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ABSTRACT 

 
BRENT RYDER 

 
HISTORIC DEVELOPMENT OF PRIME NUMBERS 

 
MAY 2014 

 
The purpose of this thesis is to investigate the history of prime numbers and 

development of prime number theory. There are three major sections to this thesis, 

Ancient times, Dark Ages, and Modern times. The ancient time’s section has topics on 

the ‘Ishango Bone’, ‘Rhine Papyrus’ with an investigation of Egyptian fractions, and 

Euclid’s Elements where the proof of the existence of an infinite number of primes was 

first given. The ‘Dark Ages’ section has topics on non-European mathematicians who 

worked with prime numbers. The final section covers more modern prime number theory 

from Gauss, Fermat, Legendre, and Riemann. 
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CHAPTER I 

INTRODUCTION 

 I have always been fascinated with numbers and what can be done with them. I 

had, of course, been introduced to prime numbers in grade school and investigated them 

at that time, but my investigations did not produce anything of note. In graduate studies I 

took a course on elementary number theory taught by Dr. Ellina Grigorieva, I was 

introduced to number theory and then to prime number theory with Wilson’s Theorem 

and Fermat’s little theorem. I was excited by this branch of mathematics and in 

performing online searches I came across Riemann’s Hypothesis and was enthralled with 

the concept and sought out further information. In order to understand modern concepts 

of number theory, I decided that I have to learn more about prime numbers through their 

historic development.  . 

 Prime numbers are important because they are the basic building blocks of all 

integers. This is known as the Fundamental theorem of Arithmetic, which states that 

every integer can be broken down into its unique prime number decomposition. As there 

are an infinite number of primes, it cannot be said that all primes will ever be known. 

This being said, the proof of Riemann’s Hypothesis may allow the direct calculation of 

any prime number. Being able to calculate any prime would make it possible to 

determine if a given number is prime or not, aid in the prime decomposition of a given 

number if not prime and allow the use of very large primes for everyday application.  
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This work is broken into three chapters, the first covers ancient times and the 

development of mathematics, the necessary conditions for knowledge of prime numbers, 

and the first work done with prime numbers. The second chapter covers the ‘Dark Ages’ 

where virtually no work was done in Europe, but was continued in the other cultures 

around the world. Lastly, I investigated the more recent work concluding with the 

Riemann Hypothesis which changed the face of Prime Number Theory.  

Riemann’s contemporaries were an enviable group of the greatest mathematicians 

in the history of mankind. He was a student of Gauss and contemporary of Dirichlet. 

Other greats such as Fermat, Euler, Legendre, and more made that time in history one of 

great change and discovery. This research has been very enlightening and inspiring.  
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CHAPTER II 

ANCIENT TIMES 

There is evidence that in the time of Neanderthal man, mates were chosen for 

their mathematical ability. [1] This is not to say they knew math as we do today, but 

being able to know the difference between more and less is a survival trait and I would 

surmise that through such natural selection, mathematics became an innate ability. Recent 

studies have shown that infants are able to subitize, that is to say able to discern up to 

three objects at a glance, and even understand basic addition and subtraction.[2] I 

mention this because the basic need for the concept of a prime number is a higher order 

of math than this, that of division. For division, what is needed is not only subitizing, or 

counting, numbers or objects, but doing so repeatedly until the original group of objects 

is sub grouped evenly as many times as is needed. In ancient cultures, the concept of 

division would not be developed abstractly until a high enough precision in sub dividing 

a group of objects was required. Based on this observation, it is not likely that the abstract 

concept of division would have been developed 10,000 to 20,000 years ago which is 

where we find the first purported instance of prime numbers. 

Ishango Bone 

 The Ishango bone was found in 1960 by Jean de Heinzelin de Braucourt at an 

archeological dig site in Zaire at a village that had been buried by volcanic fallout. [3] 
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The bone is about four inches long, has a crystal adhered to one end and has a number of 

markings carved in it in three lines along the length of the bone. These markings are why 

this relic is being included because two of the rows of markings are grouped by prime 

numbers (see images on the next page).  

 While no conclusive evidence has been forwarded that the bone was indeed a 

mathematical tool, one column of markings on the Ishango Bone are of all the prime 

numbers between 10 and 20. Another column has groupings of numbers which could 

suggest rudimentary multiplication and division problems. There has also been 

speculation that the bone was just a tally stick or possibly a method of tracking a 

woman’s menstruation cycle. Many explanations can be made for the markings and I find 

it apocryphal to formally ascribe any of them with any degree of surety. What is 

important is that these markings have sparked so much thought and inventiveness which 

can only forward the sciences in general and mathematics specifically. 
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Figure 1. Black and white photos of all sides of the Ishango Bone. 

From http://www.math.buffalo.edu/mad/Ancient-Africa/ishango.html 

 

Figure 2. Line drawings of the Ishango Bone showing the grouping of marks. 
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 Plimpton 322 

 Plimpton 322 refers to catalog item number 322 of the G. A. Plimpton Collection 

at Columbia University. [4] The item is a mostly intact Babylonian tablet dating from 

1900 to 1600 BCE. The remarkable thing about the tablet is that the mathematical 

markings are said to be of Pythagorean triplets best known in the form 𝑎2 + 𝑏2 = 𝑐2 

where ‘a’, ‘b’, and ‘c’ are natural numbers. A portion of the left edge of the tablet was 

broken off so some of the numbers in the first column are missing. The columns also only 

give ‘a’ and ‘c’ from the above equation and mathematicians have inferred the ‘b’ 

component. While the argument is compelling, without the missing information or 

another similar tablet, there will never be certainty in the meaning of this tablet. 

