. The measurement category defines variables as continuous, nominal or flag.

Field roles are selected as either input, target, both or none manually using the “Type”

node. (See Figure 20).

Figure 20. IBM R© SPSS R© Modeler field operation: type
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Streaming the data through “Type” allows different classifications of the variables, as

mentioned, including whether they are numerical or categorical or subgroups of either of

those. This is where our target variable is defined for supervised learning models. Figure 20

shows the different classes of the node and SmartWay status is selected as a target variable

to forecast the field for this example classification model.

It is important that all the data is imported, so another “Field Ops” node will be

selected, called “Auto Data Prep,” to ensure the stream is operating smoothly and all the

data is read in, as depicted in Figure 21. Continuous and numerical variables are listed as

fields giving sample graphs, minimum and maximum values of each variable, mean, standard

deviation, and the number of valid entries. Some fields had missing values and therefore

had a lower number of valid data values.

Figure 21. IBM R© SPSS R© Modeler EPA data audit
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The “Auto Data Prep” node also yields another node, shown in Figure 22 marked “17

Fields”. This verifies that all the variables have been accepted into the model. A general

“Auto Classifier” model will be created to test the software before creating a k-means

clustering model. Using the target variable SmartWay and dragging the ”Auto Classifier”

node to the stream, the stream is run and a SmartWay model is created shown by the

dipyramidal node in Figure 22.

Figure 22. IBM R© SPSS R© Modeler SmartWay auto classifier model
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SmartWay Model Results

The classification predictive model used a combination of three different models: Dis-

criminate, C & R Tree, and Quest. Each model had an accuracy of 99.7 %and were built

in less than one minute. (See Figure 23).

Figure 23. IBM R© SPSS R© Modeler three classifying models

Discriminate Analysis (DA) is similar to MANOVA (multivariate analysis of variance),

computationally by testing discriminant functions for statistical significance using the funda-

mental equations used in MANOVA. However, where MANOVA’s predictors are dependent

variables, DA predictors are independent variables. Classifications by variables discrimi-

nating between groups are independent and dependent for MANOVA and DA respectively

(Poulsen & French, 2012).

Therefore, for the Discriminate model in this study, IBM R© SPSS R© Modeler determines

that seven variables discriminate between two groups, those vehicles with and without

SmartWay status. The pooled within-group correlations between each of the seven dis-

crimating variables and standardized canonical discriminate functions were structured in a

matrix. The results are shown in Table 1.
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Table 1.

Structure Matrix of Discriminate Model for SmartWay Classification.

Variable Function Correlation

Greenhouse Gas Score .994
Cmb MPG .868
Hwy MPG .834
City MPG .813
Air Pollution Score .193
Disp -.689
Cyl -.641

C&R Tree (classification and regression tree) and QUEST (quick, unbiased and efficient

statistical tree) are both classification tree algorithms (StatSoft, 2011) that determine group

membership by dependent variable measurements on the the predictor variables on Smart-

Way status. Figures 22 and 23, created by the author, represent the summarized results of

each algorithm respectively.

Differences appear in the number of input data values (n) in the zero node, grouping by

different greenhouse gas scores resulting in minor difference in each of the children nodes.

The C&R tree in Figure 24 started with 1711 values, with node 1 having 1065, node 2 with

646. The majority of classification for node 1 did not have SmartWay status by 99.8% and

node 2 has more values considered SmartWay by 99.4%. The QUEST tree started with 1722

values, with node 1 having 1072, node 2 with 650. The majority of classification for node 1

did not have SmartWay status by 99.7% and node 2 has more valuesconsidered SmartWay

by 99.5% as shown in Figure 25.

27



Figure 24. CR Tree
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Figure 25. QUEST Tree
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The predictions were similar to the assumptions from chapter 2 with respect to green-

house gas scores and SmartWay status. As depicted in Figure 26, greenhouse gas scores

were the most predictive of smartway status, however only by a small margin, and the sales

area variable is the least predictive.

