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ABSTRACT  

KATHRYN S. FRITZ 

AN INVESTIGATION OF SYSTEMS OF POPULATION MODELS 

DECEMBER 2017 

The purpose of this thesis is to possibly help nontraditional, first­ generation math 

students in their attempt at learning ordinary differential equations systems of population 

models with positive coefficients. I hope to accomplish this by building a guide containing 

some of the prerequisite mathematical concepts, demonstrating the procedures used 

while investigating the previously mentioned types of systems. The definitions of the 

vocabulary that is used to fully understand this process, the use of parameter population 

system to demonstrate the graphing program PPLANES, the explanation of the graphs 

created while using this program, and the use of Maple (Version 10) to find eigenvectors 

of the equilibrium points four case scenarios. 
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CHAPTER I  

INTRODUCTION 

Being a nontraditional, first-generation college student lends special insight into 

the abyss other nontraditional students experience during their endeavor to complete a 

bachelor’s degree in mathematics. Some of the primary problems nontraditional students 

experience include the following: the financial strains, taking more years to complete 

their degree than other students who are second (or more) generation students, not 

retaining all the mathematical concepts from previous classes that force students to 

relearn the prerequisite mathematical concepts while taking new classes, and working 

60 to 90 hour weeks while taking their college courses. 

Nontraditional math students may have trouble juggling all their responsibilities, 

along with finding time to seek help, when they do not comprehend their mathematical 

assignments. The resources available to college math students vary from institution to 

institution. Most institutions offer an on- campus math lab for their students, but 

nontraditional students may have issues meeting with a tutor due to their work schedules 

and family responsibilities. Ohio State University (OSU), for example, provides tutors, 

workshops, and online math resources (https://mslc.osu.edu/about/location). These 

resources include practice exams and their solutions, and interactive online lessons for a 

few of the OSU mathematical courses (https://mslc.osu.edu/math-1151-online-lessons) 

for students having trouble. Students that attend other institutions may also use Ohio 

State University’s website to help build their math skills. 

Two other examples of online math aids for lower-level math students are Khan 

Academy (2006) and Leap of Faith Financial Services Inc, which is the The World of 

Math Online (2000–2005). Both of these online sites target elementary and high school 

students, but college students may find these sites useful to understand basic concepts 
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of their mathematical courses. Students who use applications (app) on their cellphone 

may wish to download and use Photomath (2017). This app allows students to scan 

math questions that are handwritten, typed in a textbook, typed in an online math 

program, or typed in directly into the app’s calculator. The app then displays the solution 

to these questions. Students may also choose to view step-by-step instructions on how 

to solve the math questions. 

Postsecondary institutions seem to be unaware of the problems that 

nontraditional, first-generation math students face. Consequently, this problem has not 

been fully addressed by postsecondary institutions; therefore, the purpose of this thesis 

was to possibly help nontraditional, first-generation undergraduate math students in their 

attempt at learning ordinary differential equation systems of population models with 

positive coefficients. This was accomplished by building a guide containing some of the 

prerequisite mathematical concepts and demonstrating the procedures used while 

solving the aforementioned types of population systems, creating a detailed look at the 

graphing program PPlanes, and defining the terminology that may be used during this 

process. 

What is a nontraditional, first-generation college student? This has not been 

defined as a grouped term, but the characteristics of a nontraditional college student 

have been defined in the Findings from the Condition of Education 2002: Nontraditional 

Undergraduates (Choy, 2002). Students are considered “highly nontraditional” if they 

have four or more of the characteristics, are “moderately nontraditional” if they have two 

or three of these traits, and are “minimally nontraditional” if they have only one of the 

following characteristics traits: A student who delays enrollment (age of 24 or older), a 

student who attends part-time for at least a portion of the academic year, a student who 

works full-time (35 hours or more per week) while enrolled, a student who is considered 

financially independent on eligibility for financially aid, a student who has dependents 
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other than a spouse, a student who is a single parent, and/or a student who does not 

have a high school diploma (Choy, 2002). 

A first-generation college student has no clear definition (Smith, 2015). Some of 

the significant characteristics of a first-generation student are listed in the U.S. News & 

World Report as the following:  A first-generation college student usually delays starting 

college (around the age of 22) and has parents with no college experience or parents 

with no bachelor’s degree. These students will start at a non-four-year institution and will 

take six years to complete their bachelor’s degree (Boyington, 2015). Why is there a 

need to help these students? Nationally, only 50% of the first-generation college 

students who enrolled at a 4-year university in 2004 earned their degrees within 6 years 

(DeAngelo, Franke, Hurtado, Pryor, & Tran, 2011). 

The Texas Higher Education Coordinating Board’s (2016) new proposal, 

60x30TX, targeting 60 percent of Texans, between the age of 25–34, will have a 

certificate or college degree by the year 2030. Texans, who are 25 years and older, who 

have some college credits but no degree number 3.8 million in 2014. Also, 4-year 

students who dropped out (stopped out) of higher education with 90 or more semester 

credit hours (Bachelor of Science in Mathematics requires 120 credit hours) numbered 

48,000 between the years 2008 and 2012. During this same time, at two-year colleges, 

the number of students with 55 or more semester credit hours (60 hours required 

Associate of Science degree) who dropped out (stopped out) was 161,000 (Texas 

Higher Education Coordinating Board, 2016). 

Clearly, the guide will not help all these students but will hopefully provide help to 

returning students to recall forgotten mathematical concepts and help them complete 

their degrees. 
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CHAPTER II  

PREREQUISITE MATHEMATICS 

Basic Algebra 

In mathematics, a binomial is a two-term polynomial [e.g., (𝑥 + 3)], then we can also 

consider the product of two binomials is as follows, for example: (𝑥 + 3)(𝑥 – 5). When 

multiplying two binomials, there are numerous methods used. The most popular 

methods are the distributive property and the FOIL (First, Outer, Inner, Last) method. 

The distributive property method distributes the second binomial to each term of the first 

binomial and then any like terms are combined if necessary: 

(𝑥 + 3)(𝑥 – 5)  

= (𝑥 − 5) + 3(𝑥 − 5)  

= (𝑥)(𝑥) + (𝑥)(−5) + (3)(𝑥) + (3)(−5) =  

𝑥2 − 5𝑥 + 3𝑥 − 15. 

Combining these like terms results in the trinomial: 𝑥2 − 2𝑥 − 15. The FOIL 

method multiplies each term in the parenthesis in this order: the first two terms, the outer 

two terms, the inner two terms, and the last two terms; then combine like terms if 

necessary. A modified method of the FOIL is demonstrated. First, draw two goal posts 

(purple and red lines) under the two binomials (𝑥 + 3 )( 𝑥 – 5 ). 

Second, multiply the inner two terms (what the purple line touches, positive three 

times 𝑥) and place the product under the purple line (the signed term: + 3𝑥). Then 

multiply the outer two terms (what the red line touches, x times negative five) and place 

the product above the red line (the signed term: – 5𝑥) (𝑥 + 3 )( 𝑥 – 5 ). 

+3𝑥 
–5𝑥 
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Third, when possible, combine like terms and then place under the red line; 

however, but if no like terms exist, then write these two terms under the red line 

including their signs: 

(𝑥 + 3 )(  – 5 ). 

+3𝑥 
–5𝑥 

Fourth, place a capital “𝐹” in front of the red line, and place a capital “𝐿” on the 

back of the red goal post as shown below: 

(𝑥 + 3 )(  – 5 ). 

+3𝑥 
F          –5𝑥       L 

–2𝑥 

The “𝐹” is the product of the first terms in each parenthesis as shown: 𝐹 = (𝑥)(𝑥) = 𝑥2 

then place this term under the red line in front of the combined like term. The “𝐿” is the 

product of the last terms in each parenthesis as follows: 𝐿 = (3)(−5) = −15. Then place 

this term under the red line behind the combined like term as follows: 

(𝑥 + 3 )(  – 5 ). 