 What makes Plimpton 322 a part of this thesis is that Pythagorean triplets are 

‘relatively’ prime to each other. That is to say that none of the elements, ‘a’, ‘b’, or ‘c,’ 

have any common divisor other than one. This is a tenuous link at best to prime numbers. 

The creator of the tablet would not have called these numbers Pythagorean triplets, “The 

Old Babylonians knew the Pythagorean Theorem (better called the rule of the right 

triangle for them since there’s no evidence they had a proof; Gillings calls the term “the 

Pythagorean theorem” a true mumpsimus).” [4] 

From http://www.dictionary.reference.com/browse/mumpsimus a mumpsimus is an 

“adherence to or persistence in an erroneous use of language… out of habit or obstinacy”. 

http://www.dictionary.reference.com/browse/mumpsimus
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Figure 3. Photo of the Plimpton 322 tablet. From 

http://www.historyofinformation.com/expanded.php?category=Mathematics+%2F+Logic 

Table 1 

Table of Sumerian sexagesimal number system. From 

http://www.mathematicsmagazine.com/Articles/TheSumerianMathematicalSystem.php 

  

http://www.historyofinformation.com/expanded.php?category=Mathematics+%2F+Logic
http://www.mathematicsmagazine.com/Articles/TheSumerianMathematicalSystem.php
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Rhind Papyrus 

 The Rhind Papyrus is so named because “In 1858, A. Henry Rhind purchased a 

partial papyrus in Luxor, Egypt.” [5] The papyrus was written by an Egyptian scribe, 

Ahmes, in about 1650 BCE. Portions of the document seem to have come from an earlier 

artifact, the Early Mathematical Leather Roll from about 1800 BCE. What makes this a 

subject of this thesis is that numerical analysis of Ahmes’ work in the 2/n table show 

problem solving strategies indicating knowledge of prime numbers. This can be seen in 

the way the fractions involving prime numbers were handled as opposed to non-prime 

fractions. 

 When I first encountered the 2/n table reference, I started work on determining a 

method of converting 2/n. To this end I struck upon a simple method that can be 

calculated with the following formula, 

2
𝑝 =

2
𝑝 + 1 +

2
𝑝(𝑝 + 1) 

As an example, for 𝑝 = 7 

2
7 =

2
7 + 1 +

2
7(7 + 1) =

2
8 +

2
7 ∗ 8 =

1
4 +

1
28 

We can derive this easily. Let us assume the denominator of our fraction is 

composite of two sequential integers: 
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(1) 

 

1
𝑛(𝑛 + 1) =

1
𝑛 −

1
𝑛 + 1 

An example would be: 

1
12 =

1
3 ∗ 4 =

1
3 −

1
4 =

4
12 −

3
12 =

1
12 

This can be extended to non consecutive integers. Let us show that the following formula 

is also true 

1
𝑛(𝑛 + 𝑘) =

1
𝑘 �

1
𝑛 −

1
𝑛 + 𝑘� 

Using the right-hand side, we find a common denominator and reduce 

1
𝑘 �

1
𝑛 −

1
𝑛 + 𝑘� =

1
𝑘 �

𝑛 + 𝑘 − 𝑛
(𝑛)(𝑛 + 𝑘)� =

1
𝑛(𝑛 + 𝑘) 

𝑘
𝑛(𝑛 + 𝑘) =

1
𝑛 −

1
𝑛 + 𝑘 

1
𝑛 =

𝑘
𝑛(𝑛 + 𝑘) +

1
𝑛 + 𝑘 

2
𝑛 =

2𝑘
𝑛(𝑛 + 𝑘) +

2
𝑛 + 𝑘 

(2) 
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Let us consider if there are any other values of k, different from k=1, for which the 

fractions on the right side of the formula 

2
𝑛 =

2𝑘
𝑛(𝑛 + 𝑘) +

2
𝑛 + 𝑘 

can be reduced and have the numerators 1. 

If such is possible, then because n is a prime number, (𝑛 + 𝑘) must be divisible by 2k, 

then the following must be true: 

𝑛 + 𝑘 = 2𝑘 ∙ 𝑚 

𝑛 = 𝑘 ∙ (2𝑚 − 1) 

The last formula contradicts the condition that n is prime, and it is true only for k=1. 

Therefore, the always true formula (3) can explain the Table only for k=1 when it 

becomes (1). This is in line with the 2/n table and in fact matches the answers in the table 

until 𝑝 > 7 and then only matches with the 2/n table occasionally. For example for 2/23.  

Answers to how the other fractions were obtained can be found in the Works of the 2008 

article by Milo Gardner [6], and in the History of Mathematics book by Eves [20]. 