Figure 26. IBM R© SPSS R© Modeler SmartWay prediction

Summary

Of particular interest for future models are the narrowed down input fields. These

fields, yielding highest accuracy for classifying SmartWay status, are greenhouse gas score,

air pollution score, combined gas mileage, cylinder and displacement values. These specific

fields will be considered for a k-means clustering model, where, although a target variable

is not valid, the fields can be used to find patterns between themselves specifically. These

fields will serve as inputs into neural network models as well.
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CHAPTER IV

K-MEANS CLUSTERING MODEL

k-Means Clustering Technique

Clustering in data mining and statistical analysis refers to the grouping of similar ob-

jects, cases or observations together as an unsupervised learning method (Larose, 2005).

Unsupervised learning methods do not identify a target variable in the algorithm, rather

examine and compare patterns and relations among all the variables and sometimes aid

in determining variables needed further down the pipeline for algorithms such as neural

networks, as will be discussed in the next chapter.

The k-means clustering algorithm is a conventional heirarchical clustering method that

uses recursive partitioning. This particular clustering algorithm seeks to find k clusters

where k is an integer defined by the analyst. Partitioning the observations by nearest

average distances to k cluster centers within the data, the algorithm continues running

while modifying the centers as the clusters expand. This is repeated until the centers, or

centroids, no longer change or change minimally. The termination process of the algorithm

requires convergence of the centers and is determined by minimizing the Sum of Squared

Errors (SSE) within each cluster.

The algorithm runs essentially by first assigning how many clusters to partition for

the model such that k = n clusters. Next, k clusters are randomly assigned centers. The

algorithm then allocates records to a cluster based on nearness to a center and the process of

redefining cluster centers and record appropriation repeats until there is no longer a change

between the distance within records and centroids as the SSE gets smaller, converges and

the algorithm terminates (Wagstaff, Cardie, Rogers, Schroedl, 2001).

The ratio of variance between the clusters with respect to variance within each cluster

is calculated and observed to test the efficiency of the algorithm. As the variance between

the clusters increases with respect to the variance within each cluster, the algorithm is more

efficient and closer to it’s goal of grouping highly defined clusters.
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The fundamental steps and calculations in the algorithm are as follows.

• How many k clusters do you want to partition? (k = n)

• Centers for k initial centers are randomly assigned as µ1, µ2, . . . , µk. Alternatively,

the first k records can be designated as the initial clusters.

• Records are allocated with reference to the nearest cluster center using a distance

formula. The Euclidean distance formula is represented as:

dE =

√√√√ k∑
i=1

(xn − µi)
2.

By definition, if the distance, d, between a vector, xn, and a cluster center, µi, is least,

then n will belong to that group cluster Si, represented by n ∈ Si .

• Once a new record is added to a cluster, the new centroid is calculated and becomes

the new µi values.

• The algorithm repeats the process of finding distances and updating new center loca-

tions until the convergence of distance ratios, where the ratio no longer changes and

the SSE has been minimized. SSE is defined (Weisstein, 2011) as:

SSE =

k∑
i=1

∑
n∈Si

|xn − µi|2.

• When this minimization has occured, the centroids no longer change, k clusters are

defined and the algorithm terminates. The efficiency of the algorithm and each cluster

is analyzed by comparing ratios of variance between and within the clusters.
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• The ratios of variation can be calculated by a simple estimation. The variance between

clusters, or S2
B, can be calculated by finding the distance between the centroids.

S2
B =

√√√√ k∑
i=1

(µ1 − µ2)
2.

When estimating the variance within clusters, S2
W , the SSE can approximate this

value so that maximizing the ratio can be calculated by:

S2
B

S2
W

=

√√√√
k∑

i=1

(µ1 − µ2)
2

k∑
i=1

∑
n∈Si

|xn − µi|2
=

d(µ1, µ2)

SSE
.

k-Means Clustering Green Model

Modeler is used in the same way for the k-means model as the SmartWay classification

model processed previously. The only exception to the data preparation is that when

reading the data through the “Type” filter, no target variable is selected and all variables

are labeled as input values. Once the fields are read in and filtered through the data audit

process, the “K-Means” node is selected. As shown in Figure 27, “K-Means” is connected

to the prepared data.

