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ABSTRACT 

KATHRYN E. JOHANON 

PREDICTING LONG TERM SUCCESS IN A PARTICULAR PROGRAM  
BY IDENTIFYING GATEWAY COURSES 

AUGUST 2015 

 The purpose of this study is to see if students’ grades in a math class they 

complete in the beginning of their college careers are indicative of future success in their 

major.  Using pre-existing historical data from Texas Woman’s University, we chose 

Math 1013 as a test gateway course and noted participants’ grades and if they graduated 

in their original major or in another major within five years of taking the course.  With 

this data, we developed nineteen possible models using Log-Linear Analysis.  After 

exploring the development of our models, we then tested the models to find the model 

that most closely fits our data. 
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CHAPTER I 

INTRODUCTION 

Success can be defined in a variety of ways for different people, but for a college 

student, graduation is usually an eventual objective.  In 2014, the National Center for 

Educational Studies showed that the average five-year graduation rate for first-time-in-

college freshmen students attending public universities are just over fifty percent, with 

slight variations depending on if the students are women, men, or both (seen in Table 

1.1).  The TWU Fact Book for 2015 shows that the five-year graduation rates for first-

time-in-college freshmen students at Texas Woman’s University, also found in Table 1.1, 

are much lower than the national average, especially considering that the population of 

TWU students between 2005 and 2014 was an average of 91.4% female.   

Table 1.1 

 Rates for Graduation within Five Years 
 2005-2010 2006-2011 2007-2012 2008-2013 2009-2014 

National Female/Male 51.1 51.9 52.3 -- -- 
National Female 53.9 54.9 55.5 -- -- 
National Male 47.8 48.3 48.6 -- -- 

TWU Female/Male 35.7 41.1 37.5 38.4 35.6 
 

Are there academic factors that we can look at early in students’ college careers 

that indicate if they will graduate within 5 years?  Can a student’s grade in a course they 

take as a freshman or sophomore indicate future success of graduation, especially in their 
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original major?  In this study, we will be looking at this connection between course 

grades, classification, major, and graduation.   
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CHAPTER II 

LITERATURE REVIEW 

 College retention and graduation rates are important and studied often.   In this 

chapter, we will review some of the literature regarding graduation and retention rates 

and how to best predict success in a student’s college career.   

Harackiewicz, Barron, Tauer, and Elliot (2002) followed a group of students’ 

entire college career, starting when they took an introductory psychology course in their 

first semester through graduation.  They studied the interaction between variables from 

high school (SAT/ACT scores, overall performance, motivation, and goals) and both 

short term and long term college (performance, motivation, goals, courses, major, and 

GPA) using multiple regression analysis.  Although their study does not use graduation as 

a measure of success, it does discuss the link between classes taken in a student’s first 

semester and future success in GPA as well as major.    

A 2006 study by Dougherty, Mellor, and Jian calculated the connection between a 

student’s participation in Advanced Placement in high school and college graduation.  

They found that 64% of the students who passed AP exams graduated college within five 

years.   

Much of the research uses either students’ high school grades or their SAT/ACT 

scores or a combination of both to predict graduation rates.  While some suggests that 

high school grades are not as reliable to use for college admissions as SAT/ACT scores, 
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Geiser and Santelices found different results in their 2007 research.  Their results showed 

that high school GPA is an excellent predictor of both college freshman grades and 

graduation.    

  Camara and Ehternacht (2000) also look at the many studies that have been done 

measuring the usefulness of SAT scores and high school grades in predicting college 

success.  Some studies include different types of success criteria such as awards, honors, 

and teacher ratings; however the more common criteria are grades, GPA, persistence, and 

graduation.  The results in these studies are consistent: college successes can be predicted 

jointly by SAT scores and high school GPA.  While graduation is almost always the 

objective, it can be harder to predict since it can be affected by financial and familial 

concerns.  Predictions for persistence and graduation are still consistent though despite 

these outside influences.   

In a 2001 College Board Research Report, Burton and Ramist also find that the 

most accurate forecast of different kinds of college success comes from the grouping of 

high school grades and SAT scores.  When predicting graduation alone however SAT 

scores give a slightly more accurate prediction.  Again, they stress that graduation 

predictions can be less accurate because of outside influences.   

 An ACT Policy Report in 2004 also recognizes that there are many influences, 

both academic and non-academic, that prevents students from continuing their education 

to the point of graduation.  The authors encourage universities to develop an early alert 

system based on these elements that would recognize students who are unlikely to persist.  

One of factors that could be monitored is students’ grades at the beginning of their 
4 



college career.  Universities could then offer assistance to at-risk students to encourage 

them to further their education and graduate (Lotkowski, Robbins, & Noeth). 

 In 2008, Texas Woman’s University implemented an Early Warning System for 

Retention.  This early alert system sends emails to students in the 5th week of the 

semester warning them that they are at risk of failing their course.  It then encourages 

them to contact their instructor or advisor, seek assistance from a variety of tutoring 

options, and directs them to health, counseling, and disability services if needed.  This 

early intervention can be a great help to students who are struggling in their courses.   

It is this idea of an early alert system that our research expands upon to help  

at-risk students recognize that they may be in danger of not realizing their goal of 

graduation.  We will look into the relationship between students’ course grades and 

graduation to determine what the classes that students typically take as freshman and 

sophomore students indicate about their future success. 
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CHAPTER III 
 

DATA EXPLORATION 

In this Chapter, we will discuss our data in detail and do a preliminary test to 

confirm that there is a relationship between our variables.   To begin, we had to choose a 

course to be our test Gateway Course.  While it could be a beginning-level course of any 

topic that satisfies the core requirements for that subject, we chose an introductory 

mathematics course, Math 1013.  During the five fall semesters between 2005 and 2009, 

a total of 2,063 Texas Woman’s University students took Math 1013.  Since we wanted 

to limit our participants to students who were more towards the beginning of their college 

careers, we used only students who were of the freshman or sophomore class at the time 

they took the course.  We further reduced our sample by only using students who 

completed the course, earning a grade between A and F, and excluding students who 

withdrew from the course, receiving a grade of W or WF.   After making these 

exclusions, we were left with a total sample size of 1,406.  While we also noted that of 

our 1,406 students, we had 1,332 women and only 74 men, we did not make an exclusion 

based on gender.  In order to maintain a higher level of student privacy, we did not assign 

any kind of identification number to the students, so we did not exclude students who 

might have repeated the course between those years.     

Of the data available, we are mostly interested in three variables we call Grade, 

Class, and Major.  The first, Grade (G), is the grade the student received in the course.  
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There are five outcomes (g = 5): A, B, C, D, or F.  The second, Class (C), is the 

classification of the student at the time they took the course.  We will be limiting Class to 

two options (c = 2): Freshman (FR) or Sophomore (SO).  The last variable, Major (M), is 

really a combination of three things: the declared major at the time of taking the course, 

the graduation status of the student five years after taking the course, and the major at the 

time of graduation.   The three possible outcomes (m = 3) for Major are Original, Other, 

and None.  “Original” means the student graduated within five years of taking the course 

in the same major declared at the time the course was taken.  “Other” means the student 

did graduate within five years but in a major other than the one originally declared at the 

time of taking the course.  “None” means that the student did not graduate in any major 

within five years.  In Table 3.1, we have the Frequency Table for our sample of data.    

Table 3.1 

Frequencies for Data Sample 

Grade Class 
Major Total 

Original Other None 
A FR 123 40 132 295 
A SO 125 27 51 203 
B FR 94 29 181 304 
B SO 61 18 61 140 
C FR 37 19 135 191 
C SO 31 10 44 85 
D FR 10 1 43 54 
D SO 6 3 22 31 
F FR 2 0 55 57 
F SO 3 4 39 46 

Total 492 151 763 1406 
 
 

(Continued)  
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Grade Class 
Major Total 

Original Other None 
 

A 

 

248 67 183 498 
B 155 47 242 444 
C 68 29 179 276 
D 16 4 65 85 
F 5 4 94 103 

Total 492 151 763 1406 
 

 
FR 266 89 546 901 
SO 226 62 217 505 

Total 492 151 763 1406 
 

Figure 3.1 illustrates the proportions of students in the different variables of 

Grade, Class, and Major, and Figures 3.2, 3.3, and 3.4 illustrate the interactions between 

the variables. 

 
Figure 3.1: Proportions of grade, class, and major 
 
 

Grade 

A B C D F
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Freshman Sophomore

Major 

Original Other None
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Figure 3.2: Interaction between grade and class 
 

 
Figure 3.3: Interaction between grade and major 
 

 
Figure 3.4: Interaction between class and major 
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course however, have a much higher graduation rate.  While on the other end of the 

spectrum, less than ten percent of students who made an F graduated within five years.   

Table 3.2 

Rates for Graduation by Grade for Data Sample  
Grade Graduating/Total Graduation Rate 

A 315/498 63.25 
B 202/444 45.50 
C 97/276 35.14 
D 20/85 23.53 
F 9/103 8.74 

All 643/1406 45.73 
 

Another piece of data that we are interested in is the grade point average (GPA) of 

the 643 students who graduated in either an original or other major.  Because students 

cannot graduate with a GPA below 2.0, our range of GPA values, seen in Table 3.3, is 

between 2.0 and 4.0.   

