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Abstract 

"Finite Inductive Sequence: Factoring Technique" 

This thesis considers finite sequences of symbols extracted from an alphabet set. 

In this case, the alphabet set is the positive integers. The underlying hypotheses is that 

such finite sequence is finitely inductive(FI). Finitely inductive implies that a symbol at 

any position can be determined by the symbols preceding it. The technique used is called 

FI - Factoring. FI is primarily used to learn about the presence of relationships between 

symbols of arbitrary sequences. Note that indicating the presence of a relationship does 

not necessarily provide information about the nature of that relationship. To gain that 

knowledge further analysis is required. 

Consequently, the pattern recognition technique involves factoring a sequence of 

data into a series of small sequences called implicants. The collection of implicants is 

then form a ruling. This ruling is used to match other sequences, and sequences of 

residual. FI factoring technique focuses on direct analysis of the structure of individual 

sequences. 

Beginning with a given finite sequence of symbols, the factoring algorithm will 

describe the underlying structure of each sequence. Each input sequence which in this 

case is finite, is characterized by function tables or ruling describing the structure of each 

sequence. 

By QunLu 

December, 1997 

Texas Woman's University 

Denton, Texas 
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CHAPTER I 

INTRODUCTION 

1.1 Problem Statement 

This thesis considers finite sequences of symbols extracted from a given alphabet 

set, and attempts to describe their structure. In general, finite sequences are finitely 

inductive. Finite induction implies that every symbol at any position in the sequence can 

be predicted by the preceding p-symbols for some positive integer p. The largest value of 

such p is called the inductive base. 

For this purpose and considering only positive integers for symbols, the factoring 

method is implemented. 

1.2 Thesis Organization 

This thesis is organized as follows: Chapter I gives an introduction of the 

problem; Chapter II provides the conceptual background of finite induction.and explains 

each of these terms: FI, inductive base, function table, factoring, ruling, implicant, and 

type I storage system. Chapter II concludes by giving the reader a basic knowledge about 

FI and the techniques used in solving the problem; Chapter III explains the factoring 

technique which is illustrated by examples; Chapter IV describes the C++ program, lists 

running results, and includes a brief explanation of outcomes; and Chapter V shows 

applications of the factoring technique. 



CHAPTER II 

FINITE INDUCTIVE SEQUENCES 

2.1 Introduction 

This chapter explains the basic concepts of finite induction including an 

introduction to finite inductive sequences (Fl), inductive base, function table, factoring , 

ruling, implicant and type I storage system. 

2.2 Definitions 

Definition 2.2.1: 

A finite inductive sequence ( FI ) over a given alphabet is a sequence of symbols 

extracted from this set satisfying the following condition: the choice of a letter at any one 

point is uniquely determined by the choice of the preceding n letters, for some fixed 

positive number n :2: 1 (Cherri, 1996). The least such an integer n is called the inductive 

base. For example, all finite sequences are finitely inductive. Each FI sequence is 

represented by a finite set of subsequences with length equal or smaller than an inductive 

base. The collection is called a function table (Case and Fisher, 1984). In general, an FI 

sequence can be represented by more than one function table. A possible explanation 

would be that partitioning a sequence into subsequences of a given length or smaller, 

depends on the nature of the sequence itself. Note that some sequences with a given 

value of inductive base cannot be factored . 
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For example, if the alphabet set is {0, 1} and the sequence is 

00100010000110010001000011 ... 

3 

It becomes clear that this sequence cannot be describe in one function table, with 

inductive base 2. Some sequences may contain subsequences of length greater than the 

inductive base. Therefore, selecting a good value of an inductive base is important (see 

Chapter 3). The following is an example of a finitely inductive sequence with inductive 

base 2 over the alphabet { 1, 2, 3, 4, 5} and its function table which gives deterministic 

inductive inference. 

Example 2.2.1: The following sequence: 

14453121212121212 ... 

is described by the function table: 

Table A 

14 • 4 
44 • 5 
4 5 • 3 
5 3 • 1 
3 1 • 2 
1 2 • 1 
21 • 2 

Clearly, after the starting segment 1 4 is given the rest is uniquely determined by this 

function table. 

Hence, from the above discussion a finite inductive sequence is determined by its 

starting segment and its function table. A given row in the function table is called an 

implicant (Cherri, 1996). The left side is called the antecedent and the single symbol on 

the right side the consequent. Referring to example 2.2.1, the antecedents are words of 
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length two; the conclusion is that the sequence has an inductive base less than or equal to 

two. For the sequence in example 2.2.1, it is not possible to make such a table in which 

the antecedents are shorter. Therefore, the inductive base is two. If the segment 

1 4 4 5 3 is deleted then the rest sequence is periodic. 

121212121212 .. . 

1 2 is called the period and the initial sequence is called eventually periodic. 

Definition 2.2.2: 

A sequence X1X2 .. . Xn ... is eventually periodic if and only if there exist positive 

integers N and p such that Xn = Xn+p for all n greater than N. The least such positive p is 

the period. 