 

  

(3) 
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Table 2 

Egyptian 2/n Table, Primes Only, Through 101 

2
3

= 1
2

+ 1
6
  2

43
= 1

42
+ 1

86
+ 1

129
+ 1

301
  

2
5

= 1
3

+ 1
15

  2
47

= 1
30

+ 1
141

+ 1
470

  

2
7

= 1
4

+ 1
28

  2
53

= 1
30

+ 1
318

+ 1
795

  

2
9

= 1
6

+ 1
18

  2
59

= 1
36

+ 1
236

+ 1
531

  

2
11

= 1
6

+ 1
66

  2
61

= 1
40

+ 1
244

+ 1
488

+ 1
610

  

2
13

= 1
8

+ 1
52

+ 1
104

  2
67

= 1
40

+ 1
335

+ 1
536

  

2
17

= 1
12

+ 1
51

+ 1
68

  2
71

= 1
40

+ 1
568

+ 1
710

  

2
19

= 1
12

+ 1
76

+ 1
114

  2
73

= 1
60

+ 1
219

+ 1
292

+ 1
365

  

2
23

= 1
12

+ 1
276

  2
79

= 1
60

+ 1
237

+ 1
316

+ 1
790

  

2
29

= 1
24

+ 1
58

+ 1
174

+ 1
232

  2
83

= 1
60

+ 1
332

+ 1
415

+ 1
498

  

2
31

= 1
20

+ 1
124

+ 1
155

  2
89

= 1
60

+ 1
356

+ 1
534

+ 1
890

  

2
37

= 1
24

+ 1
111

+ 1
296

  2
97

= 1
56

+ 1
679

+ 1
776

  

2
41

= 1
24

+ 1
246

+ 1
328

  2
101

= 1
101

+ 1
202

+ 1
303

+ 1
606
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Euclid (Circa 300 BCE) 

 The sum total of personal information we have on the greatest geometer in history 

is that he was born circa 300 BCE, probably trained in Athens and worked in Alexandria. 

Euclid also wrote on conic sections, perspective, spherical geometry, and number theory. 

[7] Until the advent of modern geometry in the 20th century, when someone spoke of 

geometry it was Euclidean Geometry. The first proof of the existence of an infinite 

number of primes comes from Euclid’s Elements [7], book IX, proposition 20, (The 

references in brackets are to earlier books and propositions within Euclid’s Elements): 

“Prime numbers are more than any assigned multitude of prime numbers. 

Let A, B, and C be the assigned prime numbers. 

I say that there are more prime numbers than A, B, and C.  

For let the least number measured by A, B, C be taken, [VII, 36] 

and let it be DE; let the unit DF be added to DE.  

Then EF is either prime or not.  

First, let it be prime; then the prime numbers A, B, C, EF have been found which are 

more than A, B, and C. 

Next, let EF not be prime. Therefore it is measured by some prime number. [VII, 31] 

Let it be measured by the prime number G. 
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I say that G is not the same with any of the numbers A, B, and C.  

For, if possible, let it be so.  

Now A, B, C measure DE, therefore G also will measure DE 

But it also measures EF 

Therefore G, being a number, will measure the remainder, the unit DF, which is absurd.  

Therefore G is not the same with any one of the numbers A, B, and C 

And by hypothesis it is prime. 

Therefore the prime numbers A, B, C, G have been found which are more than the 

assigned multitude of A, B, C.” 

I have omitted the image of the line segments from this quote.  

 To put this into modern terminology: The following statement is true. 

Theorem. There are an infinite number of primes. 

Proof. We will prove this statement by contradiction. Let (𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑘)  be all 

possible prime numbers and let 𝑀 = ∏ 𝑃𝑛𝑘
𝑛=1  be the least composite number possible of 

all possible prime numbers. 
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Let 𝐴 = 𝑀 + 1, 𝑡ℎ𝑒𝑛 1...321 +⋅⋅⋅⋅= kppppA , then A divided by any “known” prime 

number would give a remainder 1. Thus A is prime. We obtained contradiction. The proof 

is completed.   

If A is prime then there are more primes than are currently known and by extension an 

infinite number of primes.  

Additionally, assume that there are only a finite set of primes and kpN =  is the very last 

prime number. (For this proof we do not need to list all primes less than N ) Consider a 

product of all natural numbers from 1 to N, called N! (factorial) and add to it one: 

𝐵 = 1 ∗ 2 ∗ 3 ∗ 4 ∗ 5⋯∗ (𝑁 − 2) ∗ (𝑁 − 1) ∗ 𝑁 + 1 = 𝑁! + 1 

Again, when number B is divided by any existing prime less than or equal to N it will 

leave a remainder of 1. Therefore, 𝑁! + 1 is a prime and our initial assumption was 

wrong. Therefore, N is not the largest prime. Moreover, number B will be much greater 

than A, and of course, much greater than N. 

 Another proposition from book nine that is of special note is proposition 36, “If as 

many numbers as we please beginning from an unit be set out continuously in double 

proportion, until the sum of all becomes prime, and if the sum multiplied into the last 

make some number, the product will be perfect.” [7] This is the first reference to perfect 

numbers which is another application of prime numbers. Perfect numbers are numbers 
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where the sum of the proper divisors of the number equal the number itself. The first one 

is 6 whose divisors are 1, 2, and 3; and 6 = 3 + 2 + 1. 

 The modern translation would be as follows: 

Let 𝑃 = ∑ 2𝑥𝑥
𝑛=0  where x is the number of iterations necessary to make P a prime 

number. Then the number 𝑃 × 2𝑥 is a perfect number. 

 In the example given the iterations would be: 

First iteration, 20 = 1 

Second iteration, 1 + 1 × 21 = 1 + 2 = 3, which is a prime number 

Therefore the perfect number would be 3 × 2 = 6 which is the first perfect number. 

Third iteration, 3 + 22 = 3 + 4 = 7 which is a prime number 

Therefor the second perfect number would be 4 × 7 = 28, which is the next perfect 

number. The divisors of 28 are 1, 2, 4, 7, 14, and their sum is 28. 