+3𝑥 
F          –5𝑥       L 
𝑥2        –2𝑥       15 

This completes the process of multiplying a set of binomials using a modified method of 

the FOIL.  

A quadratic expression, 𝑎𝑥2 + 𝑏𝑥 + 𝑐, may be factored (UNFOILED), which is 

basically the process shown above in reverse. A few more steps are added to verify the 

solution. Start with the quadratic expression: 𝑥2 – 5𝑥 – 6. Then first step to this process is 

to look for the greatest common factor (GCF). A GCF is the greatest factor that is 

common to each term. 

Second, if GCF is the factor of one, then draw a large goal post (blue line) from 

the first term to the last term. Third, place the factors of the first term on the left-hand 
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side of the goal post positioned under the first term and the factors of the last term 

located under the right-hand side of the goal post as shown below: 

𝑥2 – 5𝑥 – 6. 

(𝑥)(𝑥)          (1)(6)  
      (2)(3) 

When all the factors are listed, write two sets of parentheses with purple and red lines 

(goal posts). The first position of each set of parentheses is where one of the factors of 

the first term of the trinomial is placed. The last position of each set of parentheses is 

where one of the factors of the third term of the trinomial is placed. We will look at the 

case where the leading coefficient of the squared term is one; it then becomes a 

question of which of the two factors, when multiplied, will be the last term negative six; 

however, when added will be the coefficient of the middle term negative five. The fourth 

step is to place a set (first and third term) of factors into the parentheses and then 

multiply to check the solution. The factors of 𝑥2 and 6 are placed inside of the 

parentheses and factored using a modified method of the FOIL: 

𝑥2 – 5𝑥 – 6. 

(𝑥       1)(𝑥       6)  

         1𝑥 

         6𝑥 

Choose the signs that when combined must be negative five from the original 

trinomial. Using -6 and +1 results in -5. The terms (purple and red) are combined and 

then placed under the red line as shown: 

(𝑥       1)(𝑥       6)  

         1𝑥 

         6𝑥 

           5𝑥 

Determining how to place the two signs correctly in the parentheses is how most 

students make a mistake. Using this method, the first sign (purple number) is placed in 
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the first parentheses, and the second sign (red number) is placed in the second 

parentheses. The “𝐹” terms are multiplied and placed under the red line, then the “𝐿” 

terms are multiplied and placed under red line (as the last term), shown here: 

𝑥2 – 5𝑥 – 6. 

(𝑥  +  1)(  –  6)  

         1𝑥 

F       6𝑥            L 

𝑥2 – 5𝑥 – 6. 

A quadratic expression is factored correctly when the new trinomial (under red 

line) is the original trinomial. Then the solution is the product of the two parentheses. 

Students need to pay close attention to the sign between the second and third term of 

the resulting trinomial. When the wrong set of factors is used, then the sign between the 

last two terms will be different from the original quadratic expression. If these signs are 

wrong, the factors used were the wrong choice. Switch the placement of the same 

factors and try again using this same process. When the signs are again wrong, use the 

other set of factors until the trinomial under the red line matches the original trinomial.  

The original quadratic expression set to zero will create a quadratic equation in 

the standard form: 𝑥2 – 5𝑥 – 6𝑥 = 0. Then the last step of solving for a quadratic equation 

is to solve for the possible real roots by setting the terms in each pair of parentheses 

equal to zero and then solve for the variable. The quadratic equation is then in standard 

form and is solved for the possible real roots as follows:  

𝑥2 – 5𝑥 – 6𝑥 = 0  

(𝑥 + 1)(𝑥 – 6) = 0. 

The parentheses are set to zero and then solve as shown: 𝑥 + 1 = 0. Then subtract 

negative one from both sides as shown: 𝑥 = – 1. The second real root is as follows: 𝑥 – 6 

= 0. Then add six to both sides, resulting as follows: 𝑥 = 6. Then the possible solutions of 

this equation are as shown: 𝑥 = – 1 , 6. Each of these solutions must be checked for 
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erroneous (meaning invalid) answers by substituting one solution at a time into the 

original equation, and then simplified. When both of the statements are true after 

simplifying, then the possible real solutions are the real roots of the equation.  

Two other popular methods used to solve quadratic equations are completing the 

square and the quadratic formula. The concept of completing the square is to make a 

perfect square trinomial that when factored will reduce into a quantity being squared. 

The formulas for a perfect square trinomial are shown here: 𝑎2 + 2𝑎𝑏 + 𝑏2 = (𝑎 + 𝑏)2 and 

𝑎2 – 2𝑎𝑏 + 𝑏2 = (𝑎 – 𝑏)2. When solving for a quadratic equation using completing the 

square method, first start with the equation in standard form: 𝑥2 + 8𝑥 + 7 = 0. The 

coefficient of the squared term (first term) must be a positive one; if not, divide each term 

by the coefficient. 

Second, move the third term to the right-hand side of the equation. Then take the 

middle term, divide it by two, and square the results. Third, add this new term to both 

sides of the equation to make a perfect square trinomial on the left-hand side of the 

equation:  

𝑥2 + 8𝑥 = −7  

𝑥2 + 8𝑥 + 16 = – 7 + 16.  

Combine the like terms on the right-hand side of the equation: 𝑥2 + 8𝑥 + 16 = 9. The left-

hand side of the equation is a perfect square trinomial and will simplify to the quantity 

squared: (𝑥 + 4)2 = 9. The fourth step is to use the square root property to reduce the 

squared term to a single quantity. The square root property is a way to solve for the real 

roots of a quadratic equation, but there are a few rules that must be followed. The 

numerical coefficient must be a positive one, and the squared term must be isolated, 

preferably on the left-hand side of the equation. Also, remember that a square root 



 

9 

negative number is complex. The equation has the squared term isolated on the left-

hand side. The solution using the square root property results as follows: 

 

The fifth step is solving for the two real roots by solving for the variable using the 

addition property of equality. This means to isolate x we add the additive inverse (a term 

with opposite sign) to both sides of the equation. The results are as follows:  

𝑥 + 4 − 4 = −4 + 3  

𝑥1 = −1.  

The second solution was as follows:  

𝑥2 + 4 − 4 = −4 − 3  

𝑥2 = −7.  

The two possible real solutions are as shown: 𝑥1 = −1, −7. The solutions will need to be 

checked for erroneous answers. This process is started with checking the solution of 

negative one, as shown:  

(−1)2 + 8(−1) + 7 = 0  

1 − 8 + 7 = 0.  

The statement is true; therefore, -1 is a real solution of this equation. Finish by checking 

for the possible solution of -7:  

(−7)2 + 8(−7) + 7 = 0  

49 − 56 + 7 = 0.  

This statement is also true; therefore, -7 is also a real solution for this equation. 
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This completes solving for real roots by using completing the square; using the 

quadratic formula is less complicated since there are less rules to remember. Using the 

quadratic formula is an easier method than completing the square to solve for quadratic 

equations. The philosophy of Rosalie Reiter was, “I show the hardest methods first in 

class, so my students will appreciate the easier methods.” Even YouTube has several 

videos to help students learn the formula, including the one sung to the “Pop Goes the 

Weasel” song. Start with the quadratic equation being in standard form: 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. 

This should be completed before using the quadratic formula and the letters a, b, and c 

represent real numbers. The quadratic formula is as follows: 

𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
. 

This is read as the variable x equals the opposite of b plus/minus the square root of the 

quantity of b squared minus four times a times c all over two times a. Using the quadratic 

equation from completing the square, the two possible solutions are as follows: 

 

Solving for first possible real root is shown as follows: 

 

Now, solve for the second possible root, shown here: 
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The solutions were checked during the completing the square process; there is no need 

to repeat this step. The quadratic formula is also used to find the nature of the roots of a 

quadratic equation. The discriminant of a quadratic formula is located under the radical: 

𝑏2 − 4𝑎𝑐. 