Every FI sequence is eventually periodic (Gaines 1976, Andrea 1973). The non

periodic part added, is called the transient. If the sequence is infinite, the transient is the 

shortest starting segment that if deleted will leave a periodic sequence; otherwise, for the 

finite case the transient is the whole sequence. 

Definition 2.2.3: 

An FI pair is the pair consisting of the starting segment s and the function table F 

(i.e. (s, F) ). A sequence is finitely inductive, which is equivalent to the existence of an 

FI pair (Cherri, 1996). 

This representation of a pair is not unique. We select the one in which the lengths 

of the antecedents is least. The least such length is the inductive base b, and the 

representation is minimal. To reconstruct the original sequence, a final segment or 

subsequence is required. Consequently, the sequence reconstructed by the FI pair cannot 
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contain a segment of length b which is not an antecedent except as a terminal segment. If 

the sequence is infinite, every segment of length b is necessarily an antecedent of some 

implicant in the function table. In both cases antecedents have to be distinct. 

Definition 2.2.4: 

The extended period or "Eperiod" is the sum of the length of the transient and the 

period length of the periodic part. 

In the case of no transient the Eperiod is equal to the period, and in the case of 

finite sequences there is no periodic part, the entire sequence is called the transient, and 

the Eperiod is equal to the length of the sequence (Cherri 1996, Case and Fisher 1984). 

Definition 2.2.5: 

A function table is said to be in reduced form if each implicant is in reduced form. 

An implicant is in reduced form whenever it is irredundant as to length. Therefore, it 

cannot be shortened without changing globally the table. To set ideas, consider the 

following example. 

Example 2.2.2: The FI sequence: 

1121 :0120122:0120122:0120122: ... 

The colons are not part of the alphabet, but for periodicity and to help read clearly the 

sequence, and the following function tables: 
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Table A Table B Table C 

(1) 112 • 1 (1) 11210 • 1 (1) 11 • 2 
(2) 120 • 1 (2) 12101 • 2 (2) 112 • 1 
(3) 210 • 1 (3) 21012 • 0 (3) 21 • 0 
(4) 101 • 2 (4) 10120 • 1 (4) 0 • 1 
(5) 012 • 0 (5) 01201 • 2 (5) 01 • 2 
(6) 120 • 1 (6) 12012 • 2 (6) 1012 • 0 
(7) 201 • 2 (7) 20122 • 0 (7) 12012 • 2 
(8) 012 • 2 (8) 01220 • 1 (8) 22 • 0 
(9) 122 • 0 (9) 12201 • 2 (9) 22012 • 0 
(10) 220 • 1 (10) 22012 • 0 

(11) 20120 • 1 

Three different function tables representing a single finite sequence with inductive 

base 3, 5, and 5. Table C is the reduced function table. At this point antecedents do not 

have to have the same length. In this table each antecedent occurs only once, and each 

implicant is reduced. The inductive base can be calculated from the reduced form table 

by finding the length of the longest antecedent. To avoid anomalies any FI sequence is 

characterized by the finitely inductive pair (F, s) where Fis the reduced function table 

and s is the starting segment. 

For the sequence the starting segment is 11210. It is clear that the reduced form 

of a function table can be constructed efficiently. Also, if the reduced form function table 

is given with the starting segment, the original sequence can be reconstructed. Note that 

the starting segment for the above sequence can be reduced to 11. The following are the 

steps that we need to take to recover the entire sequence: 



1. 
2. 
3. 
4. 
5. 
6 
7. 
8. 
9. 
10. 
11. 
12. 
13. 

112 
1121 
11210 
112101 
1121012 
11210120 
112101201 
1121012012 
11210120122 
112101201220 
1121012012201 
11210120122012 
112101201220120 

(By applying Rule 1 in Table C) 
(By applying Rule 2 in Table C) 
(By applying Rule 3 in Table C) 
(By applying Rule 4 in Table C) 
(By applying Rule 5 in Table C) 
(By applying Rule 6 in Table C) 
(By applying Rule 4 in Table C) 
(By applying Rule 5 in Table C) 
(By applying Rule 7 in Table C) 
(By applying Rule 8 in Table C) 
(By applying Rule 4 in Table C) 
(By applying Rule 5 in Table C) 
(By applying Rule 9 in Table C) 
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Then repeat indefinitely steps 7 through 13. Hence, the entire s_equence is 

recovered by successively generating larger and larger segments of the FI sequence by 

applying one implicant each time. It is clear that the ruling is selected from the function 

table, and at that step it is the only ruling that you can apply. The problem of selecting 

which ruling to apply at what time is nonexistent. 

Definition 2.2.6: 

Type I storage system consists of a number of "levels." Each level has storage for 

function table (Case and Fisher, 1984). The method of decomposing any sequence is 

called factoring. The information stored in a Type I storage system is called a ruling 

(Cherri, 1996). For this thesis, only finite function tables are considered. 

This chapter introduced the basic knowledge underlying FI, function tables, and 

Type I storage system. The next chapter we will describe the technique used to generate 

the reduced function table. 