Eratosthenes (276-195 BCE) 

 “Eratosthenes was a Greek scholar, chief librarian of the famous library in 

Alexandria.”[8] He was known as ‘Beta’ and ‘Pentathlos’ because he knew all branches 

of knowledge well, but none well enough to be first in any. What Eratosthenes is best 

known for is the “Sieve of Eratosthenes” which is a method of computing primes by 
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elimination. As an example, write down all the numbers from 1 to N. As this is a process 

of elimination, and knowing 2 is prime, and the only even prime number, the rest of the 

even numbers are then crossed out. 3 is a prime so cross out every third number after 3. 

Continue until you have reached a value 𝑥 ≤ √𝑁, which is the largest composite value 

that could be divided into N. The values that have not been crossed out are then prime 

numbers. 

 While this is a reliable method of determining primes, it is also time consuming 

and given to human error especially for large values of N. The method can be converted 

to an algorithm for a computer to perform which improves reliability so long as the 

computational time is feasible. What is more important is the ability to use the method for 

determining the number of primes under a certain value. 

 The number of primes under a certain value is denoted as 𝜋(𝑁). The process is 

started with the first prime, 2, and then built one prime at a time. Define ⌊𝑥⌋  as floor 

function that is the greatest integer not exceeding x. Choosing N=100,  

100 − �
100

2 � = 50 

Next we remove the primes that are a multiple of 3, but then we must add back the 

composite 3 values. In this case that means all the values that were also cancelled out  

50 − �
100

3 � + �
100

2 × 3� = 50 − 33 + 16 = 33 

Continuing with removing  
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33 − �
100

5 � + �
100

2 × 5� + �
100

3 × 5� − �
100

2 × 3 × 5� = 33 − 20 + 10 + 6 − 3 = 26 

26 − �
100

7 � + �
100

2 × 7� + �
100

3 × 7� + �
100

5 × 7� − �
100

2 × 3 × 7� − �
100

2 × 5 × 7� − �
100

3 × 5 × 7�

+ �
100

2 × 3 × 5 × 7� = 26 − 14 + 7 + 4 + 2 − 2 − 1 = 22 

The last step is to add back the primes under 𝜋�√100�, which are the primes we have 

been cancelling out, 2,3,5, and 7. Also, one is added for the number 1 since it is not 

counted as a prime and was not a part of these calculations. This brings the total to 25. 

The general form [8] of this process is 

𝜋(𝑁) − 𝜋�√𝑁� + 1

= 𝑁 − �
𝑁
𝑝1
� − �

𝑁
𝑝2
� − ⋯− �

𝑁
𝑝𝑟
� + �

𝑁
𝑝1𝑝2

� + �
𝑁
𝑝1𝑝3

� + ⋯+ �
𝑁

𝑝𝑟−1𝑝𝑟
�

− �
𝑁

𝑝1𝑝2𝑝3
� − ⋯+ ⋯ 
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CHAPTER III 

 THE DARK AGES 

The ‘Dark Ages’ mark a period of restriction in mathematical and scientific 

research in Europe. This does not mean that there was no research, but what there was 

must have been done in secret. This is not the case in the rest of the world not under the 

control of the Catholic Church. Much is owed to the Arabic world for preserving the 

works of Euclid and the Greeks in general. During the ‘Dark Ages’ the Arabic 

mathematicians, as well as mathematicians form other cultures, continued the exploration 

of mathematics and some few continued to work with prime numbers. 

Thabit Ibn Qurra (826 – 901 CE) 

 The full name of this Arabian mathematician is Al-Sabi Thabit ibn Qurra al-

Harrani, and he lived from 826 – 901 CE. I also found other names for Thabit which were 

all variations and misspellings of this name. During Thabit’s life time he translated and 

edited many documents including editing a translation of Euclid’s Elements. Thabit also 

discovered an equation for amicable numbers. 

 Amicable numbers are much like the perfect numbers mentioned earlier. The 

difference is that there are two numbers whose respective divisors sum to the other 

number. Mathematically, Thabit proved that if 𝑝1 = 2𝑛+1 − 1 + 2𝑛 , 𝑝2 = 2𝑛+1 − 1 −
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2𝑛−1, and 𝑝3 = 2𝑛+1(2𝑛+1 + 2𝑛−2) − 1, are three prime numbers greater than 2, then 

𝑎1 = 2𝑛𝑝1𝑝2 and 𝑎2 = 2𝑛𝑝3 are amicable numbers. [9] The proof for this is available in 

one of Thabit’s papers, “Treatise on the Derivation of the Amicable Numbers in an Easy 

Way”. 

Ibn Al-Haytham (965-1040 CE) 

 Ibn al-Haytham, known in Europe as Alhazan, has been called the first scientist 

because of his development and use of the scientific method. He is known for many 

discoveries in optics and mathematics. When working on the problem of linear 

congruence, Haytham determined that “if p is any prime number, then the sum 2 × 3 ×

4 × ⋯× (𝑝 − 1) + 1 is divisible by p; and if we divide it by any one of the numbers 

2, 3, 4,⋯ , (𝑝 − 1), the remainder will always be the unit.” [10] In later years this will 

become known as “Wilson’s Theorem” and found more commonly in the modular 

arithmetic notated form (𝑝 − 1)! = −1(𝑚𝑜𝑑 𝑝), which was developed by Gauss in 1796 

when he was only 19 years old. 