Table 3.3 

GPA Frequency for Graduating Students 

Grade 
GPA Total 

2.00-2.49 2.50-2.99 3.00-3.49 3.50-4.00 
A 6 23 131 155 315 
B 4 42 112 44 202 
C 9 38 48 2 97 
D 0 9 11 0 20 
F 3 3 3 0 9 

Total 22 115 305 201 643 
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Chi-Square Test of Association 

We perform a Chi-Square Test of Association to confirm that there is a 

relationship between a student’s Grade, Class, and Major.  We begin by defining the null 

and alternate hypotheses: 

𝐻𝐻0 = Grade, Class, and Major are Independent 

𝐻𝐻𝐴𝐴 = They are Dependent 

We then calculate Expected Values.   

𝑒𝑒𝑒𝑒𝑒𝑒𝜒𝜒2 = 𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝐺𝐺 ∗ 𝑜𝑜𝑜𝑜𝑜𝑜𝑀𝑀/𝑛𝑛 

To find the Expected Value for Freshmen who made an A in the course and Graduate in 

the Original Major, take the Total for Freshmen who made an A and multiply it by the 

Total for students who Graduate in Original Major, then divide that by the Total for all 

students.  The rest of the Expected Values are found in the same way and can be seen in 

Table 3.4.   

Table 3.4 

Expected Values for Chi-Square Test of Association 
Grade Class Major Observed Expected Chi-Square 
A FR Original 123 103.229 3.787 
A FR Other 40 31.682 2.184 
A FR None 132 160.089 4.928 
A SO Original 125 71.036 40.996 
A SO Other 27 21.802 1.240 
A SO None 51 110.163 31.773 
      
      

(Continued)  
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Grade Class Major Observed Expected Chi-Square 
      
B FR Original 94 106.378 1.440 
B FR Other 29 32.649 0.408 
B FR None 181 164.973 1.557 
B SO Original 61 48.990 2.944 
B SO Other 18 15.036 0.584 
B SO None 61 75.974 2.951 
C FR Original 37 66.836 13.319 
C FR Other 19 20.513 0.112 
C FR None 135 103.651 9.482 
C SO Original 31 29.744 0.053 
C SO Other 10 9.129 0.083 
C SO None 44 46.127 0.098 
D FR Original 10 18.896 4.188 
D FR Other 1 5.799 3.972 
D FR None 43 29.304 6.401 
D SO Original 6 10.848 2.166 
D SO Other 3 3.329 0.033 
D SO None 22 16.823 1.593 
F FR Original 2 19.946 16.146 
F FR Other 0 6.122 6.122 
F FR None 55 30.932 18.726 
F SO Original 3 16.097 10.656 
F SO Other 4 4.940 0.179 
F SO None 39 24.963 7.893 
Total 1406 1406 196.015 
 

Now to calculate the Chi-Square statistic, the following equation is used: 

𝜒𝜒2 = �(𝑜𝑜𝑏𝑏𝑏𝑏 − 𝑒𝑒𝑒𝑒𝑒𝑒)2/𝑒𝑒𝑒𝑒𝑒𝑒 

We show the calculation for Freshmen who made an A Grade in the course and Graduate 

in the Original Major.  
12 



(𝑜𝑜𝑏𝑏𝑏𝑏 − 𝑒𝑒𝑒𝑒𝑒𝑒)2/𝑒𝑒𝑒𝑒𝑒𝑒 = (123 − 103.229)2/103.229 = 3.787 

This is done for the other 23 groups, as also seen in Table 3.4, and these are then summed 

to find the Chi-Square Statistic: 

𝜒𝜒2 = 196.015 

The degrees of freedom are found: 

𝑑𝑑𝑑𝑑 = (𝑐𝑐 − 1)(𝑟𝑟 − 1) = (3 − 1)(10 − 1) = 18 

With an alpha of 0.05, we find the critical value to be 28.86 and the p-value to be 

6.27x10-32.  Based on these values, we reject the null hypothesis that Grade, Class, and 

Major are Independent.  We know then that there exists a relationship between these 

three variables, but what exactly is that relationship?  We do further testing to determine 

this. 
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CHAPTER IV 

DEVELOPMENT OF LOG-LINEAR MODELS 

There are several ways to evaluate the relationship between these variables.  We 

choose to use Log-Linear Analysis.  Log-linear analysis treats all the categorical 

variables as response variables, but is suitable even for clear explanatory/response cases 

when there are more than two responses such as in our case with three outcomes for 

Major.  This type of analysis is beneficial because it creates models that look at every 

possible relationship between the variables by examining expected cell frequencies.    

To show how all the models will be built, we will demonstrate with the Saturated 

Model {GCM}.  This model includes every variable and interaction possible and is a 

perfect fit for our data since the observed cell frequencies equal the expected cell 

frequencies.  Here we have the multiplicative form of the general equation for the 

Saturated Model. 

𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜂𝜂𝜏𝜏𝑖𝑖𝐺𝐺𝜏𝜏𝑗𝑗𝐶𝐶𝜏𝜏𝑘𝑘𝑀𝑀𝜏𝜏𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝜏𝜏𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝜏𝜏𝑗𝑗𝑗𝑗𝐶𝐶𝐶𝐶𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺  

We start by defining 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 as the observed frequency of cell ijk and 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 as the expected 

frequency for that cell.  The first term in the equation, 𝜂𝜂, is similar to an intercept.  Unless 

it is the only term in the equation, it does not have much meaning except as the 

foundation from which each additional term will deviate.  The rest of the terms, 𝜏𝜏, are the 

effects that each variable and interaction have on the expected value.  The number of 
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effect terms included depends on the model.  For the multiplicative form of the equation, 

effects that are equal to one have no impact on the expected cell frequencies, whereas 

values greater than one will increase the frequencies and values less than one will 

decrease them.      

For the individual variable terms, each variable X with x number of outcomes 

adds x – 1 terms to the Saturated Model.  Since Grade has five outcomes, there will be 

four terms: 𝜏𝜏𝑖𝑖𝐺𝐺 , where  

𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧1 if a student makes a Grade of A

2 if a student makes a Grade of B
3 if a student makes a Grade of C
4 if a student makes a Grade of D
− if a student makes a Grade of F

 

No term is included if a student makes a Grade of F.  Class, with two outcomes, adds one 

term: 𝜏𝜏𝑗𝑗𝐶𝐶 , where 

𝑗𝑗 = � 1 if a student is in the Freshman Class
− if a student is in the Sophomore Class 

Again no term is included if a student is in the Sophomore Class.  And the last of the 

individual variables with three outcomes and two terms, we have Major: 𝜏𝜏𝑘𝑘𝑀𝑀, where  

𝑘𝑘 = �
1 if a student graduates in their Original Major           
2 if a student graduates in a Different Major                 
− if a student does not graduate in any Major (None)
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Like the other two categories, there is no term if a student does not graduate in any 

Major.  These individual terms represent the unequal distribution of the variables across 

the other groups.    

When two or three variables are associated, we add interaction terms to the model 

showing the degree to which they are connected.  The two-way interaction between 

Grade and Class, 𝜏𝜏𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺 , will have (g-1)(c-l), or four terms.  Eight terms, (g-1)(m-l), are 

added by the interactions between Grade and Major: 𝜏𝜏𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺.  And the interaction between 

Class and Major, 𝜏𝜏𝑗𝑗𝑗𝑗𝐶𝐶𝐶𝐶, adds (c-1)(m-l) or two terms.  The three-way interaction, 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺, 

adds (g-1)(c-l)(m-1) or eight terms to the model.   

We now take the natural log of both sides of the equation, 

ln(𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖) = ln(𝜂𝜂𝜏𝜏𝑖𝑖𝐺𝐺𝜏𝜏𝑗𝑗𝐶𝐶𝜏𝜏𝑘𝑘𝑀𝑀𝜏𝜏𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝜏𝜏𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝜏𝜏𝑗𝑗𝑗𝑗𝐶𝐶𝐶𝐶𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺) 

 and rewrite the equation in its additive form.  

ln(𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖) = ln(𝜂𝜂) + ln(𝜏𝜏𝑖𝑖𝐺𝐺) + ln(𝜏𝜏𝑗𝑗𝐶𝐶) + ln(𝜏𝜏𝑘𝑘𝑀𝑀) + ln(𝜏𝜏𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺) + ln(𝜏𝜏𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺) + ln(𝜏𝜏𝑗𝑗𝑗𝑗𝐶𝐶𝐶𝐶)

+ ln(𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺) 

If we let ln(𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖) = 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖, ln(𝜂𝜂) = 𝜃𝜃, and ln(𝜏𝜏) = 𝜆𝜆, we have the following general 

equation for the Saturated Model.  