CHAPTER Ill 

FACTORING TECHNIQUE 

3.1 Introduction 

In this chapter, we explain the factoring technique through examples, with 

emphasis on varying the inductive base and number of levels to generate one-level and 

multi-level ruling. In addition, shorter and longer inductive bases are used to resolve a 

specific problem. Several theoretical results such as theorems are listed and their proof is 

referenced. 

3.2 Factoring Technique 

Beginning with a given pattern or a finite sequence of symbols, this procedure 

will describe the underlying structure of the sequence. The solution used is by induction 

over the length of the antecedent. First, we select antecedents of length one, or all 

possible subsequences of length two (i.e., only the subsequences within the given 

sequence). From left to right apply these implicants, and keep the ones that will not 

produce a contradiction. Repeat the process until the length of the antecedent reaches the 

inductive base value k or until the sequence is exhausted (whichever comes first) . 

Consider the following example, using an inductive base of 3: 

Sequence:41212312341212312341212312341212312341 ... 

8 
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Subsequences of length two: 

12, 21, 23, 31, 34, 41. 

Since 21 and 23 exist concurrently we have a contradiction. The same thing applies for 

31 and 34. Therefore, retain only 12, and 41. 

Subsequences of length three: 

121, 212, 123, 231, 312, 234,341,412. 

Register 212,312,341, and 412. 

Subsequences of length four: 

1212,2123, 1231,2312,3123, 1234,2341,3412,4121. 

Hold only 1212, 2123, 2312, 3123, 2341, 3412, 4121. 

The process terminates here, and the first level function table is: 

Level 1 Function Table: 

Level 1 

1 • 2 212 • 3 
4 • 1 231 • 2 
21 • 2 312 • 3 
31 • 2 234 • 1 
34 • 1 341 • 2 
41 • 2 412 • 1 
121 • 2 

Applying each implicant to the original sequence by removing the consequent, the 

remaining sequence, which we will call first residual is: 

414141414 .. . 
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Repeat the same process for the first residual and call the function table at this point the 

second level function table. 

Level 2 Function Table: 

Level 2 

and the second residual is nil, and the process stops. 

Hence, the factorization of the above sequence is given by the collection of 

function tables at all levels. Therefore, the ruling is: 

Level 1 Level 2 

1 • 2 121 • 2 4 • 1 
4 • 1 212 • 3 1 • 4 
21 • 2 231 • 2 
31 • 2 312 • 3 
34 • 1 234 • 1 
41 • 2 341 • 2 

412 • 1 

Note that, it is possible to factor concurrently a finite set of FI sequences. 

Now, we explain the representation of a finite sequence into a finitely inductive 

pair (F, s) . In general, one such pair may not be sufficient to represent the finite 

sequence. Depending on the structure of the sequence itself and some restrictions such as 

the length of the inductive base, representing a given finite sequence may require an 

ordered set of finitely inductive pairs (F1, s1), (F2, s2), ... , (Fn, sn) . The finite ordered set S 

= {(E,s;) j i = 1 ... n} is called a ruling (Cherri, 1996). A level i is an ordered pair (E, s;). 
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At each level a partial sequence is generated. These sequences are interrelated by 

deletion of certain occurences of symbols. This system of sequences generated by the 

ruling is developed by an appeal principle: if the function table in one level cannot give 

the prediction of next symbol, then an appeal to the next higher level is mode. The main 

advantage of this type ofrepresentation is that with one level the inductive base may have 

to be a lot longer than that with multiple levels. A ruling having a certain inductive base 

b in each level may represent a sequence having a much longer inductive base. 

To illustrate this, we consider the following example: 

Example 3.2.1: A ruling 

The Function Tables 

F1 F2 F3 f4 

0 • 1 0 • 2 12 • 1 11 • 2 
10 • 0 2 • 0 
20 • 0 0 • 2 

and 

S1 = 11, S3 = 11, 

The partial sequences generated by the ruling on each level are as follows: 

(spaces and colons are used to aid in reading only) 

L4 112: 0 2:0 2:0 2:0 ... 

L3 1121:0 0 2:0 0 2:0 0 2: ... 

L2 1121 :0 20 22:0 20 22:0 20 22: .. . 

Ll l 121:0120122:0120122:0120122: .. . 
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These sequences are constructed concurrently by the appeal principle. Except for 

the first two columns, all columns are constructed sequentially from left to right. This 

process is called continuation. Initially, the partial sequences in all levels are equal to the 

initial segments given Si. Level 1 will contain the original complete sequence. 

At this point, we observe each of the following: 

1. The ruling of above example is called a type 1-1-2-2 ruling, (i.e., the inductive 

base in level 1 is 1, in level 2 is 1, in level 3 is 2, and in level 4 is 2). 

2. The ruling represents the sequence in level 1. 

3. The respresentation of an FI sequence by a set of simpler FI pairs is called a 

Factorization. 