The discriminant is used to discover the nature of the possible solutions of a 

quadratic equation. There are four types of possible solutions. A quick review of all four 

examples follows. The first equation, 6𝑥2 + 7𝑥 + 2 = 0, will have a positive perfect square 

as the discriminant and will have two different rational (no radical or imaginary numbers 

in the answer) solutions. Starting with the equation, substitute the numerical coefficients 

including their signs (if negative numbers) into the discriminant and simplify as follows:  

6𝑥2 + 7𝑥 + 2 = 0  

𝑏2 − 4𝑎𝑐 = 72 − (4)(6)(2) = 49 − 48 = 1.  

One is a positive perfect square; there will be two different rational solutions. The 

second equation, 3𝑥2 + 4𝑥 − 2 = 0, will have a positive discriminant, but not a perfect 

square. Start with the equation; then substitute the numerical coefficients into the 

discriminant as follows:  

3𝑥2 + 4𝑥 − 2 = 0  

42 − 4(3)(−2) = 16 + 24 = 40.  

This equation will have two different irrational solutions (answer will contain radicals). 

The third equation, 4𝑥2 − 12𝑥 + 9 = 0, will have a discriminant of zero and will 

have only one rational solution: 4𝑥2 − 12𝑥 + 9 = 0  

(−12)2 − (4)(4)(9) = 144 − 144 = 0.  

The final equation, 𝑥2 + 4 = 0, results in two complex conjugates. This case the 

discriminant is negative, which means that the roots of this equation are complex and 

contains an imaginary number denoted by 𝒾.  
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The equation 𝑥2 + 4 = 0 is chosen with 𝑏 = 0. This type of equation seems to 

confuse students, since the coefficient 𝑏 equals zero. The method to solve for this type 

quadratic equation is shown as follows: 

 

Notice the discriminant is located under the radical and is negative. The radical may be 

simplified by substituting 𝒾2 = −1, as follows: 

 

This equation has two complex, not real, answers and will contain the 𝒾 notation. 

Knowing how to find the discriminant is a useful tool when graphing quadratic functions: 

(𝑥) = 𝑥2 + 3𝑥 − 4. This concludes three methods to solve a quadrative equation. 

A linear system that contains two equations with two variables is the last concept 

of this section. Seeing how or if these two lines cross each other is the main focus of this 

demonstration. There are several different ways to solve for a linear system. This section 

will concentrate on solving a linear system by using the substitution method and then 

explain three types of solutions students may encounter. 

A system of two linear equations with two variables is a prime candidate to solve 

by the substitution method if one of these two equations has (or by solving will have) a 

variable with a coefficient of negative or positive one. When solving for this type of 

system, only one variable at a time will be found. Then the first solution will be evaluated 

in the remaining equation to find the second variable. Start with the linear system, shown 

below: 

 



 

13 

The first equation will have a coefficient 𝑥 = 7. Using the first equation in the system 

above, we will solve for 𝑦 in terms of 𝑥 as follows: 

14𝑥 − 2𝑦 = 12  

−2𝑦 = 12 − 14𝑥  

𝑦 = −6 + 7𝑥.  

Why this method is called substitution is because the answer from this equation will be 

substituted for the 𝑦–variable in the second equation as shown:  

3𝑥 + 2(𝑦) = 22  

3𝑥 + 2(−6 + 7𝑥) = 22. 

Notice that there is now only the 𝑥–variable in this equation. Simplify the equation and 

solve for the 𝑥–variable:  

3𝑥 − 12 + 14𝑥 = 22  

17𝑥 − 12 = 22  

17𝑥 = 34  

𝑥 = 2.  

This solution will now be substituted into the first equation for the 𝑥–variable to find the 

solution for the 𝑦–variable as shown:  

𝑦 = −6 + 7(𝑥)  

𝑦 = −6 + 7(2)  

𝑦 = −6 + 14  

𝑦 = 8. 

This system of linear equations has one unique solution at the point (2, 8). This means 

that when these two lines are graphed they will intersect (cross) only once, and it will be 

at the point (2, 8). These equations are independent and are said to be a consistent 

system of equations, since there exists a point that is consistent with both equations. 

Some linear systems are said to be inconsistent when the two equations are parallel 

lines. This means when these lines are graphed they will never intersect. An example of 

an inconsistent system is shown here: 
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Using the substitution method, start by solving for the 𝑦–variable in the second equation:  

2𝑥 + 𝑦 = 3  

𝑦 = 3 − 2𝑥.  

Substitute this solution in the first equation for the 𝑦–variable and simplify:  

4𝑥 + 2(𝑦) = 10  

4𝑥 + 2(3 − 2𝑥) = 10  

4𝑥 + 6 − 4𝑥 = 10.  

Combine like terms on the left-hand side of the equation: 6 = 10. Oops! Where did the 

𝑥–variable go? Six does not equal ten: 6 ≠ 10. This system of linear equations is 

considered inconsistent and will never intersect, for they are parallel lines. This system is 

said to have no solution. Some systems of linear equations are said to have an infinite 

number of solutions. These types of systems are said to have dependent equations, 

meaning the same line will be graphed, one over the other. An example of a system of 

linear systems with dependent equations is shown below: 

 

The 𝑦–variable in the first equation is solved, and then substitute the solution into 

the second equation as follows:  

2𝑥 + 𝑦 = 6  

𝑦 = 6 − 2𝑥  

4𝑥 + 2(𝑦) = 12  

4𝑥 + 2(6 − 2𝑥) = 12  

4𝑥 + 12 − 4𝑥 = 12.  

The last step is to reduce the left-hand side of the equation to 12. This makes a true 

statement of 12 = 12, and there is an infinite number of solutions since the two equations 

in this system represent the same line. This concludes the basic algebra section. 
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Matrices 

A matrix is made of horizontal rows and vertical columns that form a rectangular 

array of elements. The orders of the elements in matrices are first listed by rows, and 

then by columns. Matrix 𝑨2 x 2 (matrix is in boldface print) is said to have two horizontal 

rows and two vertical columns with the elements listed below: 

 

A transpose of a matrix is accomplished by rewriting the rows of matrix 𝑨 to the columns 

of the transpose matrix 𝑨T, read 𝑨–Transpose, as shown: 

 

By assigning integers for the elements in matrix 𝑨: 

 

The trace of this matrix, denoted by Tr𝑨 or tr𝑨, is the sum of the diagonal elements: 

 

The determinant of matrix 𝑨 (denoted by det(𝑨) or |𝑨|) is the first row-first column 

element, multiplied by the second row-second column element, and subtracted by the 

product of first row-second column element, multiplied by the second row-first element. 

This is very confusing in words, so an example of determinant of matrix 𝑨 is shown: 

 

The addition of two matrices is accomplished by adding each element in the first 

matrix by each of the corresponding elements in the second matrix. This means the 
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matrices must be of the same order (size), or they cannot be added. Given matrix 𝑨 and 

matrix 𝑩, an example of adding these two matrices of the same order is as shown: 

 

A scalar multiple of a matrix is computed by multiplying each element in a matrix 

by the scalar. This scalar can be either a real or complex number. The scalar may be 

represented by the Greek letter lambda λ. An identity matrix is a matrix of any size that 

has the diagonal elements of one, and the remaining elements are zero. The identity 

matrix multiplied by the scalar λ is as follows: 

 

An example of a scalar of 3 multiplying the given matrix A is shown below: 

 

When subtracting two matrices 𝑨 −𝑩, it is less confusing if matrix 𝑩 is first multiplied by 

scalar of negative one, and then these two matrices are added. This process is shown 

as follows: 

 

When multiplying two matrices, special rules apply. A major difference is the 

elements of the first matrix are not multiplied by the corresponding elements of the 

second matrix, as in addition. Instead, matrix 𝑪2x3 may multiply matrix 𝑫3x1 if and only if 
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the columns of matrix 𝑪2x3 equals the same number of rows in matrix 𝑫3x1. Checking the 

size of these two matrices, (2 𝑥 3)(3 𝑥 1), the two inner numbers are the same; therefore, 

these two matrices may be multiplied. A fun fact is that the size of the product matrix of 

these two matrices will be the outer numbers (2 𝑥 1). The multiplication process of matrix 

𝑪2x3 and matrix 𝑫3x1 is to first multiply the first element in row one of 𝑪2x3 with the first 

element in column 𝑫3x1 added to the multiplied second element in row one of 𝑪2x3 with 

the second element in column 𝑫3x1. Then add the multiplied third element in row one of 

𝑪2x3 with the third element in column 𝑫3x1 [e.g., (2)(5) + (−1)(6) + (7)(7)]. This will 

complete the first row of the product matrix. 