Double-clicking the “K-Means” node will allow selection of k clusters by selecting the

“Model” tab and typing in the desired number of clusters. In the first run, “3” is typed

in for the initial run of k = 3 clusters. Next, “Run” is selected and the model is created,

signified by a dipyramidal node, which we will simply call the model.

By double-clicking the “K-Means” model, the results yield a model summary for 3

clusters as shown in Figure 28. Notice that only 15 variables were included as inputs into the

model since “Drive” and “SmartWay” variables were flag variables due to their categorical

nature. The k-Means algorithm works with normalized, numerical values ranging from zero
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Figure 27. IBM R© SPSS R© Modeler k-means panel

to one. The model has a fair cluster quality measured by the separation between the clusters

and cohesiveness within the clusters. A cluster size graph is shown to the right of the model

summary. The first cluster contains 38% of the records, the second and smallest cluster

contains 482 records, which is approximately 20% of the total records, and the third and

largest cluster contains approximately 42% of the data, with 1022 records.

At the bottom of the “Cluster Sizes” window, several views may be selected depending

on the contents of the left “Model Summary” window. At the cuurent view of “Model

Summary,” we can select the view “Predictor Importance” and the graph in Figure 29

appears.

In this model, the EPA FA and CA level descriptions for emmission standards hold the

greatest weight of predictive importance and fuel types hold the least from the clustering

algorithm. The algorithm considers the SmartWay variable a predictor as well, illustrating

reliability in categorical variables. Among the most important predictors, the algorithm

identifies clusters by sales area, standard and standard description which describes the

sales area and standard variables at 100% of predictor importance. Smartway status ranks

approximately 98% of classification by predictor importance. Greenhouse gas score and

gas mileages including highway and combined, rank moderately at 50%-70%. The number

of engine cylinders, city gas mileage and engine displacement ranged from 45% to 48%
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Figure 28. IBM R© SPSS R© Modeler k = 3 clusters

respectively. Fuel and drive types, air pollution score, transmission type and vehicle class

rank lowest from 5%-22% of importance for the initial three clusters.

Switching back to the “Model Summary” side, “View” can be selected and a closer

look at the clusters themselves for further analysis can be obtained by selecting “Clusters”.

The portion of results which contains the most important variables within each cluster is

shown in Figure 30. The largest cluster is cluster-3 containing 42.1% of the vehicles and

the smallest is cluster-2 with 19.9

Other variables considered within each cluster correspond with these main predictors.

For example, gas mileages are higher in cluster-2 than in cluster-1. Standard and standard

descriptions correlate with the sales area, therefore cluster-3 has a standard of U2 for Cali-

fornia standards and B5 for clusters 1 and 2 with other federal standards and descriptions.

Another interesting variable that appears in the cluster distributions of this model is

the combined gas mileage. As could be expected, the “Cmb MPG” for cluster-2 is highest
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Figure 29. IBM R© SPSS R© Modeler k-means pi for initial 3 clusters

with an mean of 25.19 and cluster 1 has the lowest average at 17.21 mpg in correlation

to the clusters having and not having SmartWay stutus vehicles respectively. Naturally,

those vehicles with better gas mileages and lower emissions have more potential to having

SmartWay status and belong to cluster-2. Cluster-3 has an average “Cmb MPG” of 21.37.