 Also found in al-Haytham’s work is an attempt to prove the converse of Euclid’s 

perfect number theorem. While the attempt was not successful, it was proven in later 

years by Euler. 

Al-Farisi (Circa 1260-1320 CE) 

 The full name of this mathematician is Kamal al-Din Abu’l Hasan Muhammad 

Al-Farisi. [11] Al-Farisi is known for his contribution to the science of optics and 
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numerical analysis. In this later field, Al-Farisi is most known for a refinement to 

Thabit’s equations for amicable numbers. The new formulation for amicable numbers is 

For 𝑛 > 1, let 𝑝𝑛 = 3 × 2𝑛 − 1 and 𝑞𝑛 = 9 × 22𝑛−1 − 1. If 𝑝𝑛−1, 𝑝𝑛 , and 𝑞𝑛  are prime 

numbers, then 𝑎 = 2𝑛𝑝𝑛−1𝑝𝑛 and 𝑏 = 2𝑛𝑞𝑛 are amicable numbers. 

This new approach included the factorization of numbers into powers of primes which is 

what is known today as the Fundamental Theorem of Arithmetic. 
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CHAPTER IV 

 MODERN TIMES 

 Once the restriction on mathematical exploration was lifted and the scientific 

community in general felt they would not be persecuted or excommunicated, there was an 

explosion in mathematical discovery. Some of this new work involved prime numbers 

from such great mathematicians as Gauss, Fermat, Euler, and Riemann. 

Mersenne (1588-1648 CE) 

 Marin Mersenne was a monk who felt that science, including mathematics, should 

be within the reach of the common man. He was an adherent to Ramon Lull’s belief that 

all knowledge can be explained through a few basic truths and with this understanding, 

the word of God could be explained and believed even by the infidels. Marin carried his 

belief to the point of corresponding with all of the great minds of his day. His hopes were 

to be a central point of knowledge of the day. To further this Mersenne also held regular 

meetings in Paris which eventually led to the foundation of the French Academy of 

Sciences. [12] 

 Marin Mersenne is best known for ‘Mersenne Primes’. These are prime numbers 

that follow the expression 2𝑛 − 1. Mersenne found that if a number is prime and fits this 

expression, then n is also prime. He also realized the converse is not true as in the case of 
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𝑛 = 11 which equals 2047 which is not prime. During his lifetime Mersenne found nine 

of these primes including 2127 − 1 which is a 36 digit prime. 

Fermat (1601-1665 CE) 

 Often referred to as the greatest amateur mathematician, Pierre Fermat was a 

prolific mathematician. The only thing Fermat needed to do to be considered a 

professional mathematician was to actually prove his conjectures instead of forwarding 

them to the mathematical community for them to prove or disprove. While Fermat did 

this on occasion, the proofs were never complete. Fermat is known to have shared the 

development of probability with Pascal, applied the initial concepts of differential 

calculus before Newton and Leibnitz were born, and developed analytic geometry at the 

same time as Descartes. 

 Pierre de Fermat’s most important work was in the development of number 

theory. He defined what a prime was and was not and conjectured that numbers generated 

by the equation 22𝑛 + 1 were primes. This last holds true for 𝑛 = 1, 2, 3, and 4 but then 

fails for 𝑛 = 5 and 6. This shows that even great mathematicians can be wrong, but, in 

Fermat’s defense, he never gave a proof of this conjecture. When the equation does hold 

true, the prime numbers so generated are called “Fermat Primes”. An application of these 

primes comes in the construction of polygons which can be drawn by Euclid’s methods. 

The number of sides of a polygon is either a Fermat Prime or a combination of different 

Fermat Primes. Fermat also conjectured that primes of the form 4𝑛 + 1 is a sum of two 
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squares that can be formed in only one way while primes of the form 4𝑛 − 1 have no 

solutions of this type. These were later proved to be true by Euler. [13] 

 The two most famous conjectures of Fermat’s were his little theorem and 

“Fermat’s Last Theorem”. Fermat’s little theorem states that “Given any prime p and any 

whole number n, the number 𝑛𝑝 − 𝑛  is exactly divisible by p.” [12] The modern 

equivalent of this theorem, using modular notation, is 𝑛𝑝 ≡ 𝑛(𝑚𝑜𝑑 𝑝), 𝑛 ∈ 𝒁, 𝑝 ∈

𝑷𝒓𝒊𝒎𝒆𝒔. Modular arithmetic is very useful in this instance because it divides p as many 

times as needed into 𝑛𝑝 to give a remainder of n. Dividing both sides of this equation by 

n gives 𝑛𝑝−1 ≡ 1(𝑚𝑜𝑑 𝑝).  

 Fermat’s Last Theorem was found as a note in the margin of one of Fermat’s 

books after his death. The Theorem states, “For any integer n (greater than 2), there do 

not exist any positive integers x, y, and z for which 𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛.” [12] Fermat stated in 

the margin that he had a proof, but that there was not enough room in the margin for it. 

Fermat did show that 𝑥4 + 𝑦4 = 𝑧4 had no positive integer solutions and Euler proved 

the same for 𝑥3 + 𝑦3 = 𝑧3. These are specific proofs and not a general solution. It was 

not until 1995 that a proof was found by Andrew Wiles.[12]  
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Euler (1707-1783 CE) 

 Leonhard (Léonard) Euler was the most prolific mathematician of all time. He is 

referred to as an “algorist” in that he found algorithms to simplify the calculation of 

equations. Euler grew up with Jacob Bernoulli as an instructor and his efforts brought 

him to the attention of Daniel and Nicolaus Bernoulli who became lifelong friends. 