3.3 Factorization 

A ruling is called a "factorization" when it stands in this relation to some 

sequence. The factorization of a sequence is proper if and only if the inductive base in 

each level is less than the inductive base of the original sequence. A sequence is said to 

be factorable if and only if it has a proper factorization; otherwise it is said ·to be non

factorable. Each storage system should be able to store the function tables and starting 

chain for each of the levels. In addition, it should have a register for each level which can 

store any word of length equal to the inductive base in that level. Finally, the system 

should be able to perform the continuation (Cherri, 1996). One step in continuation is 

determined as follows: let i be the least integer such that the word in the register in level 

i is an antecedent w of some implicant w • q in the function table for level i. The 
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symbol q is "pushed into the register in this level from the right" for level i and all levels 

below (i.e., the contents of these registers are shifted once to the left and the new symbol 

on the right is enforced to be q) . 

The following is example of how to perform the continuation. 

Example 3.3.1: Continuation 

Function Table: 

F1 f7 F, 

0 • 1 0 • 2 12 • 1 
10 • 1 10 • 0 
20 • 1 21 • 0 

Sz = 11, 

Steps in Continuation 

StepO Stepl Step2 

L4 11 12 12 
L3 11 12 21 
L2 11 12 21 
Ll 11 12 21 

Fa 

11 • 2 
2 • 0 
0 • 2 

Step3 Step4 Step5 Step6 Step? 

20 20 20 20 20 
10 10 10 00 00 
10 10 02 20 20 
10 01 12 20 01 

Step8 Step9 

20 02 
00 02 
20 22 
12 22 

and if this is repeated indefinitely, then the right most symbol steps through the sequence 

corresponding to that level. The remaining symbols from the starting segment are placed 

at the beginning. Note that the original sequence corresponds to level 1 

1 1 2 1: 0 1 2 0 1 2 2: 0 1 2 0 1 2 2 . .. 

It is important to note the following factorization theorem. 
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3.4 Factoring Theorems 

Factoring Theorem 1: 

The total number of implicants in a factorization of a given FI sequence is 

approximately equal to number of implicants in the given FI sequence, provided that all 

function tables are in reduced form(case and Fisher 1984). 

Although this seems to be a negative result for factoring, the lengths of the 

antecedents may be shorter by orders of magnitude than those in the original sequence. 

To relate each level function table to the function table of the original sequence is 

difficult. 

In a factorization of a given FI sequence, the function table for the lowest level is 

a subset of the function table of the given sequence; provided all function tables are in 

reduced form. 

To explain this, it suffices to remember that the sequence generated by 

continuation in level 1 is the same as the original sequence and since the function table in 

the lowest level is reduced form, it consists ofreduce form implicants of the original 

sequence. Therefore, the set inclusion is established. 

Factoring Theorem 2: 

Let S be an FI sequence, and I a set of implicants of S. The "residual sequence" R 

obtained from S by applying ( or pushing down) the set of implicants I is defined to be 

that sequence obtained from S by deleting all occurrences of consequents of elements of 

I. 
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If the function table for an FI sequence is in reduced form, the residual sequence 

obtained by applying a set of implicants is the same as the sequence obtained by deleting 

the occurrence of the consequences of these implicants. In addition, the set of implicants 

can be reconstructed from the set of occurences of these deleted symbols (Cherri, 1996). 

Up to this point, the method explained is an attempt to find a factorization of a 

given FI sequence so that the inductive base in each level is less than or equal to a given 

positive integer k. Our goal is to find an efficient optimal way of describing the structure 

if such sequences, and use these structures to find the best match. The existence and 

unqueness of such factorization is of major interest. Next, we will state one of the main 

results of factorization for special binary sequences. 

Factorini: Theorem 3: 

Any binary periodic FI sequence having period less than 2\ has a factorization in 

which the inductive base in each level is less thank. 

The proof is by induction on the period length and is found in the appendix of 

Case and Fisher (1984). 

3.5 Factoring Examples 

In this section we will list few examples of factoring specific sequences. We will 

start with a periodic sequence. 

Example 3.5.1: Factoring a periodic FI sequence 

Sequence, 22: 0101120122: 0101120122: 0101120122: . .. 



The reduced function table of the given sequence: 

22 • 0 
0 • 1 
2201 • 0 
101 • 2 
1012 • 0 
1201 • 2 
2012 • 2 
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and assuming that the inductive base is two. Therefore, the set of implic~nts that we can 

apply is {22 • 0 and 0 • 1} and, the first residual is: 

22 : 02022: 02022: 02022: ... 

the function table for the first residual: 

22 • 0 
0 • 2 

the second residual: 

02: 02: 02: 02: 02: ... 

the function table for the second residual: 

The resulting factorization is given by the three function tables as follows: 
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Function tables: 

Fl F2 F3 

22 • 0 22 • 0 0 • 2 
0 • 1 0 • 2 2 • 0 

and, the starting segments 

SJ =22 s2 = 22 and S3 = 22 

Therefore, the resulting system of sequences at different levels are: 

L3 02: 0 2: 0 2: 0 2: .. . 

L2 22: 0 20 22: 0 20 22: 0 20 22: ... 

Ll 22:0101120122: 0101120122: 0101120122: ... 