The second row of the product matrix is the same process listed above, but the 

elements of the second row of 𝑪2x3 will multiply to the elements in column of matrix 𝑫3x1 

[e.g., (5)(5) + (0)(6) + (−3)(7)], as shown below: 

 

While first learning the concept of multiplying two matrices, it is perhaps helpful to draw a 

horizontal arrow over matrix 𝑪 (→) and a vertical arrow (↓) over matrix 𝑫 to lessen the 

confusion.  
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A review of the matrix operations may help while solving systems of 

simultaneous linear equations (equations that share at least one solution point for two 

unknown variables usually x and y) by rewriting the systems in matrix equation form of 

𝑨𝒙 = 𝒃 (vectors 𝒙 and 𝒃 will be in bold lowercase letters) and then solving for the 

unknown variables. The 𝑨 is the coefficient matrix (coefficients of all unknown variables) 

of 𝒙 (all the variables), and 𝒃 is the solution for the system. A system of linear equations 

may be solved for the unknown variables written in form, 𝑨𝒙 = 𝒃 by using the previous 

linear system and rewriting this system in the form of a matrix equation, shown below: 

 

This matrix may be solved by Gaussian elimination. First, write the matrix as an 

augmented matrix, which is designated by the symbol 𝑨b (Bronson & Costa, 2009). The 

Gaussian elimination method solves linear equations by using elementary row 

operations that includes the interchanging of two rows, multiplying a row by a non-zero 

scalar, and adding one row to another row. The line between the coefficient matrix 𝑨 and 

the column matrix 𝒃 is used to indicate the equals sign between these two matrices. 

When considering the augmented matrix, let 𝑅1 be defined as row one, and 𝑅2 be 

defined as row two. The augmented matrix with the elementary row reductions is as 

follows: 



 

19 

 

The augmented matrix is then rewritten into a system of linear equations: 

 

The solution 𝑦 = 8 is back-substituting into the first equation. Solve for the 𝑥– variable as 

follows: 

 

This verifies the solution set from the previous section of the simultaneous linear 

system’s solution of the point (2, 8). Another method for solving simultaneous linear 

equations is Cramer’s rule. Cramer’s rule uses determinants to solve any system of n-

variables and n-linear equations provided that the determinant of the coefficient matrix is 

not zero. Otherwise, the system is said to be singular; this means the system has infinite 

number of solutions. Using the previous example, we can use Cramer’s rule to find the 

solution of the unknown variables provided that there are two unknown variables and 
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two equations in this system and the determinant |𝑨| is not equal to zero, as shown 

below: 

 

The determinate is not zero, and the first step is to express the linear system in the 

following form 𝑨𝒙 = 𝒃: 

 

The procedure using Cramer’s rule is to solve for one unknown variable at a 

time. The denominator is the determinant of the coefficient matrix. The numerator has 

the column matrix 𝒃 replacing the column of the unknown variable. Solving for the 

unknown x-variable, replace vector 𝒃 in the first column in the coefficient matrix and 

divide by the original coefficient matrix as follows: 

 

The y–variable is found using this same process, but vector 𝒃 replaces the second 

column instead of the first: 

 

The solution for the linear system is (2, 8). Solving systems of simultaneous linear 

equations, three techniques have been demonstrated: substitution method, Gaussian 

elimination, and Cramer’s rule. This ends the matrix section of the review, and a review 

of calculus rules starts the next section. 
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Calculus 

While taking a calculus class, a student being able to take the derivative of a 

function is a simple process, but being able to recall all the differentiation rules after a 

five to ten-year lapse is perhaps painful! Students may spend countless hours relearning 

the differentiation rules while taking other classes that list calculus as a prerequisite. An 

area that may pose a problem for students is the different notations used when taking 

derivatives. There is more than one way to represent taking the derivative of a function 

(𝑥) (read as 𝑓 is a function of 𝑥 or the shorter version is 𝑓 of 𝑥). Table 1 has a list of 

popular differentiation notation that may be used. 

Table 1 

Differentiation Notation 

 

The notation (𝑥) (i.e., 𝑓(𝑥) = 2𝑥 2 + 3𝑥 – 8) replaces the commonly used y (i.e., 𝑦 

= 2𝑥 2 + 3𝑥 – 8) in function equation. The notation of y’ is read as “𝑦 prime,” the notation 

𝑓’(𝑥) is read as “𝑓 prime is a function of 𝑥,” and the notation 
𝑑𝑦

𝑑𝑥
 is read as the “derivative 

of 𝑦 with respect to 𝑥”. When 𝑥 and/or 𝑦 is a function of time 𝑡, where time is the 

independent variable and 𝑥 and 𝑦 are the dependent variables, the dot notation is 

commonly used. Then the notation of a first derivative dot notation is 𝑥̇ and 𝑦̇; that 

means 
𝑑𝑥

𝑑𝑡
 and 

𝑑𝑦

𝑑𝑡
 respectively. When starting to relearn the differentiation rules, start with 
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the simplest rule to remember. Start with the easiest rule to recall, which is taking the 

derivative of a constant. 

 

The power rule is used to differentiate functions that can be expressed as a 

power of a variable. Generally, the power rule can be used to differentiate functions of 

the form (𝑥) = 𝑢𝑛 . Where 𝑢 is a function of 𝑥. The rule is shown below: 

 
An example of the power rule and the derivative of a function is shown below:  

(𝑥) = 𝑥 5  

𝑓′(𝑥) = 5𝑥 5−1 = 5𝑥 4 . 

The constant multiplication rule is used when the constant may be pulled outside of the 

function as the rule shows: 

 
An example of pulling out the constant is shown below: 

 

The sum or difference rule of two differentiable functions is the sum or difference of their 

derivatives. The rule for these two differentiable functions is as follows: 
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The product rule is used when differentiating the product of two functions. The product 

rule is as follows: 

 

When using the product rule, it easier to placed brackets around the derivative and then 

take the derivative of the function, shown as follows:  

(𝑥) = (𝑥2 + 2)(𝑥3 − 1)  

𝑓′(𝑥) = (𝑥2 + 2)[𝑥3 − 1]′ + (𝑥3 − 1)[𝑥2 + 2]′  

𝑓′(𝑥) = (𝑥2 + 2)[3𝑥2] + (𝑥3 − 1)[2𝑥]  

𝑓′(𝑥) = 3𝑥4 + 6𝑥2 + 2𝑥3 − 2𝑥.  

When there are no like terms to combine after taking the derivative of a function, 

the only thing to remember is writing the answer in descending order of exponents: 𝑓′(𝑥) 

= 3𝑥4 + 2𝑥3 + 6𝑥2 − 2𝑥. Using the quotient rule of derivatives, may be easier if brackets 

are placed around the derivatives. The quotient rule is listed below, followed by an 

example of this rule: 

 
The values (ℎ) = ℎ2 and 𝑓(ℎ) = ℎ2 + 3 plugged into the quotient rule as shown: 

 

Simplify the equation as follows: 
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The chain rule is used to differentiate the composite of two functions as given by 

the prime notation: 𝐹 = 𝑓 ∘ 𝑔 (read as the function 𝑓 of 𝑔) when both functions are 

differentiable. Then the derivative of the composite function is as follows:  

𝐹′(𝑥) = 𝑓(𝑔(𝑥)) = 𝑓′(𝑔(𝑥))𝑔 ′ (𝑥). 