Leonhard was married twice, had eighteen children, but only 5 survived; was sought after 

as a national resource by Catherine the Great; and became even more mathematically 

productive after losing his eyesight completely. [13] 

 Euler proved Fermat’s little theorem in 1736 and in 1760 gave a more general 

proof of which Fermat’s little theorem was a special case. The general case starts with 

Euler’s 𝜑(𝑚) function, “When m is some integer, we shall consider the problem of 

finding how many numbers 1, 2, 3, … ,𝑚 − 1,𝑚 are relatively prime to m.” [8] When m is 

prime, then 𝜑(𝑝) = 𝑝 − 1 which should be evident by the definition of a prime number. 

For the general case, let p be some prime dividing m and let us first find the number of 

integers that are not divisible by p. These values are multiples of p: 𝑝, 2𝑝, … , 𝑚
𝑝
𝑝. The 

remaining values that are not divisible by p are then 𝜑𝑝(𝑚) = 𝑚 − 𝑚
𝑝

= 𝑚�1 − 1
𝑝
�. We 

repeat this process with other prime(s), i.e. q: 𝑞, 2𝑞, … , 𝑚
𝑞
𝑞, that divide m and compensate 

for the elements that are in common, i.e. 𝑝𝑞: 𝑝𝑞, 2𝑝𝑞, … , 𝑚
𝑝𝑞
𝑝𝑞, which gives 𝑚

𝑞
− 𝑚

𝑝𝑞
=

𝑚
𝑞
�1 − 1

𝑝
�. Combining this with our previous result gives 
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𝜑𝑝(𝑚) = 𝑚�1 −
1
𝑝� −

𝑚
𝑞 �1 −

1
𝑝� = 𝑚�1 −

1
𝑝��1 −

1
𝑞� 

Remembering that by the Fundamental Theorem of Arithmetic, 

𝑚 = 𝑝1
𝛼1𝑝2

𝛼2𝑝3
𝛼3 ⋯𝑝𝑡

𝛼𝑡  

where 𝛼 is the exponent for a given prime divisor, and repeating this process for all 

primes that divide m we arrive at 

𝜑𝑝1…𝑝𝑡
(𝑚) = 𝑚�1 −

1
𝑝1
� �1 −

1
𝑝2
�⋯�1 −

1
𝑝𝑡
� 

Another way to look at this is to distribute m to give 

𝜑(𝑚) = �𝑝1
𝛼1 − 𝑝1

𝛼1−1��𝑝2
𝛼2 − 𝑝2

𝛼2−1�⋯�𝑝𝑡
𝛼𝑡 − 𝑝𝑡

𝛼𝑡−1� 

 As a side note, this process can be seen as an application of an inductive proof.  

Our statement here is that Euler’s 𝜑(𝑚) function works for all prime decompositions. 

First we showed that Euler’s 𝜑(𝑚) function was true for 𝑚 = 𝑝, a single prime which 

could have been 2 as well as any other prime number. Next we assumed it true for 

𝑚 = 𝑝1
𝛼1𝑝2

𝛼2𝑝3
𝛼3 ⋯𝑝𝑡

𝛼𝑡 . All that is left is to show that the statement holds true for 

𝑚 = 𝑝1
𝛼1𝑝2

𝛼2𝑝3
𝛼3 ⋯𝑝𝑡

𝛼𝑡𝑝𝑡+1
𝛼𝑡+1 .  

𝜑𝑝1…𝑝𝑡𝑝𝑡+1
(𝑚) = 𝑚�1 −

1
𝑝1
� �1 −

1
𝑝2
�⋯ �1 −

1
𝑝𝑡
�

−
𝑚
𝑝𝑡+1

�1 −
1
𝑝1
� �1 −

1
𝑝2
�⋯�1 −

1
𝑝𝑡
� 
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Therefore 

𝜑𝑝1…𝑝𝑡𝑝𝑡+1
(𝑚) = 𝑚�1 −

1
𝑝1
� �1 −

1
𝑝2
�⋯�1 −

1
𝑝𝑡
� �1 −

1
𝑝𝑡+1

� 

This shows that Euler’s 𝜑(𝑚) function will work for any prime decomposition. 

Continuing with the derivation, we now have Euler’s Theorem, “For any number 

a that is relatively prime to m one has the congruence 𝑎𝜑(𝑚) ≡ 1(mod 𝑚).” [8] When 

𝜑(𝑚) is a single prime number with no exponent, then we have Fermat’s little theorem, 

𝑎𝑝−1 ≡ 1(mod 𝑝). With another manipulation, this can also give Wilson’s Theorem. 

There is so much on prime numbers from Euler that I find I have had to choose only a 

very small representative example. It is estimated that it will take more than 100 volumes 

to publish all of Euler’s work, but before I move on there is one more very important 

contribution from Euler, Euler’s Zeta function. This function showed a deeper connection 

between arithmetic and multiplication than was hitherto known. 