It appears that combined gas mileage has a primary effect on SmartWay status and de-

stribution of status within clusters consisting with vehicles sold outside California. Further

anaylsis of these variables by examining the mean distributions in Figures 31 -33 may verify

these findings.
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Figure 30. IBM R© SPSS R© Modeler k-means cluster summary for initial 3 clusters
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Figure 31. IBM R© SPSS R© Modeler k-means cluster-1 histogram

Figure 32. IBM R© SPSS R© Modeler k-means cluster-2 histogram
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Figure 33. IBM R© SPSS R© Modeler k-means cluster-3 histogram

A closer look at the mean distributions of “Cmb MPG” give noticible comparisons which

illustrate how the cluster quality from the model summary is not optimal due to skewness.

Figure 31 exibits the normalized average of combined gas mileages for cluster-1 compared to

the overall distribution which is normally distributed with low variation. The distribution of

cluster-1 is left-skewed with respect to the overall distribution but moderately right-skewed

within the cluster with moderate variation. The majority of gas mileages for cluster-1 is

below the overall average of 20 mpg. Within the cluster distribution, the majority of gas

mileages are greater than the mean gas mileage for cluster-1 of 17.21.

On the other hand cluster-2 in Figure 32 is right-skewed with respect to the overall

distribution, but within the cluster itself is moderately left-skewed with low variation, where

the cluster median and mean is greater than the overall average and the median within the

cluster is slightly less than the average of 25.19.

Cluster-3, Figure 33, has combined gas mileage records normally distributed with mod-

erate variation and normal with respect to the overall distribution. This cluster’s mean and

median are closest to the overall average.
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Figure 34. IBM R© SPSS R© Modeler k = 3 clusters with si

Modeler illustrates the variation of the mean of every variable in the model with each

cluster. In this thesis, another model of k = 3 clusters with distinct inputs from the

classification model results of top predictors will be implemented.

k-Means Clustering Model With Selective Inputs, KMSI Model

Closing all windows to the model, going back and double-clicking the “K-Means” node

will allow selection of the “Fields” tab. The default selection of fields is called “Use type

node settings” which will select all applicable variables in the model. Selecting the other

option, “Use custom settings” allows specific selection of variables. A browsing option

becomes available and individual variables from the data set can be selected as inputs one

at a time. For the new KMSI model, variables SmartWay status, standard description,

combined gas mileage, air pollution score and greenhouse score are selected by results from

previous model’s important predictors and air pollution score as a variable of interest.

40



Double-clicking the “K-Means” node will allow selection of k clusters by selecting the

model tab and typing in the desired number of clusters. The second model is run with k=3

also. In the interface, it again shows us the dipyramidal “K-Means” node, creating the new

KMSI model.

Figure 35. IBM R© SPSS R© Modeler k-means predictor importance for si three clusters

By double-clicking the KMSI model, the results yield a model summary with 3 clusters

from 5 inputs as shown in Figure 34. The model now has a good cluster quality measured

by separation between and cohesiveness within the clusters at 65%. The largest cluster,

cluster-1, now contains approximately 63% of the data, with 1519 records and the smallest

cluster, cluster-2 contains 101 records, which is approximately 4.2% of the total records.

Cluster-3 is 33.3% of all records with 807 records.

Selecting “Predictor Importance” once again yields the output graph in Figure 35. In

this model, combined gas mileages hold the greatest weight of predictive importance and

air pollution scores hold the least from the clustering algorithm.
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Figure 36. IBM R© SPSS R© Modeler k-means cluster summary for selected variables

Switching back to the “Model Summary” side, “View: Clusters” is selected and the

results shown in Figure 36. Cluster-1 does not have Smartway status and clusters 2 and

3 contain records that have Smart Way status status. Vehicle characteristics in cluster-1

are low gas mileages, low greenhouse and air pollution scores and all the vehicles that do

not have SmartWay status. Cluster-2 vehicles have SmartWay status, best fuel economy

and highest greenhouse and air pollution scores, but the fewest number of vehicles, 101.