Take the derivative of the composite function 𝑓 of 𝑔 (listed below). Start by taking 

the derivative of the outside function; then take the derivative of the inside function as 

follows: (𝑥) = √2 + 𝑥 2. 

Change the radical to an exponent; remember a fractional exponent is power divided by 

the root: (𝑥) = (2 + 𝑥2)½ . 

Then apply the chain rule as follows: 

 
Multiply; then rewrite with positive exponents as follows: 

 
Reduce and rewrite in radical form as shown: 

 
The chain rule may be combined with the general power rule into the definition listed as 

follows: 

 

Rewrite the equation by moving the denominator into the numerator as follows: 
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Take the derivative of the function as follows:  

𝑦 ′ = 3 (−3)(𝑥4 + 2) −3−1 ∙ (4𝑥4−1 ).  

The derivative of the outside function is −3(x4 + 2) −4, and the derivative of the inside 

function is 4𝑥3. Multiply and rewrite using positive exponents as shown: 

 

The derivatives of trigonometric functions are used when solving differential 

equations. Table 2 shows some of trigonometric functions needed when taking a 

differential equations class. 

Table 2  
 
Derivatives of Trigonometric Functions 
 

 

The trigonometric functions listed above are a few of the derivatives students will 

need to know when taking a differential equations class. Students will also need to recall 

how to integrate. The power rule for integration is as follows: 
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A quick example of the power rule is shown below: 

 
The general power rule for integration is another rule students need to study before 

starting a differential equation class. The function of the general power rule will need to 

be differentiable; the rule is listed below: 

 

The 𝐶 is an integration constant of the function. This rule may also be applied to change 

a variable by choosing to substitution u = g(x), which is as follows: 

 
A simple example of the general power rule using both methods on the same problem is 

as follows: 

 

The integrand can be written as 𝑔𝑥 4𝑔′(𝑥) where 𝑔(𝑥) = 1 + 2𝑥 and 𝑔′(𝑥) = 2, and the 

general power rule of this function is as follows: 

 

The process of change of variable by choosing to substitution 𝑢 = 𝑔 (𝑥) and 𝑑𝑢 = 2𝑑𝑥 

into the original integral as follows: 

 

Make the substitution 𝑢 = 1 + 2𝑥 and 𝑑𝑢 = 2𝑑𝑥 into the integral below: 
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Substitute 𝑢 = 1 + 2𝑥, but recall the integration constant must be different as follows: 

 

Basic integration formulas that come up in a differential equations class that 

students need to make sure to study are located in Table 3. 

Table 3  

Basic Integration Formulas 

 

These are just a few of the basic integral rules students should be familiar with before 

starting any course that calls for calculus as a prerequisite.
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CHAPTER III  

MODEL OF INTERACTING OF TWO POPULATIONS 

Building a System 

Building a constant population system of two competing species of x and y over a 

given area with respect to a given period of time t this assumes no interaction with other 

species can be challenging for students to comprehend. Students may have a better 

understanding of the meaning of each term of this system by first investigating how to 

build a logistic population model. The logistic population model assumes the growth rate 

of a certain single species in a given area with respect to a given period of time t, while a 

system investigates more than one species. When using this type of model, the 

important details that would be under consideration are the birth and death rates of the 

given species during this time and what the expected growth of the species would be 

when the population is small or large. The differential equation of a single population 

growth over a given period of time is shown as follows: 

𝑑𝑝

𝑑𝑡
= ℎ(𝑝)𝑝. 

The function ℎ(𝑝) is the relative growth rate of the population, where ℎ is the 

population birth rates minus the death rates for the unknown population 𝑝 (where 𝑝 is an 

arbitrary population). The population 𝑝 size will be delegated by the growth rate of ℎ. 

Using a small population size 𝑝, the growth rate h is expected to grow roughly at a 

constant speed. This is assuming that the species has all the necessities to thrive and 

that the birth rates (𝑘) will outnumber the death rates (𝑏). The function ℎ(𝑝) = 𝑘 − 𝑘𝑝 

follows the property when b (a positive constant) is small; then ℎ equates to the positive 

constant 𝑘, meaning 𝑝 < 𝑘 𝑏. 
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When the population 𝑝 grows too large for the resources available for the species 

to survive, the death rates will increase, and the birth rates will decrease. The logistic 

equation indicates when the population 𝑝 is large, meaning 𝑝 > 𝑘, and then ℎ will be 

negative as follows: 
𝑑𝑝

𝑑𝑡
= 𝑘𝑝 – 𝑏𝑝2. The symbols 𝑘 and 𝑏 represent any arbitrary positive 

constants. The constants 𝑘 and 𝑏 will be replaced to simplify the process of building a 

competing system of two populations. The constant k will be represented by 𝑎1 and 𝑎2. 

This represents the birth rates of the populations 𝑥 and 𝑦, while the constant 𝑏 is 

represented by the constants 𝑏1 and 𝑏2 that denotes the death rates of these 

populations. The first species of the system will be population 𝑥, which will satisfy the 

function of the population growth with respect to time t over a given period as follows: 

𝑑𝑥

𝑑𝑡
= 𝑎1𝑥 − 𝑏1𝑥2. The second species will be the population 𝑦, which will satisfy the 

function of the population growth with respect to time 𝑡 over a given period as shown: 

𝑑𝑥

𝑑𝑡
= 𝑎2𝑦 − 𝑏2𝑦2. 

When neither of the species of x and y has any contact with the other, the system 

of the population growth of 𝑥(𝑡) and 𝑦(𝑡) will be the differential equation as follows: 

 

A chance meeting of these two populations is proportional to the product 𝑥𝑦. The 

completion system as seen below: 

        (1) 

The coefficients of the last terms 𝑐1 and 𝑐2 will reflect the rate of the population decline, 

due to the frequency of these two population encounters. The coefficients 𝑎1, 𝑎2, 𝑏1, 𝑏2, 

𝑐1, and 𝑐2 symbolize positive real numbers. 
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Investigation of Population Model 

Start by investigating the population system of Equation 1 for any points of 

interest, critical values. We then investigated the movement surrounding these points for 

possible stabilization of each point. When the points are static (no movement) in its 

position, then this point is an equilibrium point of the system. Then investigate each 

equilibrium point for classification, the type of stability, and the state the possible 

outcome of the species of the populations in four case scenarios. 

Equation 1 consists of two nonlinear equations and makes this system difficult to 

find an analytical solution. This is why we do the following: 

        (2) 

Start by locating the critical vales of the system by setting 
𝑑𝑥

𝑑𝑡
= 0 and 

𝑑𝑦

𝑑𝑡
= 0. next use 

Jacobian matrix to linearize the system near each critical point. Then find the local 

behavior of the model surrounding each critical point for a possible equilibrium point. The 

critical point will be found from the following system of equations. Factor the GCF of both 

equations in Equation 2; then set these equations to zero. The first equation shows that 

the GCF is the variable 𝑥, and in the second equation, the GCF is the variable 𝑦. The 

factored Equation 3 is as follows: 

     (3). 

Then, Equation 4 will be the system of equations with the GCF removed. 

         (4). 