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜃𝜃 + 𝜆𝜆𝑖𝑖𝐺𝐺 + 𝜆𝜆𝑗𝑗𝐶𝐶 + 𝜆𝜆𝑘𝑘𝑀𝑀 + 𝜆𝜆𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺 + 𝜆𝜆𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺 + 𝜆𝜆𝑗𝑗𝑗𝑗𝐶𝐶𝐶𝐶 + 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 
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 It is in this additive form that the effects of each individual variable and 

interaction can be easily seen.  Here, the effects and interactions equal to zero have no 

effect on the expected cell frequencies, while positive values increase the frequencies and 

negative values decrease them.  Degrees of freedom for all models are equal to the 

number of parameters equal to zero. 

Using different combinations of these effects and interactions, we will build a 

total of nineteen different models divided into several categories.  All of our models will 

have a hierarchical structure.  As we have seen, our Saturated Model includes not only 

the three-way interaction but also all possible two-variable interactions and single-

variable effects.  The rest of the models are unsaturated but still hierarchical.  Models that 

have two-variable interactions will include the single-variable effects that make up those 

interactions.   

Using at most two variables, we will build ten Non-Comprehensive Models, some 

that only include individual effects and others that consist of one interaction.  We will 

also build eight other models that include all three of our variables: one Mutual 

Independence Model, three Partial Independence Models, three Conditional 

Independence Models, and one Homogenous Association Model.  With all of our models 

however, even though they are hierarchical and include all of the lower-order terms, 

when interpreting the final models with their coefficients, we will only look at the 

highest-order interaction terms and will ignore the lower-order terms.   
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Zero Cells 

Before we start our analysis, it is important to address the issue of zero cells.  

Since Log-Linear Analysis involves taking the natural log of each observed value, we 

cannot have any values equal to zero, causing the calculation to become undefined.   Of 

the 1,406 students in our sample, we have no freshmen with a grade of F graduating in an 

“Other” major.   This is only a Sampling Zero since it is possible to have students in this 

category if the sample size is large enough.     

Without having to increase the sample size, we have several options.  First, we 

could define zero divided by zero to be zero, but in this situation all expected values for 

this category would also be zero.  This outcome would not be very likely in larger 

populations.  The other two options are similar to each other: add a small amount to 

either each observed value or to the zero cell only.  Smith and Cicchetti (1974) show in 

their research that adding only to the zero cells has the least impact on the final outcome.  

We follow this path and add the commonly recommended amount of 0.5 to our zero cell 

(Knoke & Burke, 1980).  All of our models will show a total population of 1,406.5.  We 

are now ready to start discussing our different models.   

Saturated Model 

We begin with the Saturated Model whose general equation we have already 

found. 

𝑁𝑁{𝐺𝐺𝐺𝐺𝐺𝐺} = 𝜃𝜃 + 𝜆𝜆𝐺𝐺 + 𝜆𝜆𝐶𝐶 + 𝜆𝜆𝑀𝑀 + 𝜆𝜆𝐺𝐺𝐺𝐺 + 𝜆𝜆𝐺𝐺𝐺𝐺 + 𝜆𝜆𝐶𝐶𝐶𝐶 + 𝜆𝜆𝐺𝐺𝐺𝐺𝐺𝐺 
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Again, this model is a perfect fit for our data, with the expected values being 

equal to the observed values. 

𝑒𝑒𝑒𝑒𝑒𝑒{𝐸𝐸−𝑃𝑃} = 𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 

To build the full equation for the Saturated Model, we look to the equations 

formed by our thirty categories, shown in Table 4.1, and solve for the coefficients. 

Table 4.1 
 
Equations to Find Coefficients for Saturated Model 

ln 132 = 𝑏𝑏0 + 𝑏𝑏1𝐺𝐺 + 𝑏𝑏1𝐶𝐶 + 𝑏𝑏11𝐺𝐺𝐺𝐺  ln 31 = 𝑏𝑏0 + 𝑏𝑏3𝐺𝐺 + 𝑏𝑏1𝑀𝑀 + 𝑏𝑏31𝐺𝐺𝐺𝐺 

ln 125 = 𝑏𝑏0 + 𝑏𝑏1𝐺𝐺 + 𝑏𝑏1𝑀𝑀 + 𝑏𝑏11𝐺𝐺𝐺𝐺 ln 10 = 𝑏𝑏0 + 𝑏𝑏3𝐺𝐺 + 𝑏𝑏2𝑀𝑀 + 𝑏𝑏32𝐺𝐺𝐺𝐺 

ln 27 = 𝑏𝑏0 + 𝑏𝑏1𝐺𝐺 + 𝑏𝑏2𝑀𝑀 + 𝑏𝑏12𝐺𝐺𝐺𝐺 ln 43 = 𝑏𝑏0 + 𝑏𝑏4𝐺𝐺 + 𝑏𝑏1𝐶𝐶 + 𝑏𝑏41𝐺𝐺𝐺𝐺  

ln 181 = 𝑏𝑏0 + 𝑏𝑏2𝐺𝐺 + 𝑏𝑏1𝐶𝐶 + 𝑏𝑏21𝐺𝐺𝐺𝐺  ln 6 = 𝑏𝑏0 + 𝑏𝑏4𝐺𝐺 + 𝑏𝑏1𝑀𝑀 + 𝑏𝑏41𝐺𝐺𝐺𝐺 

ln 61 = 𝑏𝑏0 + 𝑏𝑏2𝐺𝐺 + 𝑏𝑏1𝑀𝑀 + 𝑏𝑏21𝐺𝐺𝐺𝐺 ln 3 = 𝑏𝑏0 + 𝑏𝑏4𝐺𝐺 + 𝑏𝑏2𝑀𝑀 + 𝑏𝑏42𝐺𝐺𝐺𝐺 

ln 18 = 𝑏𝑏0 + 𝑏𝑏2𝐺𝐺 + 𝑏𝑏2𝑀𝑀 + 𝑏𝑏22𝐺𝐺𝐺𝐺 ln 2 = 𝑏𝑏0 + 𝑏𝑏1𝐶𝐶 + 𝑏𝑏1𝑀𝑀 + 𝑏𝑏11𝐶𝐶𝐶𝐶 

ln 135 = 𝑏𝑏0 + 𝑏𝑏3𝐺𝐺 + 𝑏𝑏1𝐶𝐶 + 𝑏𝑏31𝐺𝐺𝐺𝐺  ln 0.5 = 𝑏𝑏0 + 𝑏𝑏1𝐶𝐶 + 𝑏𝑏2𝑀𝑀 + 𝑏𝑏12𝐶𝐶𝐶𝐶 

ln 39 = 𝑏𝑏0 ln 123 = 𝑏𝑏0 + 𝑏𝑏1𝐺𝐺 + 𝑏𝑏1𝐶𝐶 + 𝑏𝑏1𝑀𝑀 + 𝑏𝑏11𝐺𝐺𝐺𝐺 + 𝑏𝑏11𝐺𝐺𝐺𝐺 + 𝑏𝑏11𝐶𝐶𝐶𝐶 + 𝑏𝑏111𝐺𝐺𝐺𝐺𝐺𝐺 

ln 51 = 𝑏𝑏0 + 𝑏𝑏1𝐺𝐺  ln 40 = 𝑏𝑏0 + 𝑏𝑏1𝐺𝐺 + 𝑏𝑏1𝐶𝐶 + 𝑏𝑏2𝑀𝑀 + 𝑏𝑏11𝐺𝐺𝐺𝐺 + 𝑏𝑏12𝐺𝐺𝐺𝐺 + 𝑏𝑏12𝐶𝐶𝐶𝐶 + 𝑏𝑏112𝐺𝐺𝐺𝐺𝐺𝐺 

ln 61 = 𝑏𝑏0 + 𝑏𝑏2𝐺𝐺  ln 94 = 𝑏𝑏0 + 𝑏𝑏2𝐺𝐺 + 𝑏𝑏1𝐶𝐶 + 𝑏𝑏1𝑀𝑀 + 𝑏𝑏21𝐺𝐺𝐺𝐺 + 𝑏𝑏21𝐺𝐺𝐺𝐺 + 𝑏𝑏11𝐶𝐶𝐶𝐶 + 𝑏𝑏211𝐺𝐺𝐺𝐺𝐺𝐺 

ln 44 = 𝑏𝑏0 + 𝑏𝑏3𝐺𝐺  ln 29 = 𝑏𝑏0 + 𝑏𝑏2𝐺𝐺 + 𝑏𝑏1𝐶𝐶 + 𝑏𝑏2𝑀𝑀 + 𝑏𝑏21𝐺𝐺𝐺𝐺 + 𝑏𝑏22𝐺𝐺𝐺𝐺 + 𝑏𝑏12𝐶𝐶𝐶𝐶 + 𝑏𝑏212𝐺𝐺𝐺𝐺𝐺𝐺 

ln 22 = 𝑏𝑏0 + 𝑏𝑏4𝐺𝐺  ln 37 = 𝑏𝑏0 + 𝑏𝑏3𝐺𝐺 + 𝑏𝑏1𝐶𝐶 + 𝑏𝑏1𝑀𝑀 + 𝑏𝑏31𝐺𝐺𝐺𝐺 + 𝑏𝑏31𝐺𝐺𝐺𝐺 + 𝑏𝑏11𝐶𝐶𝐶𝐶 + 𝑏𝑏311𝐺𝐺𝐺𝐺𝐺𝐺 