Characteristics of cluster-3 are similar to cluster-2 but with lower gas mileages, air pollution

and greenhouse gas scores and have 807 vehicles with these characteristics in his cluster.
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Over half of the records in cluster-1, are distributed relatively between the overall distri-

bution and is seen most apparently by looking at the distribution of greenhouse gas scores,

GGS, between the clusters. (See Figures 37). Cluster-1 is right-skewed with moderate

variation with the majority of greenhouse gas scores below a 6.0 and containing all of the

overall greenhouse gas scores below approximately 6.0 that do not have SmartWay status.

Figure 37. IBM R© SPSS R© Modeler k-means ggs histogram cluster 1

Figure 38. IBM R© SPSS R© Modeler k-means ggs histogram cluster 2
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Figure 39. IBM R© SPSS R© Modeler k-means ggs histogram cluster 3

Cluster-2, as shown in Figure 38, is left-skewed with high variation and greenhouse gas

scores ranging from 5.5 to 10. The cluster has a very small proportion of scores compared

to the overall distributions of scores.

Similar to cluster-1 in distribution though left-skewed in comparison to the overall dis-

tribution, Figure 39, shows moderate variation and contains the majority of vehicles with

greenhouse gas scores from 5.5-10.

k-Means Summary

In summary, comparing the distributions of various variables, in particular greenhouse

scores, to the distributions between the clusters, significant correlation of the distributions

support predictor importance of particular variables to determining which vehicles are as-

signed to each group. Selective inputs, partially derived from the previous classification

model and using variable of predictor importance from the first k-means clustering model

yielded more favorable and noticible patterns to grouping within the second model. Further

analysis will be performed modeling an artificial neural network to see what variables are

important predictors of SmartWay status.
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CHAPTER V

ARTIFICIAL NEURAL NETWORK MODEL

The Neural Network Technique

As mentioned briefly in Chapter I, artificial neural networks, or ANN’s, similar in struc-

ture to an animal brain’s neural network, consist of a feed forward, entirely joined and

layered network of artificial neurons or nodes (Larose, 2005). The layers consist of an in-

put, output and one or more hidden layers. The connections of nodes in each layer link to

all the nodes of the next layer, initially by randomly assigned weighted values and initial

bias weights as shown in the author’s representation in Figure 40.

Figure 40. ANN with 3 layers

45



Combination functions, which are frequently summations, and activation functions, most

commonly sigmoid functions, serve as nonlinear processes emulating the biological neurons

in our own brains, signaling and firing other neurons. A neuron by definiton is a nerve

cell consisting of a cell body, axons and dendrites. Comparing artificial to biological neural

networks in Figure 41 (Rhode, 2010), nodes act as neurons, inputs like dendrites, outputs

are like axons and weighted values of an artificial neural network resemble synapses (not

shown), very narrow spaces where signals are transmitted, of a neural network (MIT, 2011).

Figure 41. Biological neuron

Like k-means clustering, artificial neural networks can find patterns and relationships

among data. However, unlike k-means clustering, ANN’s serve multiple data mining tasks

by representing an imitated approach to recognizing complex learning systems. Since neural

networks, NN’s, exhibit this learning behavior, they do not have to be reprogrammed and

can still run efficiently if there is a problem within the network.

The downside of this learning phenomena, since ANN’s are adaptive systems, is that

training is a vital element for the network system to advance and work. This can take

a considerable amount of time for large artificial neural networks. Outputs of the layers
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lend themselves to inputs to other layers in the network and are continuous. This permits

the model to have a more flexible range of tasks including classification, estimation and

prediction.

Normalizing the Data

Variable values within an ANN must be standardized using input and output coding

represented by values ranging from zero to one. Continuous variables can be coded via

min-max normalization. Min-max normalization is a process which transforms numerical

values from the original data to a values ranging between zero and one. This is achieved by

taking a given value, subtracting the minimum value in the set and dividing by the range

(Larose, 2005). The equation for a normalized value from this process is as follows:

N =
X −Xmin

Xrange
=

X −Xmin

Xmax −Xmin
.