There are four case where these equations are equal to zero. The first case is where 𝑥 = 

0 and 𝑦 = 0. The second case is where 𝑦 = 0 and 𝑎1 − 𝑏1𝑥 − 𝑐1𝑦 = 0. The third case is 
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when 𝑥 = 0 and 𝑎2 − 𝑏2𝑦 − 𝑐2𝑥 = 0. The fourth case is where 𝑎1 − 𝑏1𝑥 − 𝑐1𝑦 = 0 and 𝑎2 − 

𝑏2𝑦 − 𝑐2𝑥 = 0 meaning in case one cannot have 𝑥 as a divisor. 

Four Case Scenarios 

Case one. The x-variable in the equations (𝑎1 − 𝑏1𝑥 − 𝑐1𝑦) = 0 is simplified as 

follows: 

 

The 𝑦-coordinate for the first critical point is found using the previous process. The 

solution for the 𝑦-variable in the second equation is as follows: 

 

The first equilibrium point (0,0) (e.g., Figure 12). 

Case two. The second case is where 𝑦 = 0 is substituted in the first equation in 

Equation 4; then solve for the 𝑥-variable as follows: 

𝑎1 − 𝑏1𝑥 − 𝑐1𝑦 = 0  

𝑎1 − 𝑏1𝑥 − 𝑐1(0) = 0  

𝑎1 − 𝑏1𝑥 = 0.  

The first step is to solve for the x-variable by adding the additive inverse of 𝑎1 to 

both sides of the equation: 𝑎1 − 𝑏1𝑥 + (−𝑎1) = 0− 𝑎1. The second step is to isolate the 𝑥-

variable by dividing both sides of the equation by the coefficient −𝑏1: 

 

The third step is simplifying the equation: 𝑥 =  
𝑎1

𝑏1
  This will give the second critical 

(equilibrium) point (
𝑎1

𝑏1
, 0) (e.g., see Figure 14). 
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Case three. The third case is where 𝑥 = 0 is substituted in the second equation 

of Equation 4; the next step is to solve for the 𝑦-variable as shown: 

𝑎2 − 𝑏2𝑦 − 𝑐2𝑥 = 0  

𝑎2 − 𝑏2𝑦 − 𝑐2(0) = 0  

𝑎2 − 𝑏2𝑦 = 0. 

The 𝑦-variable is then solved by adding the additive inverse of 𝑎2 to both sides and then 

isolating the y-variable by dividing both sides of the equation by coefficient − 𝑏2, which 

finally simplifies the equation as follows: 

 

This gives the third critical (equilibrium) point (0,
𝑎1

𝑏1
) (e.g., see Figure 16). 

Case four. Finding the fourth critical point is a tedious process, and it is more 

difficult than finding the previous three points. Start by using Equation 4 and writing 

these equations in the simplified system as follows: 

         (5) 

Next, write Equation 5 in the matrix equation form of 𝑨𝒙 = 𝒃 as shown:  

         (6) 

The matrix equations may be solved by using a number of methods including the 

substitution method previously demonstrated, but Cramer’s rule is used to solve for the 

last critical (equilibrium) point. The two restrictions of Cramer’s rule include the following: 
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first, there must be the same amount of n-variables as n-linear equations, and then the 

second, the determinant of the coefficient matrix is not zero.  

The first restriction is met, as there are as many equations as unknown variables. 

The second restriction, the determinant of the coefficient matrix 𝑨 is not zero as shown: 

 

When |𝑨| ≠ 0, then Equation 5 will have a solution, thus Equation 1 will have four critical 

points. The 𝑥-coordinate and 𝑦-coordinate of the fourth critical point is solved by using 

Equation 6. The 𝑥-coordinate is as follows: 

 

Then the 𝑦-coordinate is the following: 

 

This results in the fourth critical (equilibrium) point (
𝑎1𝑏2−𝑐1𝑎2

𝑏1𝑏2−𝑐1𝑐2
,

𝑏1𝑎2−𝑎1𝑐2

𝑏1𝑏2−𝑐1𝑐2
) (e.g., see Figure 

18). This case scenario simulates a peaceful coexistent population system where the x- 

and y-species cohabitate in a given area competing for the same resources during a 

given period of time. The process of finding the critical points are as shown: (0,0), 

(
𝑎1

𝑏1
, 0) , (0,

𝑎2

𝑏2
), and (

𝑎1𝑏2−𝑐1𝑎2

𝑏1𝑏2−𝑐1𝑐2
,

𝑏1𝑎2−𝑎1𝑐2

𝑏1𝑏2−𝑐1𝑐2
) is completed. A more detailed investigation of 

the behavior surrounding each of these points is contained in the next chapter. 

Jacobian Matrix  

The linearization of differential equations by the Jacobian matrix is a process 

used to study the general behavior around special points of interest, called equilibrium 
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(critical) points, to determine the stability surrounding this point of interest. The Jacobian 

matrix uses the partial derivative (
∂

∂𝑥
) and (

∂

∂𝑦
) of the elements in the matrix by the 

linearization of the systems of the differential equations in Equation 1 to a more 

manageable form. Recall Equation 1 represents the two arbitrary populations of 𝑥 and 𝑦 

with respect to the independent variable of time t. This system may be written in dot 

notation of the first derivative 𝑥 ̇ and 𝑦 ̇, instead of using 
𝑑𝑥

𝑑𝑡
 and 

𝑑𝑦

𝑑𝑡
. Then, Equation 7 will 

be as follows: 

       (7) 

The linearized Jacobian matrix (Equation 8) is as follows: 

     (8) 

Jacobian matrix (Equation 8) is used to simplify Equation 7, which helps in find the 

characteristic equation and the eigenvalues of the Jacobian matrix at each equilibrium 

point. 

Case One Equilibrium Point (0,0) 

Case One demonstrates the implementation of Jacobian matrix (Equation 8) with 

the first equilibrium point (0,0), where the variables of 𝑥 and 𝑦 are replaced by zero, 

shown as follows: 

 

This is a square matrix that is also a diagonal matrix. A few facts apply to this type of 

matrices. First, a square matrix will have a characteristic equation. Second, any 

triangular matrices will have their eigenvalues located on the diagonal. The Jacobian 

matrix 𝑱(0,0) is a triangular matrix. The eigenvalues are 𝜆1 = 𝑎1 > 0, and 𝜆2 = 𝑎2 > 0. Both 



 

35 

eigenvalues are real and positive; then the point (0,0) is unstable nodal point (see 

Appendix; e.g., see Figure 12) where both arbitrary populations will perish over time. 

Nontraditional math students may find it hard to remember these two facts; 

therefore, the process for evaluating Jacobian matrix for each equilibrium point, and then 

locating the eigenvalues and characteristic equations, are demonstrated. This process is 

started by locating the eigenvalues. First, the Jacobian matrix 𝑱(0,0) is subtracted by the 

identity matrix that has been multiplied by the scalar lambda (𝜆) as follows: 

 

Second, take the determinant of this matrix, and then set each of the parentheses equal 

to zero, and solve for both lambdas as follows: 

 

The solution for the 𝜆1 is shown here: 

 

The solution for the 𝜆2 is shown here: 

 

Third, the characteristic equation is the product of two binomials:  

(𝑎1 − 𝜆)(𝑎2 − 𝜆) = 𝜆2 − (𝑎1𝑎2)𝜆 + 𝑎1𝑎2  

This concludes the first case scenario. 
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Case Two Equilibrium Point (
𝑎1

𝑏1
, 0) 

The point (
𝑎1

𝑏1
, 0) is plugged into the Jacobian matrix. The 𝑦-variable is zero, and 

the 𝑥-variable is 
𝑎1

𝑏1
 that is shown as follows: 

 

The solution of the Jacobian matrix is an upper triangular matrix. This means the 

eigenvalues are located on the diagonal of this matrix. The  𝑱
(

𝑎1
𝑏1

,0) 
 eigenvalues are 𝜆1 = 

− 𝑎1 < 0 (negative number), and 𝜆1 = 𝑎2 − 
𝑐2𝑎1

𝑏1
 can be positive if 𝑎2 > 

𝑐2𝑎1

𝑏1
 or negative if 𝑎2 

< 
𝑐2𝑎1

𝑏1
, then the point (

𝑎1

𝑏1
, 0) is either a saddle point or is asymptotically stable (see 

Appendix). The second method for solving for characteristic equations starts with the 

characteristic equation using the following formula: 𝜆2 − 𝑡𝑟𝑱𝜆 + 𝑑𝑒𝑡𝑱 = 0. Start with the 

Jacobian matrix 𝑱
(

𝑎1
𝑏1

,0) 
, and fill in the formula as shown: 

 
The characteristic equation is the following: 

 

Then the second method to solve for the eigenvalues uses the following formula: 

 
Then the eigenvalues are as follows: 
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The eigenvalues in simplified form are shown with numerical coefficients in the next 

section of this chapter. This will give the second critical (equilibrium) point (
𝑎1

𝑏1
, 0), which 

is an unstable saddle point (e.g., Figure14). This concludes the second case scenario. 