ln 55 = 𝑏𝑏0 + 𝑏𝑏1𝐶𝐶 ln 19 = 𝑏𝑏0 + 𝑏𝑏3𝐺𝐺 + 𝑏𝑏1𝐶𝐶 + 𝑏𝑏2𝑀𝑀 + 𝑏𝑏31𝐺𝐺𝐺𝐺 + 𝑏𝑏32𝐺𝐺𝐺𝐺 + 𝑏𝑏12𝐶𝐶𝐶𝐶 + 𝑏𝑏312𝐺𝐺𝐺𝐺𝐺𝐺 

ln 3 = 𝑏𝑏0 + 𝑏𝑏1𝑀𝑀 ln 10 = 𝑏𝑏0 + 𝑏𝑏4𝐺𝐺 + 𝑏𝑏1𝐶𝐶 + 𝑏𝑏1𝑀𝑀 + 𝑏𝑏41𝐺𝐺𝐺𝐺 + 𝑏𝑏41𝐺𝐺𝐺𝐺 + 𝑏𝑏11𝐶𝐶𝐶𝐶 + 𝑏𝑏411𝐺𝐺𝐺𝐺𝐺𝐺 

ln 4 = 𝑏𝑏0 + 𝑏𝑏2𝑀𝑀 ln 1 = 𝑏𝑏0 + 𝑏𝑏4𝐺𝐺 + 𝑏𝑏1𝐶𝐶 + 𝑏𝑏2𝑀𝑀 + 𝑏𝑏41𝐺𝐺𝐺𝐺 + 𝑏𝑏42𝐺𝐺𝐺𝐺 + 𝑏𝑏12𝐶𝐶𝐶𝐶 + 𝑏𝑏412𝐺𝐺𝐺𝐺𝐺𝐺 
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Here is the full equation for our Saturated Model: 

ln(𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖) = 3.663562 + 0.268264 𝑡𝑡1𝐺𝐺 + 0.447312 𝑡𝑡2𝐺𝐺 + 0.120628 𝑡𝑡3𝐺𝐺 − 0.572519 𝑡𝑡4𝐺𝐺 +

0.343772 𝑡𝑡1𝐶𝐶 − 2.564949 𝑡𝑡1𝑀𝑀 − 2.277267 𝑡𝑡2𝑀𝑀 + 0.607205 𝑡𝑡11𝐺𝐺𝐺𝐺 +

3.461437 𝑡𝑡11𝐺𝐺𝐺𝐺 + 1.641279 𝑡𝑡12𝐺𝐺𝐺𝐺 + 0.743852 𝑡𝑡21𝐺𝐺𝐺𝐺 + 2.564949 𝑡𝑡21𝐺𝐺𝐺𝐺 +

1.056765 𝑡𝑡22𝐺𝐺𝐺𝐺 + 0.777314 𝑡𝑡31𝐺𝐺𝐺𝐺 + 2.214747 𝑡𝑡31𝐺𝐺𝐺𝐺 + 0.795663 𝑡𝑡32𝐺𝐺𝐺𝐺 +

0.326386 𝑡𝑡41𝐺𝐺𝐺𝐺 + 1.265666 𝑡𝑡41𝐺𝐺𝐺𝐺 + 0.284837 𝑡𝑡42𝐺𝐺𝐺𝐺 − 0.749237 𝑡𝑡11𝐶𝐶𝐶𝐶 −

2.423213 𝑡𝑡12𝐶𝐶𝐶𝐶 − 0.217869 𝑡𝑡111𝐺𝐺𝐺𝐺𝐺𝐺 + 1.865279 𝑡𝑡112𝐺𝐺𝐺𝐺𝐺𝐺 + 0.094034 𝑡𝑡211𝐺𝐺𝐺𝐺𝐺𝐺 +

1.812514 𝑡𝑡212𝐺𝐺𝐺𝐺𝐺𝐺 − 0.194918 𝑡𝑡311𝐺𝐺𝐺𝐺𝐺𝐺 + 1.943982 𝑡𝑡312𝐺𝐺𝐺𝐺𝐺𝐺 + 0.589905 𝑡𝑡411𝐺𝐺𝐺𝐺𝐺𝐺 +

0.654443𝑡𝑡412𝐺𝐺𝐺𝐺𝐺𝐺  

While this model is a perfect fit, it is complex and can be difficult to interpret.  

Our goal would be to find a simpler model that would still produce equivalent expected 

values and provide an accurate description of our data while being easier to interpret.  To 

do this we will begin with the simplest models and work our way up.  First we will build 

each model, showing its general equation and expected values.  Then, we will calculate 

the likelihood-ratio statistics, and using our established alpha and each model’s degrees 

of freedom, we will see the impact of each variable and association.  We will also see 

which model fits our data the best and if any of them can be used in place of the 

Saturated Model.  Once we find a model that is a good fit for our data, we will calculate 

the coefficients and construct the final equation. 
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Non-Comprehensive Models 

 There are ten non-comprehensive models.  These simple models only include one 

or two variables.  Although we are interested in the association between all three of our 

variables, it will be worthwhile to study these models and their statistics.  By going 

through every possible model, we can gain valuable information about the importance of 

the individual variable and of the small associations between two variables.  By 

recognizing the associations that affect our numbers, we will know the vital components 

and be able to follow the step-by-step evolution of our final model.   With that in mind, 

we will begin discussing the Non-Comprehensive Models.     

The first and simplest model is the Equal-Probably Model {E-P}.  With this 

model, each outcome has an equal probability of occurring.  The Equation is simply a 

constant, not including any of our variables:  

𝑁𝑁{𝐸𝐸−𝑃𝑃} = 𝜃𝜃 

The Expected Values (Table 4.2) are all the same: the total number of students divided by 

our 30 different outcomes.   

𝑒𝑒𝑒𝑒𝑒𝑒{𝐸𝐸−𝑃𝑃} = 𝑛𝑛/(𝑔𝑔 ∗ 𝑐𝑐 ∗ 𝑚𝑚) 

 The next three models, represented by {G}, {C}, and {M}, only look at one 

variable.  For example, the {G} Model only shows variation in expected values based on 

Grade with no regard to Class or Major.  The {C} and {M} Models are similar, only 
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focusing on Class or Major and ignoring the other two variables.  Their Equations only 

include the one variable:   

𝑁𝑁{𝐺𝐺} = 𝜃𝜃 + 𝜆𝜆𝐺𝐺 

𝑁𝑁{𝐶𝐶} = 𝜃𝜃 + 𝜆𝜆𝐶𝐶 

𝑁𝑁{𝑀𝑀} = 𝜃𝜃 + 𝜆𝜆𝑀𝑀 

The Expected Values (Table 4.2) are found by dividing the Observed Values of the one 

variable by the product of the number of outcomes of the ignored variables.   

𝑒𝑒𝑒𝑒𝑒𝑒{𝐺𝐺} = 𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺/(𝑐𝑐 ∗ 𝑚𝑚) 

𝑒𝑒𝑒𝑒𝑒𝑒{𝐶𝐶} = 𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶/(𝑔𝑔 ∗ 𝑚𝑚) 

𝑒𝑒𝑒𝑒𝑒𝑒{𝑀𝑀} = 𝑜𝑜𝑜𝑜𝑜𝑜𝑀𝑀/(𝑔𝑔 ∗ 𝑐𝑐) 

For example with the {G} Model, the Expected Value for students making a Grade of B 

would be the same for all of the six possible combinations of Class and Major.     

Table 4.2 

Expected Values for Non-Comprehensive Models, Part I 
Grade Class Major Obs {E-P} {G} {C} {M} 
A FR Original 123 46.88 83.00 60.10 49.20 
A FR Other 40 46.88 83.00 60.10 15.15 
A FR None 132 46.88 83.00 60.10 76.30 
A SO Original 125 46.88 83.00 33.67 49.20 
A SO Other 27 46.88 83.00 33.67 15.15 
A SO None 51 46.88 83.00 33.67 76.30 
        
        
        

(Continued)  
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Grade Class Major Obs {E-P} {G} {C} {M} 
        
B FR Original 94 46.88 74.00 60.10 49.20 
B FR Other 29 46.88 74.00 60.10 15.15 
B FR None 181 46.88 74.00 60.10 76.30 
B SO Original 61 46.88 74.00 33.67 49.20 
B SO Other 18 46.88 74.00 33.67 15.15 
B SO None 61 46.88 74.00 33.67 76.30 
C FR Original 37 46.88 46.00 60.10 49.20 
C FR Other 19 46.88 46.00 60.10 15.15 
C FR None 135 46.88 46.00 60.10 76.30 
C SO Original 31 46.88 46.00 33.67 49.20 
C SO Other 10 46.88 46.00 33.67 15.15 
C SO None 44 46.88 46.00 33.67 76.30 
D FR Original 10 46.88 14.17 60.10 49.20 
D FR Other 1 46.88 14.17 60.10 15.15 
D FR None 43 46.88 14.17 60.10 76.30 
D SO Original 6 46.88 14.17 33.67 49.20 
D SO Other 3 46.88 14.17 33.67 15.15 
D SO None 22 46.88 14.17 33.67 76.30 
F FR Original 2 46.88 17.25 60.10 49.20 
F FR Other 0.5 46.88 17.25 60.10 15.15 
F FR None 55 46.88 17.25 60.10 76.30 
F SO Original 3 46.88 17.25 33.67 49.20 
F SO Other 4 46.88 17.25 33.67 15.15 
F SO None 39 46.88 17.25 33.67 76.30 
 

 The next set of models we will look at each have two variables, but they are 

independent of each other.  They are represented by the following: {G, C}, {G, M}, and 

{C, M}.  The {G, M} Model states that the data is governed by the variables of Grade 

and Major, but they are not associated and Class has no bearing on any outcome.  The 
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Equations for these models include terms for both of the variables considered, with the 

{G, M} Model including the G term and the M term.   