For example, referring to the EPA data set, an excerpt of vehicles are shown in Table 4

with corresponding greenhouse gas scores and SmartWay status.

Figure 42. Greenhouse gas score for min-max

Since, IBM R© SPSS R© Modeler will normalize the entire data set yielding it transformed

and shown in later results using the “Data Prep” node as in the k-means models, normal-

ization of the variables in the table only will be referenced here.
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Each vehicle’s greenhouse gas score is normalized from Figure 42. An example of the

normalization of the Volkswagen, VW, GTI follows:

Ngti =
7− 4

3
= 1

Taking the greenhouse gas score for the GTI,which is 7, and subtracting the minimum

score of the six vehicles from Table 4, which is 4, and dividing that difference by the

difference between the maximum and mininmum values, again and coincidentally, 7 and 4.

The normalized green house gas score for the GTI is 1. To repeat the process for another

example, the VW New Beetle is normalized:

Nbeetle =
6− 4

3
= 0.67

Normalized scores for the other vehicles are Ngolf = 1, Njetta = 1, Npassat = 1, and

Ntouareg = 0.

Categorical variables, on the other hand must be taken into careful consideration when

normalizing. Variables can be defined, for example, male = 0 and female =1. Variables

such as fuel type in EPA’s data set variables may be defined as gasoline = 0, ethanol = 0.2,

CNG = 0.4, Diesel = 0.6, and Hydrogen = 0.8. However, this could cause complications as

the learning system would learn irrespective of the meaning behind the numerical values.

For example, females may be considered more valuable than males since 1 is greater than 0,

or diesel fuel could be interpreted as a better fuel than ethanol because 0.6 is greater than

0.2, even though the values were assigned randomly or to distinguish the variables.

Because of the normalization process at the input layer, the output results must be

denormalized, so they can be interpreted. For example, if greenhouse gas scores were

inputs into the network, and yielded an output, On, of 0.43, then this normalized output

value must be denormalized to interpret the corresponding gas score.
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Using the previous example from Table 4, prediction for a greenhouse score that ranged

from 4-7 would be the difference of values multiplied by the output normalized value and

added to the minimum value.

A general denormalization formula is as follows:

Dnorm = On(Xrange) +Xmin

and more specifically from the example:

Dnorm = 0.43(3) + 4 = 5.29

such that the predicted greenhouse score would be approximately 5.

Training the ANN

In general, an artificial neural network will, as stated before, consist of an input layer, at

least one hidden layer, and an output layer with associated weights as illustrated in Figure

43. Similar to the user defining the number of clusters in k-means clustering models, the

user defines the number of hidden layers and nodes in an ANN. This selection must be

carefully arranged as there must be balance within the network for more accurate output.

Since the ANN relies on a training set, there is danger of overfitting, where the training set

is memorized and the output is generalized. On the other hand, there is also the danger of

underfitting where the network cannot detect any predictive pattern.

An ANN is a supervised learning method and uses a training set consisting of a target

variable and a large data set. Once the training set is run through the network, outputs

are compared to initial values and like the k-means clustering algorithm, seek to minimize

the SSE. Among the challenges of a training set is defining weights on the connections to

minimize the SSE. This is solved by using the gradient-descent method and assuming that

the training weight values have adjusted throughout the network.

The training set is utilized to minimize the SSE, by minimizing prediction errors, or er-

rors between the output and actual values. Since there is a lack of actual values to compare
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weights and weights must be included to minimize the SSE, random weights adjusted using

the gradient descent algorithm are assigned to connections in the network. By taking the

prediction errors and filtering them back through the network, the back-propagation algo-

rithm runs, updating adjusted weights using the gradient-descent algorithm and a sigmoid

activation function.

Simutaneously, ANNs take the weighted connections between the initial values, or input

nodes, and the next layer of nodes and use a combination function of summations of multi-

plied weights and inputs to create a single value. This value feeds into a sigmoid function

which then normalizes the value between zero and one. The output is a new value for the

next node layer. These processes are outlined as in the next section.