 Euler’s Zeta function is defined for 𝑠 > 1, where s is any real number, by the 

infinite sum: 

𝜁(𝑠) = 1 +
1
2𝑠 +

1
3𝑠 +

1
4𝑠 +

1
5𝑠 + ⋯ 
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The infinite sum has a finite answer if s is a real number larger than 1.[14] This is linked 

to prime numbers in that 

𝜁(𝑠) = �
1
𝑛𝑠

∞

𝑛=1

= �
1

1 − 𝑝−𝑠
𝑝

 

The process by which this comes about can be seen in a number of the sources I have 

used. Here is a general outline of the process: 

Multiply both sides of Euler’s Zeta function by 1
2𝑠

 

1
2𝑠 𝜁

(𝑠) =
1
2𝑠 +

1
4𝑠 +

1
6𝑠 +

1
8𝑠 + ⋯ 

Subtract this from the original zeta function 

�1 −
1
2𝑠� 𝜁

(𝑠) = 1 +
1
3𝑠 +

1
5𝑠 +

1
7𝑠 +

1
9𝑠 + ⋯ 

Just like Eratosthenes Sieve, we have removed all terms with denominators that are 

multiples of twos from the right hand side. We continue by multiplying through by 1
3𝑠

 

1
3𝑠 �1 −

1
2𝑠� 𝜁

(𝑠) =
1
3𝑠 +

1
9𝑠 +

1
15𝑠 +

1
21𝑠 + ⋯ 

And subtract it from the previous equation 

�1 −
1
3𝑠� �1 −

1
2𝑠� 𝜁

(𝑠) =
1
5𝑠 +

1
7𝑠 +

1
11𝑠 +

1
13𝑠 + ⋯ 
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This process continues infinitely, filtering out one prime and all of its composite forms 

from the right hand side and multiplying the result to the left hand side. This gives us 

��1 −
1
𝑝𝑠�

𝑝

𝜁(𝑠) = �
𝑝𝑠 − 1
𝑝𝑠

𝑝

𝜁(𝑠) = 1 

Dividing through by the product gives us 

𝜁(𝑠) = �
1

1 − 𝑝−𝑠
𝑝

 

Combining this with Euler’s zeta function 

�
1
𝑛𝑠

∞

𝑛=1

= �
1

1− 𝑝−𝑠
𝑝

 

This shows a link between the sum of the inverse of all natural numbers to the product of 

the inverse of 1 − 𝑝−𝑠 of all prime numbers. 

Gauss (1777-1855 CE) 

Johann Friedrich Carl Gauss was born in Braunschweig, Germany on April 30, 

1777. His family was poor and it was only through his mother’s efforts that he received 

an education at all. His father did not want him to be better than him and made this 

brutally apparent. When Gauss was first able to take a class on mathematics, he 

astounded his instructor. The instructor, Büttner, went out and bought the best math book 
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available for Gauss with his own money. Gauss promptly breezed through the tome and 

the instructor said he could teach Gauss nothing more.[13] 

Through another serendipitous event, Büttner had an assistant who was 

mathematically inclined. Johann Martin Bartels worked with Gauss to teach Gauss what 

he knew and eventually introduced him to influential people. These people led him to 

Carl Wilhelm Ferdinand, Duke of Braunschweig who paid for the rest of Gauss’ 

education and later career at the University of Göttingen. Gauss published very little 

during his life and mathematicians are still working out all that he discovered. He was 

very aptly named the greatest mathematician of the world.[13] 

One of the many accomplishments of Gauss was the “…coherent account of 

complex numbers and to interpret them as labeling points of a plane…” [13] This will be 

very important in the later work of Riemann. Complex numbers have a real part and what 

is called an ‘imaginary’ part. I have emphasized imaginary because the intent was to 

denote a right angle to the real plane. The intent was not for this to be a mental construct 

of indeterminate value, but rather a definite location 90 degrees from the working 

plane(s).  

Gauss was very interested in non-Euclidean geometry but would not publish his 

work in the field for fear of censorship. One of Gauss’ students was Bernhard Riemann. 

When given the choice during Riemann’s habilitation, the examination to become a 

professor, between two topics on mathematics and one on geometry, Gauss chose 
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geometry. The sample lecture that Riemann gave on geometry was one that changed the 

face of geometry to what we know it today. Riemann’s view of geometry even became 

the basis of Einstein’s Theory of General Relativity. 

Although Gauss did much work in mathematics, his greatest on the topic of prime 

numbers was the Prime Number Theorem (PNT). In a letter to Johann Franz Encke, 

December 1894, Gauss wrote of a recollection from 1792, when he was only 15 that, “…I 

soon perceived that beneath all of its fluctuations, this frequency is, on average, close to 

inversely proportional to the logarithm…”[15] In mathematical terms, this is 

𝜋(𝑎)~
𝑎

ln 𝑎 

which is the PNT. 

The problem with this is that, while it has been proved for 𝑎 approaching infinity, 

for lesser values, there is an error factor. I have included a table on the next page to show 

how this error factor decreases as 𝑎 increases. It is this error factor that mathematicians 

such as Legendre, Chebyshev, and Dirichlet endeavored to resolve. To give an idea 

where these great mathematicians were taking their investigations, I will give some of 

Legendre’s work on the subject in the next section. Also, while Dirichlet was working on 

this issue, he modified the PNT to a logarithmic integral, 𝐿𝑖(𝑎) = ∫ 1
log 𝑡

𝑑𝑡𝑎
0 . It was this 

form of the PNT that Jacques Hadamard proved true in 1896. 
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Legendre (1752-1833 CE) 

 Little is known about Adrien-Marie Legendre other than he was born and died in 

Paris and there is even some conjecture about the location of his birth. Legendre was born 

to a wealthy family and received the finest education. As he had no need of an income, he 

taught at College Mazarin with Laplace and otherwise pursued his own researches. The 

subjects of his research were physics, geometry, mathematics and celestial 

mechanics.[16] 

 Legendre did independent work on determining the PNT mentioned earlier not 

knowing that Gauss had done this already. He went on to do work on the error factor in 

the PNT. In Essay on the Theory of Numbers, Legendre gives the error value as 

𝜋(𝑎)~
𝑎

𝐴 log𝑎 + 𝐵 

for some numbers A and B to be determined. Later he revised this to 

𝜋(𝑎)~
𝑎

log𝑎 − 𝐴 

where 𝐴, for large values of 𝑎 was close to 1.08366. In one of Gauss’ letter to Encke, 

Gauss refutes the error value while not contributing an answer himself. 