𝑁𝑁{𝐺𝐺,𝐶𝐶} = 𝜃𝜃 + 𝜆𝜆𝐺𝐺 + 𝜆𝜆𝐶𝐶 

𝑁𝑁{𝐺𝐺,𝑀𝑀} = 𝜃𝜃 + 𝜆𝜆𝐺𝐺 + 𝜆𝜆𝑀𝑀 

𝑁𝑁{𝐶𝐶,𝑀𝑀} = 𝜃𝜃 + 𝜆𝜆𝐶𝐶 + 𝜆𝜆𝑀𝑀 

The Expected Values (Table 4.3) are found by dividing the product of the Observed 

Values of the first variable and the Observed Values of the second variable by the 

product of the total number of students and the number of outcomes for the variable 

ignored.   

𝑒𝑒𝑒𝑒𝑒𝑒{𝐺𝐺,𝐶𝐶} = 𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺 ∗ 𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶/(𝑛𝑛 ∗ 𝑚𝑚) 

𝑒𝑒𝑒𝑒𝑒𝑒{𝐺𝐺,𝑀𝑀} = 𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺 ∗ 𝑜𝑜𝑜𝑜𝑜𝑜𝑀𝑀/(𝑛𝑛 ∗ 𝑐𝑐) 

𝑒𝑒𝑒𝑒𝑒𝑒{𝐶𝐶,𝑀𝑀} = 𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶 ∗ 𝑜𝑜𝑜𝑜𝑜𝑜𝑀𝑀/(𝑛𝑛 ∗ 𝑔𝑔) 

For example, the Expected Values from the {G, M} Model for students making a Grade 

of B and graduating with a Major of Other, would be the same whether they are 

Freshmen or Sophomores.   
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Table 4.3 
 
Expected Values for Non-Comprehensive Models, Part II 
Grade Class Major Obs {G, C} {G, M} {C, M} 
A FR Original 123 106.40 87.10 63.07 
A FR Other 40 106.40 26.82 19.42 
A FR None 132 106.40 135.08 97.81 
A SO Original 125 59.60 87.10 35.33 
A SO Other 27 59.60 26.82 10.88 
A SO None 51 59.60 135.08 54.79 
B FR Original 94 94.86 77.66 63.07 
B FR Other 29 94.86 23.91 19.42 
B FR None 181 94.86 120.43 97.81 
B SO Original 61 53.14 77.66 35.33 
B SO Other 18 53.14 23.91 10.88 
B SO None 61 53.14 120.43 54.79 
C FR Original 37 58.97 48.27 63.07 
C FR Other 19 58.97 14.86 19.42 
C FR None 135 58.97 74.86 97.81 
C SO Original 31 33.03 48.27 35.33 
C SO Other 10 33.03 14.86 10.88 
C SO None 44 33.03 74.86 54.79 
D FR Original 10 18.16 14.87 63.07 
D FR Other 1 18.16 4.58 19.42 
D FR None 43 18.16 23.06 97.81 
D SO Original 6 10.17 14.87 35.33 
D SO Other 3 10.17 4.58 10.88 
D SO None 22 10.17 23.06 54.79 
F FR Original 2 22.11 18.10 63.07 
F FR Other 0.5 22.11 5.57 19.42 
F FR None 55 22.11 28.07 97.81 
F SO Original 3 12.39 18.10 35.33 
F SO Other 4 12.39 5.57 10.88 
F SO None 39 12.39 28.07 54.79 
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 The rest of the Non-Comprehensive Models, represented by {GC}, {GM}, and 

{CM}, are similar to the ones we just discussed with two variables, but now the models 

are stating that the variables are dependent on each other.  For the Model {CM}, this 

means that Class and Major are dependent on each other, while Grade has no impact on 

the data.  The Equation, like the other models, will include separate terms for each 

variable, but this time also includes the interaction term of the two variables.   

𝑁𝑁{𝐺𝐺𝐺𝐺} = 𝜃𝜃 + 𝜆𝜆𝐺𝐺 + 𝜆𝜆𝐶𝐶 + 𝜆𝜆𝐺𝐺𝐺𝐺 

𝑁𝑁{𝐺𝐺𝐺𝐺} = 𝜃𝜃 + 𝜆𝜆𝐺𝐺 + 𝜆𝜆𝑀𝑀 + 𝜆𝜆𝐺𝐺𝐺𝐺 

𝑁𝑁{𝐶𝐶𝐶𝐶} = 𝜃𝜃 + 𝜆𝜆𝐶𝐶 + 𝜆𝜆𝑀𝑀 + 𝜆𝜆𝐶𝐶𝐶𝐶 

The Expected Values (Table 4.4) are found by dividing the Observed Values for the 

intersection of the two variables by the number of outcomes in the variable not 

considered.   

𝑒𝑒𝑒𝑒𝑒𝑒{𝐺𝐺𝐺𝐺} = 𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝐺𝐺/𝑚𝑚 

𝑒𝑒𝑒𝑒𝑒𝑒{𝐺𝐺𝐺𝐺} = 𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝐺𝐺/𝑐𝑐 

𝑒𝑒𝑒𝑒𝑒𝑒{𝐶𝐶𝐶𝐶} = 𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶/𝑔𝑔 

For the {CM} Model, the Expected Values for the Class/Major category of Sophomore 

students graduating in their Original Major would be the same for all five Grades.   
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Table 4.4 
 
Expected Values for Non-Comprehensive Models, Part III 
Grade Class Major Obs {GC} {GM} {CM} 
A FR Original 123 98.33 124.00 53.20 
A FR Other 40 98.33 33.50 17.90 
A FR None 132 98.33 91.50 109.20 
A SO Original 125 67.67 124.00 45.20 
A SO Other 27 67.67 33.50 12.40 
A SO None 51 67.67 91.50 43.40 
B FR Original 94 101.33 77.50 53.20 
B FR Other 29 101.33 23.50 17.90 
B FR None 181 101.33 121.00 109.20 
B SO Original 61 46.67 77.50 45.20 
B SO Other 18 46.67 23.50 12.40 
B SO None 61 46.67 121.00 43.40 
C FR Original 37 63.67 34.00 53.20 
C FR Other 19 63.67 14.50 17.90 
C FR None 135 63.67 89.50 109.20 
C SO Original 31 28.33 34.00 45.20 
C SO Other 10 28.33 14.50 12.40 
C SO None 44 28.33 89.50 43.40 
D FR Original 10 18.00 8.00 53.20 
D FR Other 1 18.00 2.00 17.90 
D FR None 43 18.00 32.50 109.20 
D SO Original 6 10.33 8.00 45.20 
D SO Other 3 10.33 2.00 12.40 
D SO None 22 10.33 32.50 43.40 
F FR Original 2 19.17 2.50 53.20 
F FR Other 0.5 19.17 2.25 17.90 
F FR None 55 19.17 47.00 109.20 
F SO Original 3 15.33 2.50 45.20 
F SO Other 4 15.33 2.25 12.40 
F SO None 39 15.33 47.00 43.40 
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Having built all ten of the Non-Comprehensive Models, we now move on to 

discuss the models that include all three variables.  

Mutual Independence Model 

 The Mutual Independence Model is the first model we have looked at that 

includes all three of our variables, although there are no association terms.  This model, 

{G, C, M}, states that the variables of Grade, Class, and Major all govern the data but are 

mutually independent of each other.  The Equation includes all three of the individual 

terms but no interaction terms.   

𝑁𝑁{𝐺𝐺,𝐶𝐶,𝑀𝑀} = 𝜃𝜃 + 𝜆𝜆𝐺𝐺 + 𝜆𝜆𝐶𝐶 + 𝜆𝜆𝑀𝑀 

The Expected Values, shown in Table 4.5, are the product of the three separate Observed 

Values for Grade, Class, and Major, divided by the squared value of all the students.   