Here the factorization is constructed with inductive base in each level less than or equal 

to two. The following example is a sequence which has a long string of occurrence of the 

same symbols or pattern as sequentially factorable. 

Example 3.5.2: A sequentially factorable sequence. 

The sequence is: 

1 222 222 222: 1 222 222 222: 1 222 222 222: ... 

and, the sequence factorization is given by the following table. 
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Function table 3.5.3: 

Fl F2 F3 F4 FS 

1 • 2 1 • 2 1 • 2 1 • 2 1 • 2 
12 • 2 12 • 2 12 • 2 12 • 2 2 • 1 

and, the starting segments are: 

St= 1, Sz = 1, s3 = 1, S4 = 1, and ss = 1. 

The logical step that follows factorization, is matching. The matching procedure 

must answer each of the following questions: first, how does this representation help us 

distinguish one sequence from another, and how efficient is this representation in finding 

the closest match? Several criterias can be used to evaluate closeness, and to find a best 

match. 

Clearly, from earlier discussion we can conclude that not all finitely inductive 

sequences are factorable. But, it was shown (case and Fisher 1984) that the factorable 

sequences form a large proportion of the totality of finitely inductive sequences. Case 

and Fisher (1984) classified the non-factorable sequences in two classes that they named 

pseudo-random and raw counts. To learn more about these sequences refer to Case and 

Fisher (1984). If the proportion of non-factorable sequences to all FI sequences (having a 

certain inductive base) was too large then this study is mathematically inadequate. But, 

Case and Fisher (1984) showed that this proportion is very small. 



CHAPTER IV 

PROGRAM AND RESULT 

4.1 Introduction 

In this chapter, we implement the C++ program, present running results, and 

discuss outcomes. 

4.2 Problem Solving Using C++ Program 

The purpose of this program is to factor sequences of positive integers. This 

program is written in C++. 

Input: 

A sequence of positive integers. 

The maximum length for each level ( Inductive Base ). 

The number of levels. 

Output: 

The ruling of levels. 

Residual for each levels. 

Data Structures: 

A one-dimensional array of strings representing sequence numbers ( sequence ). 

A one-dimensional array of residuals ( residual ). 

19 



Main 

Read data 
Input Inductive Base and Number of Levels 
Factor 
Print ruling and residuals 
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Level0 

To open the input file, we will make our program more flexible by prompting the 

user for a file name and reading it in as a string. 

Open For Input ( Inout: someFile) 

Prompt user for name of file 
Read fileName 
Associate fileName with stream someFile, 

and try to open it 
IF file could not be opened 

Print error message 

Get sequence numbers 

Set length = 0 
Read numbers from Input File . 
WHILE NOT EOF on Input File 

Get number into sequence list, 
incrementing length 

Let residual equals sequence list 
Read number from Input File 

Get Levels and Residuals 

If Inductive Base < Length Of Sequence 
Then Do 

Set Level= 1 
Set implicant length to 2 

Generate all implicants with length 2 
Increment implicant length 
Loop until length of implicant= the inductive base 
Generate Residual 

Print level ruling and Residual 
Loop until number of levels= Input of Number of Levels 

Level 1 



Module Structure Chart: 

someFile 

I Main 

Inductive 
Base 

levels 

Open For 
Input 

Get Sequence 
numbers 

Get levels 
and Residuals 

4.3 Running Results 

Sequence 1: 1 1 2 0 2 1 1 3 

Number of Levels= 3, and Inductive Base= 2 

Ruling: 

Level 1 Level 2 Level 3 

0 • 2 2 • 3 1 • 1 
12 • 0 11 • 2 
20 • 2 12 • 3 
02 • 1 
21 • 1 

Residual = 1123 Residual = 11 Residual= 1 

Sequence 2 : 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

Number of Levels= 3, and Inductive Base= 1 

levels 
Residuals 

Print 

Level 1 - residual = 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

Level 2 - residual = 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 O O O O O 
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Level 3 - residual = 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 O O 0 

No implicant were generated for this inductive base, so we have to change the 

inductive base as following. 

Number of Levels = 4, and Inductive Base= 2 

Ruling: 

Level 1 Level2 Level3 Level4 

10 • 0 10 • 0 10 • 0 10 • 0 
01 • 1 01 • 1 01 • 1 01 • 1 
10 • 0 10 • 0 10 • 0 10 • 0 

Level 1 - residual = 11111111000000011111110000000 

Level 2 - residual= 11111111000000111 l l 1000000 

Level 3 - residual= 11111111000001111100000 

Level 4 - residual= 11111111000011110000 

Number of Levels = 4, and Inductive Base= 4 

Ruling: 

Level 1 Level2 Level 3 Level 4 

10 • o 10 • o 10 • o 
01 • 1 01 • 1 00 • 1 
110 • o 110 • o 01 • 1 
100 • o 100 • o 110 • o 
011 • 1 001 • 1 100 • 1 
1110 • 0 011 • 1 001 • 1 
1100 • 0 1110 • 0 011 • 0 
1000 • 0 1100 • 0 1110 • 0 
0001 • 1 1000 • 0 1100 • 1 
0011 • 1 0001 • 1 1001 • 1 
0111 • 1 0011 • 1 0011 • 0 
1110 • 0 0111 • 1 0110 • 0 
1100 • 0 
1000 • 0 