Case Three Equilibrium Point (0,
𝑎2

𝑏2
) 

The point (0,
𝑎2

𝑏2
) is substituted into Jacobian matrix where Jacobian matrix 

 𝑱
(0,

𝑎2
𝑏2

) 
is the 𝑥-variable that is substituted with zero and the 𝑦-variable is replaced by  

𝑎2

𝑏2
. 

The reduced matrix is as follows: 

 

This is a lower triangular matrix where the eigenvalues are located on the diagonal. The 

 𝑱
(0,

𝑎2
𝑏2

) 
eigenvalues are 𝜆1 = 𝑎1 − 

𝑐1𝑎2

𝑏2
 that will be positive if 𝑎1 > 

𝑐1𝑎2

𝑏2
 and will be negative if 

𝑎1 < 
𝑐1𝑎2

𝑏2
, then 𝜆2 = −𝑎2 < 0 (negative). This makes the point (0,

𝑎2

𝑏2
) either a saddle point 

(determinant less than zero) or an asymptotically stable, where all the equilibrium 

solutions start near the equilibrium point and move toward the point as time increase. 

The characteristic equation is shown below: 

 

This concludes the third case scenario. 

Case Four Equilibrium Point (
𝑎1𝑏2−𝑐1𝑎2

𝑏1𝑏2−𝑐1𝑐2
,

𝑏1𝑎2−𝑎1𝑐2

𝑏1𝑏2−𝑐1𝑐2
) 

Case Four used a different method to locate the equilibrium point. The Cramer’s 

rule was used to solve to find the 𝑥 and 𝑦–coordinates of 𝑥 = 
𝑎1𝑏2−𝑐1𝑎2

𝑏1𝑏2−𝑐1𝑐2
, and 𝑦 = 

𝑏1𝑎2−𝑎1𝑐2

𝑏1𝑏2−𝑐1𝑐2
, 

where 𝑏1𝑏2 − 𝑐1𝑐2 ≠ 0. A new method to solve for the eigenvalues and the characteristic 
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equation is required. The reason for the new procedure is the determinant of the 

Jacobian matrix  𝑱
(

𝑎1𝑏2−𝑐1𝑎2
𝑏1𝑏2−𝑐1𝑐2

,
𝑏1𝑎2−𝑎1𝑐2
𝑏1𝑏2−𝑐1𝑐2

) 
last term where Jacobian matrix is not triangular. 

The first step in this process is substituting the equilibrium point into the Jacobian matrix, 

Equation 8 and simplifying. The 𝑥–variable in the Jacobian is replaced with the 𝑥–

coordinate 
𝑎1𝑏2−𝑐1𝑎2

𝑏1𝑏2−𝑐1𝑐2
, and the 𝑦–variable with the 𝑦–coordinate 

𝑏1𝑎2−𝑎1𝑐2

𝑏1𝑏2−𝑐1𝑐2
. The simplified 

Jacobian matrix is as shown: 

 

An attempt to find for the trace and determinant of the matrix without the aid of 

computer programs is perhaps a herculean task for a nontraditional math student. Using 

the substitution method for the variables for each of the elements for the Jacobian 

matrix, Equation 8 will help simplify the process of finding the characteristic equation and 

the eigenvalues. Substitute the variables a, b, c and d into matrix 𝑨 to ease the process 

as shown below: 

 

The trace and determinant of the matrix are simple to solve. The trace is: 𝑡𝑟𝑨 = 𝑎 + 𝑑 

and the determinant is: |𝑨| = 𝑎𝑑 − 𝑏𝑐. The characteristic equation is the formula 𝜆2 − 

𝑡𝑟𝑨𝜆 + 𝑑𝑒𝑡𝑨 = 0 is as follows: 𝜆2 − (𝑎 + 𝑑)𝜆 + (𝑎𝑑 − 𝑏𝑐) = 0. 
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The process to solve for the eigenvalue is as follows: 

 

This concludes the fourth case scenario. 

Model of Population System 

Equation 1 is used to investigate particular solutions of the four equilibrium 

points, the Jacobian matrix, and the characteristic equation by replacing the coefficients 

of 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, and 𝑐2 with the following numerical coefficients: 𝑎1 = 14, 𝑎2 = 16, 𝑏1 and 

𝑏2 = 2, 𝑐1, and 𝑐2 = 1, thereby creating the following system: 

        (9) 

Equation 9 represents two competing arbitrary population species of x and y over a 

given period of time t (Edwards, Penney, & Calvis, 2015). Locating the four equilibrium 

points for Equation 9 is substituting the numerical coefficients into the solutions of 

Equation 1. These equilibrium points of the four cases are as follows: (0,0), (7,0) where 

𝑎1

𝑏1
=  

𝟏𝟒

𝟐
= 7 and (0,8) where 

𝑎2

𝑏𝟐
=  

𝟏𝟔

𝟐
= 8. 

 The solution of the fourth equilibrium point was formed using the Equation 5 

replaced by the numerical coefficients as follows: 

          (10) 
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The fourth equilibrium point was found by replacing the numerical coefficients into the 

solutions of 𝑥 and 𝑦–coordinates of 𝑥 =  
𝑎1𝑏2−𝑐1𝑎2

𝑏1𝑏2−𝑐1𝑐2
 and 𝑦 =  

𝑏1𝑎2−𝑎1𝑐2

𝑏1𝑏2−𝑐1𝑐2
where 𝑏1𝑏2 − 𝑐1𝑐2 ≠ 0. 

This results in the following equilibrium point (4,6) with the 𝑥- and 𝑦-coordinates:  

 
Then the 𝑦-coordinate is as follows: 

 

Replacing the coefficients in the Equation 7 as follows: 

 

Jacobian matrix (Equation 8) with the numerical coefficients of Equation 9 is as follows: 

     (11) 

The general solutions are used to solve the eigenvalues and characteristic equation of 

each of the four case scenarios using Equation 11. 

Case One Equilibrium Point (0,0) 

The first case equilibrium point (0,0) is substituted for the variables x and y in the 

Jacobian matrix (Equation 11) as shown: 

 

The eigenvalues of triangular matrices are located on the diagonal of the matrix and are 

𝜆1 = 14 and 𝜆2 = 16. 

The characteristic equation is written by finding the trace, 𝑡𝑟𝑱(0,0) = 14 + 16 = 30, 

and the determinant of matrix is as follows: 𝑑𝑒𝑡𝑱(0,0) = 14(16) − 0 = 224 characteristic 
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equation is: 𝜆2 − 30𝜆 + 224 = 0. The corresponding eigenvectors for the equilibrium point 

(0, 0), where both populations will perish over a given period of time, was located using 

Maple (Version 10). These Maple data (in blue) list the eigenvectors in the order of 𝜆 = 

16 first and then 𝜆 = 14 second, as shown in Figure 1. 

 

Figure 1. Maple solution eigenvector (0,0). 