𝑒𝑒𝑒𝑒𝑒𝑒{𝐺𝐺,𝐶𝐶,𝑀𝑀} = 𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺 ∗ 𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶 ∗ 𝑜𝑜𝑜𝑜𝑜𝑜𝑀𝑀/𝑛𝑛2 

Table 4.5 
 
Expected Values for Mutual and Partial Independence Models 
Grade Class Major Obs {G, C, M} {GC, M} {GM, C} {CM, G} 
A FR Original 123 111.66 103.19 158.96 94.18 
A FR Other 40 34.38 31.78 42.94 31.69 
A FR None 132 173.16 160.03 117.29 193.32 
A SO Original 125 62.55 71.01 89.04 80.02 
A SO Other 27 19.26 21.87 24.06 21.95 
A SO None 51 97.00 110.12 65.71 76.83 
B FR Original 94 99.55 106.34 99.35 83.97 
B FR Other 29 30.65 32.75 30.12 28.25 
B FR None 181 154.38 164.91 155.11 172.36 

(Continued)  
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Grade Class Major Obs {G, C, M} {GC, M} {GM, C} {CM, G} 
        
B SO Original 61 55.76 48.97 55.65 71.34 
B SO Other 18 17.17 15.08 16.88 19.57 
B SO None 61 86.48 75.95 86.89 68.50 
C FR Original 37 61.88 66.81 43.58 52.20 
C FR Other 19 19.05 20.57 18.59 17.56 
C FR None 135 95.97 103.61 114.73 107.14 
C SO Original 31 34.66 29.73 24.42 44.35 
C SO Other 10 10.67 9.16 10.41 12.17 
C SO None 44 53.76 46.11 64.27 42.58 
D FR Original 10 19.06 18.89 10.26 16.08 
D FR Other 1 5.87 5.82 2.56 5.41 
D FR None 43 29.55 29.29 41.66 33.00 
D SO Original 6 10.68 10.84 5.74 13.66 
D SO Other 3 3.29 3.34 1.44 3.75 
D SO None 22 16.56 16.82 23.34 13.11 
F FR Original 2 23.21 20.11 3.20 19.57 
F FR Other 0.5 7.15 6.19 2.88 6.59 
F FR None 55 35.99 31.19 60.25 40.18 
F SO Original 3 13.00 16.09 1.80 16.63 
F SO Other 4 4.00 4.95 1.62 4.56 
F SO None 39 20.16 24.95 33.75 15.97 
 

Partial Independence Models 

 Now we will move into discussing models that not only include all three of our 

variables but also include interaction terms between two of the variables.  The first 

models fitting this description are the Partial Independence Models.  These models are 

represented by the following: {GC, M}, {GM, C}, and {CM, G}.   With these models, 

two of the variables are associated with each other while being jointly independent of the 

third variable.    
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Each Equation has all three of the individual terms G, C, and M, and also the 

interaction term that is unique to the model.   

𝑁𝑁{𝐺𝐺𝐺𝐺,𝑀𝑀} = 𝜃𝜃 + 𝜆𝜆𝐺𝐺 + 𝜆𝜆𝐶𝐶 + 𝜆𝜆𝑀𝑀 + 𝜆𝜆𝐺𝐺𝐺𝐺 

𝑁𝑁{𝐺𝐺𝐺𝐺,𝐶𝐶} = 𝜃𝜃 + 𝜆𝜆𝐺𝐺 + 𝜆𝜆𝐶𝐶 + 𝜆𝜆𝑀𝑀 + 𝜆𝜆𝐺𝐺𝐺𝐺 

𝑁𝑁{𝐶𝐶𝐶𝐶,𝐺𝐺} = 𝜃𝜃 + 𝜆𝜆𝐺𝐺 + 𝜆𝜆𝐶𝐶 + 𝜆𝜆𝑀𝑀 + 𝜆𝜆𝐶𝐶𝐶𝐶 

The Expected Values, shown in Table 4.5, are found by multiplying the Observed 

Values of the independent variable by the Observed Values of the Interaction term, and 

then divided that product by the total number of students.       

𝑒𝑒𝑒𝑒𝑒𝑒{𝐺𝐺𝐺𝐺,𝑀𝑀} = 𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝐺𝐺 ∗ 𝑜𝑜𝑜𝑜𝑜𝑜𝑀𝑀/𝑛𝑛 

𝑒𝑒𝑒𝑒𝑒𝑒{𝐺𝐺𝐺𝐺,𝐶𝐶} = 𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝐺𝐺 ∗ 𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶/𝑛𝑛 

𝑒𝑒𝑒𝑒𝑝𝑝{𝐶𝐶𝐶𝐶,𝐺𝐺} = 𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶 ∗ 𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺/𝑛𝑛 

The Equation used to find the Expected Values of the model {GC, M} may look 

familiar because we have already used it once before in our study.  It is identical to the 

equation used to find the Expected Values for our Chi-square calculations.  The Expected 

Values for the {GC, M} Model differ slightly however, since we had to marginally 

increase our sample to take care of the existing zero cell. 

Conditional Independence Models 

 Now we introduce the Conditional Independence Models.  These models consist 

of two interaction terms.  The two variables that appear only once in the different terms 

are said to be independent from each other while being conditional on the third variable 
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that appears in both terms.  For example, with the Model {GC, GM}, we would say that 

Class and Major are conditionally independent given Grade.  The Equations include all 

three individual variable terms and the two interaction terms.   

𝑁𝑁{𝐺𝐺𝐺𝐺,𝐺𝐺𝐺𝐺} = 𝜃𝜃 + 𝜆𝜆𝐺𝐺 + 𝜆𝜆𝐶𝐶 + 𝜆𝜆𝑀𝑀 + 𝜆𝜆𝐺𝐺𝐺𝐺 + 𝜆𝜆𝐺𝐺𝐺𝐺 

𝑁𝑁{𝐺𝐺𝐺𝐺,𝐶𝐶𝐶𝐶} = 𝜃𝜃 + 𝜆𝜆𝐺𝐺 + 𝜆𝜆𝐶𝐶 + 𝜆𝜆𝑀𝑀 + 𝜆𝜆𝐺𝐺𝐺𝐺 + 𝜆𝜆𝐶𝐶𝐶𝐶 

𝑁𝑁{𝐺𝐺𝐺𝐺,𝐶𝐶𝐶𝐶} = 𝜃𝜃 + 𝜆𝜆𝐺𝐺 + 𝜆𝜆𝐶𝐶 + 𝜆𝜆𝑀𝑀 + 𝜆𝜆𝐺𝐺𝐺𝐺 + 𝜆𝜆𝐶𝐶𝐶𝐶 

The Expected Values, found in Table 4.6, are the product of the Observed Values 

of the two interaction terms divided by the Observed Values of the individual variable 

present in both of the interactions. 

𝑒𝑒𝑒𝑒𝑒𝑒{𝐺𝐺𝐺𝐺,𝐺𝐺𝐺𝐺} = 𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝐺𝐺 ∗ 𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝐺𝐺/𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺 

𝑒𝑒𝑒𝑒𝑒𝑒{𝐺𝐺𝐺𝐺,𝐶𝐶𝐶𝐶} = 𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝐺𝐺 ∗ 𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶/𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶 

𝑒𝑒𝑒𝑒𝑒𝑒{𝐺𝐺𝐺𝐺,𝐶𝐶𝐶𝐶} = 𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝐺𝐺 ∗ 𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶/𝑜𝑜𝑜𝑜𝑜𝑜𝑀𝑀 

Table 4.6 
 
Expected Values for Conditional Independence Models 
Grade Class Major Obs {GC, GM} {GC, CM} {GM, CM} 
A FR Original 123 146.91 87.04 134.08 
A FR Other 40 39.69 29.29 39.58 
A FR None 132 108.40 178.67 130.95 
A SO Original 125 101.09 90.85 113.92 
A SO Other 27 27.31 24.92 27.42 
A SO None 51 74.60 87.23 52.05 
       
       
       

(Continued)  
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Grade Class Major Obs {GC, GM} {GC, CM} {GM, CM} 
       
B FR Original 94 106.13 89.70 83.80 
B FR Other 29 32.18 30.18 27.77 
B FR None 181 165.69 184.12 173.17 
B SO Original 61 48.87 62.65 71.20 
B SO Other 18 14.82 17.19 19.23 
B SO None 61 76.31 60.16 68.83 
C FR Original 37 47.06 56.36 36.76 
C FR Other 19 20.07 18.96 17.13 
C FR None 135 123.87 115.68 128.09 
C SO Original 31 20.94 38.04 31.24 
C SO Other 10 8.93 10.44 11.87 
C SO None 44 55.13 36.52 50.91 
D FR Original 10 10.16 15.93 8.65 
D FR Other 1 2.54 5.36 2.36 
D FR None 43 41.29 32.71 46.51 
D SO Original 6 5.84 13.87 7.35 
D SO Other 3 1.46 3.81 1.64 
D SO None 22 23.71 13.32 18.49 
F FR Original 2 2.78 16.97 2.70 
F FR Other 0.5 2.50 5.71 2.66 
F FR None 55 52.22 34.83 67.27 
F SO Original 3 2.22 20.59 2.30 
F SO Other 4 2.00 5.65 1.84 
F SO None 39 41.78 19.77 26.73 
 

Homogeneous Association Model 

 We now introduce the last model, the homogeneous association model  

{GC, GM, CM} that includes all three interactions GC, GM, and CM.  This is the most 

complicated model, with only the full interaction term of GCM missing from the  
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Saturated Model.  The Equation for this model has the three variable terms plus the three 

interaction terms: 

𝑁𝑁{𝐺𝐺𝐺𝐺,𝐺𝐺𝐺𝐺,𝐶𝐶𝐶𝐶} = 𝜃𝜃 + 𝜆𝜆𝐺𝐺 + 𝜆𝜆𝐶𝐶 + 𝜆𝜆𝑀𝑀 + 𝜆𝜆𝐺𝐺𝐺𝐺 + 𝜆𝜆𝐺𝐺𝐺𝐺 + 𝜆𝜆𝐶𝐶𝐶𝐶 

The Expected Values for this model, seen in Table 4.7, are not found with a 

simple equation but through a series of calculations called Iterative Proportional Fitting 

Procedure (IPFP).  This is a process of small proportional adjustments.  Using the margin 

totals of the Observed Values table and starting values of one for the Expected Values, a 

series of adjustments begin.  First the adjustments are made so the row and column totals 

are correct, then the row and layer totals are corrected, and finally the column and layer 

totals are corrected.  This threefold adjustment is repeated over and over until the margin 

totals for the expected values equal the margin totals for the observed values.  In our case, 

we repeated the process thirteen times until we found our new expected values.  The 

values generated by the IPFP are Maximum Likelihood Estimates (MLE) of the expected 

cell frequencies.  