22 



Level 1 - residual= 11111111000001111100000 

Level 2 - residual= 11111111001100 

Level 3 - residual = 111111110 

Level 4 - residual = 111111110 

Number of Levels= 3, and Inductive Base= 6 

Ruling: 

Level 1 

10 • o 11110 • o 110000 • 0 
01 • 1 11100 • o 100000 • 0 
110 • o 11000 • o 000001 • 1 
100 • o 10000 • o 000011 • 1 
001 • 1 00001 • 1 000111 • 1 
011 • 1 00011 • 1 001111 • 1 
1110 • 0 00111 • 1 011111 • 1 
1100 • 0 01111 • 1 111110 • 0 
1000 • 0 11110 • o 111100 • 0 
0001 • 1 11100 • 0 111000 • 0 
0011 • 1 111110 • 0 110000 • 0 
0111 • 1 111100 • 0 
1110 • 0 111000 • 0 

Level 1 - residual = 11111111000111000 

Level 2 - residual = 111111110 

Level 3 - residual = 111111110 

10 • o 
01 • 1 
110 • o 
100 • o 
000 • 1 
001 • 1 
011 • 1 
1110 • 0 
1100 • 0 
1000 • 1 
0001 • 1 
0011 • 1 
0111 • 0 

Number of Levels= 3, and Inductive Base= 7 
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Level 2 Level 3 

1110 • o 001110 • 0 
11110 • o 011100 • 0 
11000 • 1 
10001 • 1 
00011 • 1 
00111 • o 
01110 • 0 
111110 • 0 
111100 • 0 
111000 • 1 
110001 • 1 
100011 • 1 
000111 • 0 
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Ruling: 
Level 1 Level2 Level3 

10 • o 00001 • 1 1110000 • 0 10 • o 111110 • o 
01 • 1 00011 • 1 1100000 • 0 00 • 1 111100 • 1 
110 • o 00111 • 1 1000000 • 0 01 • 1 111001 • 1 
100 • o 01111 • 1 0000001 • 1 110 • o 110011 • o 
001 • 1 111110 • o 0000011 • 1 100 • 1 100110 • 0 
011 • 1 111100 • o 0000111 • 1 001 • 1 1111110 • 0 
1110 • o 111000 • o 0001111 • 1 011 • o 1111100 • 1 
1100 • o 110000 • o 0011111 • 1 1110 • o 1111001 • 1 
1000 • o 100000 • o 0111111 • 1 1100 • 1 1110011 • 0 
0001 • 1 000001 • 1 1111110 • 0 1001 • 1 1100110 • 0 
0011 • 1 000011 • 1 1111100 • 0 0011 • o 
0111 • 1 000111 • 1 1111000 • 0 0110 • 0 
1100 • o 001111 • 1 1110000 • 0 11110 • 0 
11110 • 0 011111 • 1 1100000 • 0 11100 • 1 
11100 • 0 1111110 • 0 1000000 • 0 11001 • 1 
11000 • 0 1111100 • 0 10011 • 0 
10000 • 0 1111000 • 0 00110 • 0 

Residual = 11111111001100 Residual = 111111110 Residual= 
111111110 

Number of Levels= 3, and Inductive Base= 8 

Ruling: 
Level 1 Level2 Level3 

10 • o 10000 • o 1111110 • o 11111000 • 0 1 • 1 
01 • 1 00001 • 1 1111100 • o 11110000 • 0 11 • -1 
110 • o 00011 • 1 1111000 • o 11100000 • 0 111 • 1 
100 • o 00111 • 1 1110000 • o 11000000 • 0 1111 • 1 
001 • 1 01111 • 1 1100000 • o 10000000 • 0 11111 • 1 
011 • 1 111110 • 0 1000000 • o 00000000 • 1 111111 • 1 
1110 • o 111100 • 0 0000001 • 1 00000001 • 1 1111111 • 1 
1100 • o 111000 • 0 0000011 • 1 00000011 • 1 
1000 • o 110000 • 0 0000111 • 1 00000111 • 1 
0001 • 1 100000 • 0 0001111 • 1 00001111 • 1 
0011 • 1 000001 • 1 0011111 • 1 00011111 • 1 
0111 • 1 000011 • 1 0111111 • 1 00111111 • 1 
11110 • 0 000111 • 1 11111111 • 0 01111111 • 1 
11100 • 0 001111 • 1 11111110 • 0 
11000 • 0 011111 • 1 11111100 • 0 
Residual = 11111111 Residual= 1 Residual= 1 



Sequence 3 : 1 2 3 4 5 6 7 8 9 0 

Number of Levels= 2, and Inductive Base= 1 

Ruling: 