Riemann (1826-1866 CE) 

Georg Friedrich Bernhardt Riemann was born on September 26th, 1826 in the 

village of Breselenz, Kingdom of Hanover. His father was a poor Lutheran minister. His 
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mother died before her children had grown up which may have been a blessing to her as 

only two of her children survived to adulthood. For all the squalor and poor nutrition due 

to the poverty they lived in, Riemann loved his home and returned to it as often as he 

could for most of his life. 

Riemann was home schooled by his father until he went to the Gymnasium in 

Hanover, 80 miles away, when he was 14. He was not the best of students as he only 

focused on what was interesting to him, mathematics. He was also a perfectionist which 

meant that he would work on his assignments until he was satisfied with them regardless 

of due dates. Riemann was eventually housed with a teacher who helped him to pass and 

move on to the University at Göttingen as a theology student where it was believed he 

would follow his father into the ministry.[15] 

When Riemann arrived at the University at Göttingen in 1846 he was not 

interested in theology. After speaking with his father and gaining his consent, Riemann 

changed from religion to mathematics as the focus of his studies. Riemann was really 

excited that Gauss was an instructor at the university. Gauss, on the other hand, hated to 

teach as he saw it as a waste of time. He attended the linear algebra lectures Gauss gave, 

but soon found he needed more substance to his studies and transferred to Berlin 

University. After two years of intense study, Riemann became the mathematician we 

know of today. 
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Riemann returned to the University at Göttingen in 1849 to work on his doctorate. 

After two years he achieved his goal to much acclaim by Gauss. Over the next few years, 

Riemann made his name and eventually was made a member of the Berlin Academy. 

This prestigious appointment was also the debut of his most famous work titled “On the 

Number of Prime Numbers Less Than a Given Quantity”. This work was the first time 

that the Riemann Hypothesis was put before the mathematical community: 

All non-trivial zeros of the zeta function have real part one-half. 

The zeta function mentioned in the hypothesis is Euler’s zeta function, which 

relates the sum of all natural numbers to the infinite product of prime numbers, but with a 

very important difference. Riemann conceived of the zeta function in terms of complex 

numbers. Specifically, by the Riemann Hypothesis, 𝑠 = 1
2

+ 𝑎𝑖, where 𝑎 ∈ 𝑹, such that 

𝜁(𝑠) = 0. This complex value for s forms a “critical strip” that relates to the distribution 

of prime numbers. The link between a function and its zeros came from a paper by 

Jacques Hadamard.[15] What mathematicians have been trying to prove for the past 167 

years is that all of these zeros do have real part one half. Showing even one that does not 

lie on the strip would disprove the hypothesis. “In 1914, the English mathematician G. H. 

Hardy proved that an infinitude of values of s satisfy the hypothesis, but an infinity is not 

enough.” [13] 
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CHAPTER V 

CONCLUSION 

For the past 23 centuries mathematicians have been working with prime numbers. 

Sometimes the outcomes of their efforts have been seemingly trivial, like amicable and 

perfect numbers, while others have great consequences, as in the Riemann Hypothesis. 

Whether or not the Riemann hypothesis is ever proved, the results of it being true are 

already being used today.  

The proof of Riemann’s Hypothesis will mainly affect mathematics itself. There 

are many conjectures that have been made by other mathematicians to the effect that if 

the Riemann Hypothesis is proven true, then their conjectures will also be proven. A 

modern day real use of the proof is in internet security and the use of very large prime 

numbers to generate encryption keys. 

What I find most important is that math builds on itself. First, the concept of 

division was needed to know anything about prime numbers. Next, the Fundamental 

Theorem of Arithmetic showed how all numbers could be broken down into prime 

numbers uniquely which led to proof of there being an infinite number of primes. 

Knowing that all numbers can be broken into prime numbers led to determining which 
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numbers were prime numbers. This has culminated in the Prime number theory, 

Riemann’s Hypothesis, and the search for a solution to the error factor in the PNT. 

In exploring the Riemann Hypothesis, I have found that I will be learning a great 

deal more in the years that follow. A big part of this will be complex number theory, not 

to mention real and complex analysis, before I can truly move forward in my research. 

What I have gathered so far are possible avenues of investigation. Since Gauss and 

Riemann were both very interested in geometry, there may be some link to a solution 

through the concept of the complex plane being a plane perpendicular to all n dimensions 

under consideration: an n+1 dimension. [17, 18] Work on the Twin Prime conjecture may 

also hold some insight to the resolution of this thorny problem. [19] 

As for the error factor, my current thought is that while the distribution of primes 

may in general have the PNT shape, as well as end equivalent to the PNT, this does not 

mean that there is not another function overlying the 𝜋(𝑎)  graph. I see this as an 

oscillating, decreasing, function centered about the 𝑎
ln 𝑎

 function.. 
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