ANN Algorithmic Funtions

Working simultaneously are several algorithms.

• Input nodes are based on data attributes.

• How many hidden layers are needed?

• How many nodes in each hidden layer do you want?

• Weights are assigned to each connection from ith input to node j = Wij .

• A combination function producing a value, V , with initial inputs, K, such as:

V =
∑

WijKij

creates a single value on the jth node.
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• This value becomes an input to an activation function, most frequently a sigmoid

function:

F (x) =
1

1 + e−x

which takes a linear value and normalizes the value between zero and one from the

hidden layers to the output layer, which is important not only to this algorithm, but

to the others involved as well.

Figure 43. Sigmoid function graph

This function, as shown in Figure 44, is similar to a light switch with “On” and “Off”

type outputs dependent on inputs.

• ANNs learn by minimizing the SSE through summing the prediction errors squared,

or the the output values (Vout) subtracted from the actual values (Vact) squared over

the output (out) and total records (tot) in the data set.

SSE =
∑
tot

∑
out

(Vact − Vout)
2

For the SSE to be minimized, a few methods need to be implemented as the actual

values are unknown. Back-propagation uses the sigmoid function and the gradient-

descent method to estimate these values and then filters them back through the net-

work to further minimize prediction errors.

51



• The gradient-descent method adjusts weights on the connections to minimize SSE by

taking the partial derivatives of the SSE with respect to the partial derivatives of each

connection weight.

• Once the training weights are defined and those most current and best fitting are de-

termined, the input weights run simultaneously through the network until the current

weights supercede the best weights as calculated by SSE.

• The algorithm terminates once multiple stopping criteria are met such as a minimized

SSE, accurate training set predicting unknown weights, and designated time the for

the network to train.

The Neural Network Model

Figure 44. IBM R© SPSS R© Modeler neural net node

To create the Neural Network, the same process of filtering is used as in other models

with the ”Neural Net” node selected to set up for the model. Double-clicking the node yields

options for defining predictors and the target variable. In this experiment, SmartWay status

is the target variable and all other variables in the data set are initially used as predictors.

See Figures 45 and 46 for initial settings.
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Figure 45. IBM R© SPSS R© Modeler neural net fields
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Figure 46. IBM R© SPSS R© Modeler neural network model summary

Running the model, the network is created and graphed accordingly. The model auto-

matically produces a network with two hidden layers and an 89.3% accuracy of the model

and using minimum accuracy for the termination or stopping rule as shown in Figure 47.

Further investigation of the model leads us to Figure 48 where predictor importance is

generated and greenhouse gas score is the leading predictor with the greatest importance

and the least important is engine displacement, not shown in the figure. Greenhouse Gas

Score is the top predictor variable at 30%. Combined Gas mileage follows with 23%, and

variables, city gas mileages were 18% important, and highway gas mileages, cylinder sizes,

air pollution scores, fuel types, vehicle identifications, models and standard decriptions were

under 5% of predictor importance for SmartWay status.

The Neural Network model in figure 49 shows the top ten predictors for Smartway status,

the two hidden layers, the SmartWay target output node and a bias node act like initial

random weight factors generated by IBM R© SPSS R© Modeler and assigned to the input and

output weight connections for training the network.
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Figure 47. IBM R© SPSS R© Modeler neural network predictor importance
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Figure 48. IBM R© SPSS R© Modeler artificial neural network using all variables
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k-means Clustering Output as Input to an ANN

Next, the output variables of the top predictor variables from the k-means clustering

model (i.e., standard description, greenhouse gas score, air pollution score, and combined

gas mileage) are used as inputs to the Neural Network model. This yields a new network

with two hidden layers with an increased acuuracy to 91.2%. Again, minimum accuracy for

the termination or stopping rule is used as shown in Figure 50.