Level I Level2 

1 • 2 
2 • 3 
3 • 4 
4 • 5 
5 • 6 
6 • 7 
7 • 8 
8 • 9 
9 • 0 

Residual = 1 Residual = 1 
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Sequence 4 : 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 O 

Number of Levels= 2, and Inductive Base= 1 

Ruling: 

Level 1 Level 2 

1 • 2 
2 • 3 
3 • 4 
4 • 5 

Residual= Residual= 
117178178917890 117178178917890 

Number of Levels= 4, and Inductive Base= 3 



Ruling: 

Level 1 Level2 Level3 Level4 
-

1 • 2 91 • 2 11 • 7 91 • 9 1 • 1 
2 • 3 123 • 4 71 • 7 111 • 9 11 • 1 
3 • 4 234 • 5 81 • 7 119 • 1 
4 • 5 345 • 6 91 • 7 191 • 9 
5 • 6 561 • 2 117 • 1 919 • 0 
12 • 3 612 • 3 171 • 7 
23 • 4 671 • 2 717 • 8 
34 • 5 712 • 3 781 • 7 
45 • 6 781 • 2 817 • 8 
61 • 2 812 • 3 891 • 7 
71 • 2 891 • 2 917 • 8 
81 • 2 912 • 3 

Residual = Residual= Residual= Residual= 

117178178917890 1119190 111 1 

Sequence 5 : 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 

Number of Levels= 2, and Inductive Base= 2 

Level 1 - residual = 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 

Level 2 - residual = 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 

No implicant were generated for this inductive base, so we have to change the 

inductive base as following. 

Number of Levels= 5, and Inductive Base= 3 

Ruling: 

Level 1 Level 2 Level 3 Level4 Level 5 

010 • 0 010 • 1 010 • 0 010 • 0 010 • 0 

100 • 0 101 • 1 011 • 1 011 • 1 100 • 1 

100 • 0 

Level 1 - residual= 00001011000011110001 l l l l 101 
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Level 2 - residual= 00001000011110011111101 

Level 3 - residual = 00001000111001111101 

Level 4 - residual= 00001001100111101 

Level 5 - residual= 00001010011101 

Number of Levels = 8, and Inductive Base= 3 

Ruling: 

Level 1 Level 2 Level3 

010 • 0 010 • 1 010 • 0 
100 • 0 101 • 1 011 • 1 

100 • 0 

Level 5 Level 6 Level 7 

010 • 0 101 • 0 1 • o 
100 • 1 100 • 1 01 • o 

011 • 1 10 • 1 
111 • 0 001 • 0 
110 • 1 010 • 1 

101 • 0 

Level 1 - residual = 000010110000111100011111101 

Level 2 - residual = 00001000011110011111101 

Level 3 - residual= 00001000111001111101 

Level 4 - residual= 00001001100111101 

Level 5 - residual = 00001010011101 

Level 6 - residual = 000010101 

Level 7 - residual = 00001 
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Level4 

010 • 0 
011 • 1 

Level 8 



Level 8 - residual = 00001 

Number of Levels= 4, and Inductive Base= 4 

Ruling: 

Level 1 Level2 Level 3 Level4 

010 • 0 010 • 1 010 • o 
100 • 0 101 • 1 100 • 1 
0010 • 0 100 • 0 011 • 1 
0100 • 0 0000 • 1 111 • o 
0110 • 0 0010 • 1 110 • 1 
1100 • 0 0101 • 1 0001 • 0 
0111 • 1 1011 • o 0010 • 0 

0110 • 0 0100 • 1 
1100 • 0 1001 • 1 
1000 • 1 0011 • 1 
0011 • 1 0111 • 0 

1110 • 1 

Level 1 - residual= 00001011000111000111 l 101 

Level 2 - residual= 0000010011101 

Level 3 - residual = 000001 

Level 4 - residual= 000001 

Number of Levels = 4, and Inductive Base= 5 

Ruling: 

Level 1 Level2 

010 • o 01100 • 0 010 • o 00100 • 0 
100 • o 11000 • 0 0000 • 1 01000 • 1 
0010 • o 00000 • 1 0010 • o 10001 • 1 
0100 • o 00111 • 1 0100 • o 00011 • 0 
0110 • o 11100 • 0 1000 • l 00110 • 0 
1100 • o 00111 • 1 0110 • o 01100 • 1 
0111 • 1 1100 • 1 11001 • 1 
00010 • 0 1001 • 1 10011 • 1 
00100 • 0 0111 • 1 00111 • 1 
01000 • 1 1110 • 1 01111 • 1 
10001 • 1 00001 • 0 11111 • 0 
00110 • 0 00010 • 0 11110 • 1 
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Level 3 Level 4 

0 • o 
00 • 0 
000 • 0 



Level 1 - residual = 0000100011001111101 

Level 2 - residual = 0000 

Level 3 - residual = 0 

Level 4 - residual = 0 

Sequence 6 : 1 1 2 1 0 1 2 0 1 2 2 0 1 2 0 1 2 2 0 1 2 0 1 2 2 

Number of Levels= 3, and Inductive Base= 4 

Ruling: 