Table 4.7 
 
Expected Values for Homogeneous Association Model 
Grade Class Major Obs {GC, GM, CM} 
A FR Original 123 127.58 
A FR Other 40 37.89 
A FR None 132 129.52 
A SO Original 125 120.42 
A SO Other 27 29.11 
A SO None 51 53.48 
     
     

(Continued)  
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Grade Class Major Obs {GC, GM, CM} 
     
B FR Original 94 90.20 
B FR Other 29 29.66 
B FR None 181 184.14 
B SO Original 61 64.80 
B SO Other 18 17.34 
B SO None 61 57.86 
C FR Original 37 38.67 
C FR Other 19 17.93 
C FR None 135 134.40 
C SO Original 31 29.33 
C SO Other 10 11.07 
C SO None 44 44.60 
D FR Original 10 7.70 
D FR Other 1 2.13 
D FR None 43 44.17 
D SO Original 6 8.30 
D SO Other 3 1.87 
D SO None 22 20.83 
F FR Original 2 1.85 
F FR Other 0.5 1.88 
F FR None 55 53.77 
F SO Original 3 3.15 
F SO Other 4 2.62 
F SO None 39 40.23 

 

Having built all of our Log-linear Models and generated their Expected Values, it 

is now time to see if one of these Models will be able to take the place of the Saturated 

Model.   
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CHAPTER V 

ASSESSMENT OF LOG-LINEAR MODELS 

Likelihood-Ratio 

 To find the model that is the best fit for our data, we will use the Likelihood-Ratio 

Statistic (L2).  L2statistics are calculated using the table of expected values for each 

model.  The natural logs of both the expected values and the observed values are taken.  

This step of the process is why we had to find a way to work around our zero cell.  The 

natural log of the expected value is subtracted from the natural log of the observed value.  

The difference is then multiplied by twice the observed value.  This process is repeated 

for each expected value in our table.  All the values are then summed to give us the 

L2statistic for that model. 

𝐿𝐿2 = �2 ∗ 𝑜𝑜𝑜𝑜𝑜𝑜 ∗ (ln 𝑜𝑜𝑜𝑜𝑜𝑜 −ln 𝑒𝑒𝑒𝑒𝑒𝑒) 

Our null and alternative hypotheses for each of these models will be the same: 

𝐻𝐻0 =The data is governed by the model and the expected frequencies do not 

significantly differ from the observed data 

𝐻𝐻𝐴𝐴 =The data is not governed by the model and the expected frequencies do 

significantly differ from the observed data 
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To find the best fitting model, we are looking for a low L2statistic relative to the 

degrees of freedom.  Degrees of freedom for all models are equal to the number of 

parameters equal to zero.  We will compare the corresponding p-value to our alpha to see 

if it is significant and we need to reject our null hypothesis or if the data is indeed 

governed by the model and the expected frequencies do not significantly differ from the 

observed data.  In this case, that model can replace the more complex Saturated Model.    

There is the question of which alpha to use.  Since we are interested finding a 

model that describes all the relationships between our three variables in the best way, we 

do not want to eliminate any relationship that our sample seems to be indicating.  

Therefore, we want to reduce the possibility of Type II errors.  In order to do this, some 

suggest that the alpha should be between 0.10 and 0.35 to reduce the risk of accepting a 

model that is not a true representative of our data, even at the increased risk of not 

detecting a real match (Knoke & Burke, 1980).  We, however, will keep our alpha at 

0.05, while keeping in mind that values below 0.35 could lead to a less than ideal model. 

Since our Saturated Model’s Expected Values are equal to its Observed Values, 

making it a perfect fit, its L2statistic, degrees of freedom, and p-value are all equal to 

zero.    We accept the null hypothesis; the data is governed by the model.  As we have 

said though, our goal is to find a simpler model.   

We will now go through the eighteen other models that we previously discussed 

to show their L2 statistics, degrees of freedom, p-values, and significance.   We begin with 

the simplest models, the Non-Comprehensive Models.  Again, although we are interested 

in a final model that shows the relationship between all three of our variables, here is 
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where we will be able to clearly see the effect of each variable and interaction term as it 

is added.  We will then move on to the more complex models in order to find the best 

fitting one for our data.   

Table 5.1 
 
Statistics for Non-Comprehensive Models 
Model L2 df p-value sig 
{E-P} 1344.43 29 7.55E-265 yes 
{C} 1231.12 28 1.38E-241 yes 
{M} 896.08 27 2.19E-171 yes 
{G} 791.17 25 8.81E-151 yes 
{C, M} 782.77 26 2.94E-148 yes 
{CM} 741.18 24 5.31E-141 yes 
{G, C} 677.86 24 1.12E-127 yes 
{GC} 662.68 20 1.72E-127 yes 
{G, M} 342.82 23 9.28E-59 yes 
{GM} 178.45 15 4.89E-30 yes 

 

The goodness-of-fit statistics for the Non-Comprehensive Models are listed in 

Table 5.1 and are sorted from highest to lowest L2statistic.  Starting with the highest 

value belonging to the Equal Probability Model, we then see the three individual variable 

Models.   The rest of the Non-Comprehensive Models came out in pairs.  We see first see 

the Model with two variables independent of each other followed by the Model with the 

two variables dependent on each other.  While the pairs with Class/Major and 

Grade/Class have extremely high L2statistics with only a slight improvement with the 

association term added, the pair with Grade/Major is different.  Even as independent 

variables, the L2statistic is half the value of the previous and when the association term is 

added, the value is cut in half again down to 178.  This shows that the association of 
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Grade and Major is noteworthy.  As we have already said though, all of these L2statistic 

values are too high and based on their accompanying p-values, we reject the null 

hypotheses that these models fit the data.    We will now discuss the models that include 

all three of our variables.     

Table 5.2 
 
Statistics for Comprehensive Models 
Model L2 df p-value sig 
{G, C, M} 229.51 22 1.74E-36 yes 
{GC, M} 214.33 18 1.34E-35 yes 
{CM, G} 187.92 20 2.72E-29 yes 
{GC, CM} 172.74 16 2.39E-28 yes 
{GM, C} 65.14 14 1.44E-08 yes 
{GC, GM} 49.96 10 2.72E-07 yes 
{GM, CM} 23.55 12 0.02341 yes 
{GC, CM, GM} 6.67 8 0.57259 no 
{GCM} 0 0 0 no 

 

Table 5.2 has the goodness-of-fit statistics for the Models that include all three 

variables, again sorted from highest to lowest L2statistic.  The first three Models, the 

Mutual Independence Model and the two Partial Independence Models without the 

Grade/Major association term, have L2statistics that are even higher than the {GM} 

Model’s 178.  The Conditional Independence Model {GC, CM}, also missing the GM 

association term, is close at 173.  All of these Models’ high L2statistics and significant  

p-values force us to reject the null hypotheses.   

When we move on to the Models that include the Grade/Major interaction term, 

we start to see an improvement in the L2statistics.  The Partial Independence Model  
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{GM, C} has an L2statistic of 65, while the Conditional Independence Model {GC, GM} 

has an L2statistic of 50.  These are still too high however, and based on their p-values, we 

reject these models as being a good fit.   

The last Conditional Independence Model {GM, CM} has an L2statistic that is on 

24 and its p-value is the lowest we have seen at 0.02.  This is the first model that has a  

p-value greater than 0.01.  Although a commonly used alpha, we recall the discussion of 

not wanting to accept a model that excludes relationships that do exist.  Therefore, we 

recognize that this is still significant, and the model does not offer the best fit.  