Figure 49. IBM R© SPSS R© Modeler neural network k-means input model summary

Figure 51 reveals greenhouse gas scores as the greatest predictor once again of SmartWay

status by 46%, however the least important is standard description at 8%. Combined gas

mileages yied 40% predictor importance and air pollution scores predict SmartWay status

by less than 10%.
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Figure 50. IBM R© SPSS R© Modeler neural network k-means input predictor importance

Of the variables observed in this network, Figure 52 shows that 0% were predicted but

not observed, 0.3% were not predicted, but observed, 100% were not predictod or observed

and 99.7% were predicted with an overall classification for SmartWay status at 99.9%.

Finally, Figure 53 shows the ANN for SmartWay status as a result of using only k-means

top cluster variable types as inputs.

Figure 51. IBM R© SPSS R© Modeler neural network k-means input classification summary
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Figure 52. IBM R© SPSS R© Modeler neural network k-means input model

Summary

In summary, the predictive output variables from the k-means cluster analysis used as

input variables to an ANN yielded a more efficient model than the ANN with all variables

by 1.9%. Both models accurately reflected greenhouse gas scores and combined gas mileages

as the greatest predictors for SmartWay status of vehicles. Greenhouse gas scores were a

strong influence on classifying vehicles by groups in the k-means clustering model as well

as an important predictor of SmartWay status in the ANN. Predicting whether a vehicle

will classify as SmartWay will be primarily determined by its greenhouse gas score.
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CHAPTER VI

CONCLUSIONS

The Cross-Industry Standard Process for Data Mining, CRISP-DM, provided a basis

for examination and analysis via data mining the EPA’s Green Vehicle Guide data set.

The first research understanding phase from Chapter 1 questioned many areas which were

addressed in this study, such as (i), what processes the data underwent for preparation

and (ii),which data mning techniques were used and why. The statistical implementations

of data mining techniques as well as the statistical measures involved in the data mining

techniques were defined.

Chapter 2 provided an in depth look at both data understanding and data preparation

phases. Understanding the variables and definitions of the data set was imperative to later

modeling processes. Exploring both the data set itself as well as the providing website

assisted with the familiarization process.

The data preparation phase was the most time consuming element of analysis. Data had

to be reorganized, filtered and missing values redefined while maintaining data integrity.

Excel and IBM R© SPSS R© Statistics were used in this phase to clean the data. Techniques

and useful variables to use as possible target variables, flag variables and inputs began to

filter into preparation for the future models. Using IBMR© SPSS R© Modeler, data prepara-

tion analysis transformed variables as needed for the k-means and artificial neural network

models.

Again, IBM R© SPSS R© Modeler was used for the modeling phase which included classi-

fication, k-means and artificial neural network models in chapters 3, 4 and 5. Adjustments

had to be made regarding target variables and input values as well as using several modeling

techniques for conclusive findings. Runs were made in both k-means and ANN models to

compare general and selective inputs.
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Conclusions regarding this study are that the k-means KMSI model was a good, qual-

ity model that yielded conclusive clusters to use for further research, including the great

predictor, greenhouse gas scores. The ANNSI model proved successful as well and yielding

greenhouse gas scores and combined city and highway fuel economy as reliable predictors

of SmartWay status.

Unfortunately, IBMR© SPSS R© Modeler software due to the nature of node connectivity

would not allow the clusters themselves from the KMSI to serve as inputs into a networking

model. As part of the deployment phase of this study, future research could be conducted

as far as recreating data sets synonymous to the data records in each cluster from the KMSI

model. From there, further modeling techniques, including ANN, could be implemented and

examined for any prediction obscurities and findings. Further research could also include

an updated data set.

Predictions based on analysis of this data set are as expected with all models claiming

greenhouse gas scores to be the greatest predictor variable for SmartWay status. Therefore,

engineers and companies should focus on better technology to improve greenhouse gas

scores if SmartWay status is a goal. Further analysis with other models may yield a higher

weighted predictive variable although the probability is low.
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