Level 1 Level 2 Level 3 

0 • 1 122 • o 2 • o 1 • 1 
11 • 2 220 • 1 0 • 2 
21 • o 201 • 2 11 • 2 
10 • 1 1121 • 0 12 • o 
01 • 2 1210 • 1 20 • 2 
20 • 1 2101 • 2 02 • o 
22 • 0 1012 • 0 112 • o 
112 • 1 0120 • 1 120 • 2 
121 • 0 1201 • 2 202 • o 
210 • 1 0122 • 0 020 • 2 
101 • 2 1220 • 1 1120 • 2 
120 • 1 2201 • 2 1202 • 0 
201 • 2 2020 • 2 

Residual= 1120202 Residual= 1 Residual= 1 

Sequence 7 : 1 2 1 2 3 1 2 3 4 1 2 1 1 3 1 2 3 4 1 2 1 2 3 1 2 3 4 1 2 1 2 3 1 2 3 4 1 

Number of Levels= 5, and Inductive Base= 2 
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Ruling: 

Level 1 Level2 Level 3 Level 4 

4 • 1 4 • 1 21 • 3 2 • 1 
31 • 2 21 • 2 13 • 1 12 • 1 
34 • 1 23 • 1 31 • 2 21 • 3 
41 • 2 31 • 3 23 • 2 
11 • 3 13 • 4 32 • 3 
13 • 1 34 • 1 

11 • 3 

Level 1 - residual= 121231341134123134123134 

Level 2 - residual= 121312323 

Level 3 - residual = 1213 

Level 4 - residual = 12 

Level 5 - residual = 1 

Level5 

1 • 2 

Sequence 8 : 2 2 0 1 0 1 1 2 0 1 2 2 0 1 0 1 1 2 0 1 2 2 0 1 0 1 1 2 0 1 2 2 

Number of Levels= 3, and Inductive Base= 3 

Ruling: 

Level 1 Level2 Level 3 

0 • 1 0 • 2 2 • 2 
22 • o 22 • o 
20 • 1 20 • 2 
10 • 1 02 • 0 
11 • 2 220 • 2 
220 • 1 202 • 0 
010 • 1 020 • 2 
101 • 1 
011 • 2 
112 • 0 
120 • 1 
012 • 2 
122 • 0 

Residual = 22020202 Residual = 22 Residual= 2 
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4.4 Conclusion 

In conclusion, it is clear that varying the inductive base as well as the number of 

levels is a necessary step towards accomplishing good output. At time and for a specific 

small number of sequences, this factoring process fails . For example, the binary 

sequence ( Sequence 5) could not be factored for a short inductive base and a small 

number of levels. The residual is the original sequence. Hence, modification of factoring 

algorithm is necessary to generate a ruling. 



CHAPTERV 

USES OF THE FACTORING TECHNIQUE AND CONCLUSION 

5.1 Uses Of The Factoring Technique 

Primarily, FI is used to learn about the presence of relationships between symbols 

of arbitrary sequences. Note that indicating the presence of a relationship does not 

necessarily provide information about the nature of that relationship. An immediate 

consequence of identifying relationships would be to find if the same relationships exist 

in other sequences. Thus, a matching and pattern identification algorithms will follow. 

Secondly, the factorization process can be extended to a set of sequences. 

Simultaneous factoring of a finite set of sequences requires a set of starting chains rather 

than just one. This method of storing a set of closely related sequences is plausible and 

powerful, and it can be used to identify and discriminate between sequential patterns. 

Here, implicants are generated for all sequences in the set, that have minimal length 

antecedent. The factorization process is identical to the one used for one sequence, but 

instead of generating one residual, a sequence of residuals is generated at each level of 

factorization . The implicants generated at each level is done by adjoining implicants 

generated at that level for each individual sequence. Therefore, an implicant may have a 

shorter antecedent with respect to another, and a set of sequences may have some 

implicants in common. 

32 



33 

Ultimatelly, parallel factoring of a set of sequences gives rise to a sort of cluster 

analysis. This method can be used to differentiate between two or more sequences and to 

find common subpatterns. It also gives an efficient, non-redundant coding for the set of 

sequences. It seems like this process would factor out the common part of the set of 

sequences leaving exactly enough information to discriminate between them. Therefore, 

a class of sequences can be generated and for a new given sequence we can determine 

what class it belongs to . If the newly presented sequence contradicts the function tables 

of the original set, then we will classify it as unknown to the system ( or foreign). Hence, 

at hand a better method to recognize patterns. 

Finally, the factorization process relies upon details of deterministic inductive 

inferences, so it only applies to data having some amount of causality. Also, it can be 

used to extract causal information from mixed data. This process presents an alternative 

method to build structures, and gives a new view of the raw data. 

5.2 Conclusion 

It seems that this model applied to one or any sequence of observations is of 

interest. By using this technique, we are hoping to efficiently classify patterns into 

different classes according to their main structure. In the factoring technique, the main 

pattern is distinguished from the subpatterns. A small local change will not influence the 

global framework. 
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