 Finally we have the Homogeneous Association Model {GC, GM, CM}.  This 

model has an L2 value of only 6.67, with a p-value of 0.57.  This model is an excellent fit 

for our data, and the difference between it and the saturated model is not significant.  It is 

interesting to note that even if we raise our alpha to somewhere in the suggested range of 

0.10 to 0.35, the difference is still not significant.  This model is a solid representation of 

our data.  With eight fewer terms than the saturated model, this uniform association 

model is much simpler while still maintaining enough terms to describe the interactions 

of our variables.  While all three variables may still be associated like our saturated 

model shows, the homogenous association model tells us that the relationship between 

any two variables seems to remain stable regardless of the third variable’s value. 

Dissimilarity Index 

 We will now calculate one more statistic to see how well the Homogenous 

Association Model fits our data.  We choose the Dissimilarity Index.  This statistic will 

tell us what proportion of Observed Values would need to be relocated in order for the 
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model in question to fit perfectly.  It starts with the absolute values of the differences 

between each Observed Value and the Expected Value.  Those values are then summed 

and divided by twice the sample size.   

𝐷𝐷 = �|𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑒𝑒𝑒𝑒𝑒𝑒| /2𝑛𝑛 

Possible values for D range between 0 and 1; however, to show that the proposed 

model is a good fit for our data, we are looking for a small value for D (preferably less 

than 0.03).  This would indicate that the variances between the Observed Values and 

Expected Values are minimal.  For the {GC, GM, CM} Model, the Dissimilarity Index is 

found as follows: 

𝐷𝐷{𝐺𝐺𝐺𝐺,𝐺𝐺𝐺𝐺,𝐶𝐶𝐶𝐶} = �|𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑒𝑒𝑒𝑒𝑒𝑒| /2𝑛𝑛 = 54.92197/(2 ∗ 1406.5) = 0.0195243 

This value shows us that 1.95% of our observations would need to shift into 

another category in order for this model to fit the observed data of the sample perfectly.    

This is within the guidelines of non-important lack-of-fit (D < 0.03), confirming again 

that this Model is indeed a good fit for our data.   

Compare this to the Dissimilarity Index of Model {GM, CM}: 

𝐷𝐷{𝐺𝐺𝐺𝐺,𝐶𝐶𝐶𝐶} = �|𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑒𝑒𝑒𝑒𝑒𝑒| /2𝑛𝑛 = 124.34329/(2 ∗ 1406.5) = 0.0442031 
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This time, we see that 4.42% of observations would need to be moved to achieve a 

perfect fit.  This is too high of a percentage to trust the model, as we had previously 

concluded by the high Likelihood-Ratio Statistic.   

Final Model with Coefficients 

Now that we have confirmed that the Homogenous Model {GC, GM, CM} is the 

best-fitting of our non-saturated models, we will build the full equation.  We again use 

the equations formed by our categories to solve for our model’s coefficients.  Although 

we once again have thirty equations, we will only be using the simplest twenty-two 

shown in Table 5.3, since we only have twenty-two coefficients.   

Table 5.3 
 
Equations to Find Coefficients for Homogenous Association Model 

ln 40.2 = 𝑏𝑏0 ln 20.8 = 𝑏𝑏0 + 𝑏𝑏4𝐺𝐺  

ln 53.5 = 𝑏𝑏0 + 𝑏𝑏1𝐺𝐺 ln 53.8 = 𝑏𝑏0 + 𝑏𝑏1𝐶𝐶 

ln 57.9 = 𝑏𝑏0 + 𝑏𝑏2𝐺𝐺 ln 3.2 = 𝑏𝑏0 + 𝑏𝑏1𝑀𝑀 

ln 44.6 = 𝑏𝑏0 + 𝑏𝑏3𝐺𝐺 ln 2.6 = 𝑏𝑏0 + 𝑏𝑏2𝑀𝑀 

ln 129.5 = 𝑏𝑏0 + 𝑏𝑏1𝐺𝐺 + 𝑏𝑏1𝐶𝐶 + 𝑏𝑏11𝐺𝐺𝐺𝐺  ln 29.3 = 𝑏𝑏0 + 𝑏𝑏3𝐺𝐺 + 𝑏𝑏1𝑀𝑀 + 𝑏𝑏31𝐺𝐺𝐺𝐺 

ln 120.4 = 𝑏𝑏0 + 𝑏𝑏1𝐺𝐺 + 𝑏𝑏1𝑀𝑀 + 𝑏𝑏11𝐺𝐺𝐺𝐺 ln 11.1 = 𝑏𝑏0 + 𝑏𝑏3𝐺𝐺 + 𝑏𝑏2𝑀𝑀 + 𝑏𝑏32𝐺𝐺𝐺𝐺 

ln 29.1 = 𝑏𝑏0 + 𝑏𝑏1𝐺𝐺 + 𝑏𝑏2𝑀𝑀 + 𝑏𝑏12𝐺𝐺𝐺𝐺 ln 44.2 = 𝑏𝑏0 + 𝑏𝑏4𝐺𝐺 + 𝑏𝑏1𝐶𝐶 + 𝑏𝑏41𝐺𝐺𝐺𝐺 

ln 184.1 = 𝑏𝑏0 + 𝑏𝑏2𝐺𝐺 + 𝑏𝑏1𝐶𝐶 + 𝑏𝑏21𝐺𝐺𝐺𝐺  ln 8.3 = 𝑏𝑏0 + 𝑏𝑏4𝐺𝐺 + 𝑏𝑏1𝑀𝑀 + 𝑏𝑏41𝐺𝐺𝐺𝐺 

ln 64.8 = 𝑏𝑏0 + 𝑏𝑏2𝐺𝐺 + 𝑏𝑏1𝑀𝑀 + 𝑏𝑏21𝐺𝐺𝐺𝐺 ln 1.9 = 𝑏𝑏0 + 𝑏𝑏4𝐺𝐺 + 𝑏𝑏2𝑀𝑀 + 𝑏𝑏42𝐺𝐺𝐺𝐺 

ln 17.3 = 𝑏𝑏0 + 𝑏𝑏2𝐺𝐺 + 𝑏𝑏2𝑀𝑀 + 𝑏𝑏22𝐺𝐺𝐺𝐺 ln 1.8 = 𝑏𝑏0 + 𝑏𝑏1𝐶𝐶 + 𝑏𝑏1𝑀𝑀 + 𝑏𝑏11𝐶𝐶𝐶𝐶 

ln 134.4 = 𝑏𝑏0 + 𝑏𝑏3𝐺𝐺 + 𝑏𝑏1𝐶𝐶 + 𝑏𝑏31𝐺𝐺𝐺𝐺  ln 1.9 = 𝑏𝑏0 + 𝑏𝑏1𝐶𝐶 + 𝑏𝑏2𝑀𝑀 + 𝑏𝑏12𝐶𝐶𝐶𝐶 
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We now have our final equation: 

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 = 3.694530 + 0.284752 𝑡𝑡1𝐺𝐺 + 0.363578 𝑡𝑡2𝐺𝐺 + 0.103196 𝑡𝑡3𝐺𝐺 − 0.658115 𝑡𝑡4𝐺𝐺 +

0.290249 𝑡𝑡1𝐶𝐶 − 2.545545 𝑡𝑡1𝑀𝑀 − 2.731978 𝑡𝑡2𝑀𝑀 + 0.594316 𝑡𝑡11𝐺𝐺𝐺𝐺 +

3.357219 𝑡𝑡11𝐺𝐺𝐺𝐺 + 2.123610 𝑡𝑡12𝐺𝐺𝐺𝐺 + 0.867314 𝑡𝑡21𝐺𝐺𝐺𝐺 + 2.658689 𝑡𝑡21𝐺𝐺𝐺𝐺 +

1.526811 𝑡𝑡22𝐺𝐺𝐺𝐺 + 0.812849 𝑡𝑡31𝐺𝐺𝐺𝐺 + 2.1264889 𝑡𝑡31𝐺𝐺𝐺𝐺 + 1.338367 𝑡𝑡32𝐺𝐺𝐺𝐺 +

0.461374 𝑡𝑡41𝐺𝐺𝐺𝐺 + 1.625430 𝑡𝑡41𝐺𝐺𝐺𝐺 + 0.321088 𝑡𝑡42𝐺𝐺𝐺𝐺 − 0.826748 𝑡𝑡11𝐶𝐶𝐶𝐶 −

0.620661 𝑡𝑡12𝐶𝐶𝐶𝐶  

With eight fewer terms, this Homogenous Association Model {GC, GM, CM} is 

an excellent fit for our sample data.   
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CHAPTER VI 

CONCLUSION 

In this study, we have looked at the connection between course grades, 

classification, major, and graduation.  Using Log-Linear Analysis, we developed a 

Homogenous Association Model that accurately describes the relationship between our 

variables that we saw in our sample data.  The equation shows the connection between 

students’ course grades, classification, major, and graduation.   

For future research, we need to repeat this study with more samples, both from 

this course and other freshman level courses in all subjects.  This would help us to 

discover the courses that best act as gateway courses, both for specific majors and 

overall.  We could then expand our research to look at other factors that prevent students 

from reaching their goal of graduation.  By identifying these Gateway Courses and 

educating students about graduation rate predictions, we can help more students achieve 

long term success in their program. 
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