The equilibrium point (0,0) is a proper nodal source since there is a repeated positive 

real eigenvalues with two linearly independent eigenvectors and the origin is unstable 

due to both the trace and determinant is greater than zero. 

Case Two Equilibrium Point (𝟕,𝟎) 

Case Two is where the equilibrium point (7, 0) is substituted into the Jacobian 

matrix (Equation 11) as follows: 

 

This is an upper triangular matrix, and the eigenvalues that are located on the diagonal 

are 𝜆1 = −14 and 𝜆2 = 9. 

The characteristic equation is located by finding the 𝑡𝑟𝑱(7,0) = −14 + 9 = − 5 and 

the determinant, 𝑑𝑒𝑡𝑱(7,0) = (−14)(9) − 0 = − 126. Then the characteristic equation is 𝜆2 

+ 5𝜆 − 126 = 0. The eigenvectors for the second equilibrium point (7, 0), are shown 

using Maple (Version 10) is shown in Figure 2. 

 

Figure 2. Maple solution eigenvector (7,0). 

The equilibrium point (7, 0) is an unstable saddle point because the trace is less than 

zero, and the eigenvalues are real and unequal and have opposite signs. 
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Case Three Equilibrium Point (0,8) 

Case Three shows the third equilibrium point (0,8) is substituted into Jacobian 

matrix (Equation 11) as follows: 

 

This is a lower triangular matrix, and the eigenvalues are 𝜆1 = 6 and 𝜆2 = −16. The 

characteristic equation is located by finding the trace, 𝑡𝑟𝑱(0,8) = 6 + (−16) = −10 and the 

determinant, 𝑱(0,8) = (6)(−16) − 0 = −96. Then the characteristic equation is 𝜆2 + 10𝜆 − 

96 = 0. The Maple solutions for the eigenvectors of the equilibrium point (0, 8) are 

shown in Figure 3. 

 
Figure 3. Maple solution eigenvector (0,8). 

The equilibrium point (0,8) is an unstable saddle point because the trace is less 

than zero, and the eigenvalues are real and unequal and have opposite signs. 

Case Four Equilibrium Point (𝟒,𝟔) 

Case Four shows that the fourth equilibrium point (4,6) is substituted in the 

Jacobian matrix (Equation 11) as follows: 

 
The characteristic equation is located by the trace, 𝑱(4,6) = −8 + (−12) = −20, and the 

determinant, 𝑡𝑟𝑱(4,6) = (−8)(−12) − (−4)(−6) = 72. The resulting characteristic equation 

is 𝜆2 + 20𝜆 + 72 = 0. The eigenvalues are solved by using the following formula: 
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The trace and determinant are substituted into the formula and then simplified as shown: 

 

The first lambda is solved as follows: 

 

The second lambda is solved below: 

 

The Maple (Version 10) solutions for the eigenvectors of the equilibrium point 

(4,6) are shown in Figure 4: 

 

Figure 4. Maple solution eigenvector (4, 6). 

The equilibrium point (4,6) is an improper nodal sink with distinct negative real 

eigenvalues and is unstable at the origin because the trace is less than zero, and the 

determinant is greater than zero.
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CHAPTER IV  

PPLANE GRAPH  

Vocabulary 

Students being able to make detail graphs, such as phase-plane portraits that 

include vector fields, solution curves, the nullclines, and equilibrium points of population 

models have the advantage of visually comparing the regions surrounding each 

equilibrium point. The graphs of solution curves help students to determine the 

classification as spirals, node, saddle, or center points. The graphs of nullclines help 

determine if the points are stable or unstable and if these points are an attractor, a 

repeller, or semi-stable. A student being able to comprehend the meaning of the 

previous statements requires him or her to know the vocabulary used, plus vocabulary 

not mentioned. This section is started by defining some of the pertinent vocabulary used 

when graphing a phase-plane portrait. 

An investigation of a population model is done by location points (solutions) that 

are not changing (standing still) and investigate the regions surrounding each point. 

These points are called equilibrium points. Then we graph the equilibrium points and the 

trajectories (flow patterns) in an 𝑥𝑦-plane, it is called a phase portrait. The trajectories 

represent the direction of motion over time. 

The 𝑥-nullcline is where 
𝑑𝑥

𝑑𝑡
= 0, and is found by solving for 𝑓(𝑥, 𝑦) = 0. The points 

on the x-nullcline are represented by vertical arrows on the nullcline lines because this is 

a region where the population x does not change in size over time. The initial population 

on the x-nullcline we expect that there is no change in population x while population y 

may increase or decrease in size. The 𝑦-nullcline is where 
𝑑𝑦

𝑑𝑡
= 0, and is found by 

solving for 𝑔(𝑥, 𝑦) = 0. Using these arrows (flow of direction) on the nullcline lines, we 
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can determine the stability of each equilibrium point. The classification of equilibrium 

solutions (points) includes possible spirals, nodes, saddle, and center points. The 

stability that is the movement surrounding each point is examined in the next section. 

How to Use the PPLANE Program 

John C. Polking’s MATLAB based phase plane program of PPLANE (2005.10; 

www.math.rice.edu/~dfield) is used with a system of ordinary differential equations 

(ODEs) to plot vector fields, plot solution curves, plot nullclines, find equilibrium points, 

display eigenvalue and eigenvector information, and state the stability of the orbits 

around the equilibrium points. This program will classify the equilibrium solutions as 

spirals, node, saddle, and center points, and the stability of these points as stable or 

unstable (see Appendix). When students first open the PPLANE program, four display 

windows will show on the screen. 

The first display window is the PPLANE Copyright window (see Figure 5), which 

needs to be read before the Ok button is clicked at the bottom. Please do not click the 

Ok button before reading this information. 

 
Figure 5. PPLANE copyright window. 
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This window will state what type of differential equations this program will solve and list 

some of the other features the program will compute.  

The second window is the PPLANE Equation Window (see Figure 6). This is 

where students input their differential equations. The Equation 9 is used to demonstrate 

this program. Under the Gallery tab, there are seven other commonly used 

systems/equations that may be used to graph in this program. Some of the types of 

graphs include a linear system, a predator/prey, and the Van Der Pol’s equation. 

Another tab of interest is the Help tab that may be used to list the syntax and 

symbols for differential equations, which will open in the PLANE Message window. The 

Equation Window is set in the default form as follows: 

 
This is the form used to graph the population system. Type the equations for the 

population system of 𝑥 and 𝑦 (see Figure 6). Spaces between the terms are allowed in 

the program language. Then type the dimensions of the graph in the display window for 

the graph size of the minimum and maximum of 𝑥𝑦-plane. Enter the equation for the 𝑥-

population after the 𝑥’ box as 14𝑥 – 2𝑥^2 – 𝑥𝑦; then enter the equation for the 𝑦- 

population as 16𝑦 – 2𝑦^2 – 𝑥𝑦 after the 𝑦’ derivative box. The entry window will change 

red while the information is being entered. 

 
Figure 6. PPLANE equation window of population system. 
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Important note: If the equations are copied from Microsoft Word and pasted into the 

system window, an error message will show. This problem is fixed by retyping the minus 

signs. Next, set the Display Window of minimum values for the 𝑥/𝑦 variables -15 and the 

maximum values as 15. 

Finally, click the Graph Phase Plane button to engage the third window, PPLANE 

Phase Plane (see Figure 7), the graphed trajectory of the system with green arrows. 

 

Figure 7. PPLANE phase plane graph of the system. 

Finding the possible equilibrium points is easier if the screen is changed from the 

directional field to the nullcline plus arrow display of the system. 

 Change the screen, by clicking on the Solution tab, and then select Show 

Nullcline + Arrow option. The new screen, Figure 8, will show the nullclines of 
𝑑𝑥

𝑑𝑡
 and 

𝑑𝑦

𝑑𝑡
 

vectors that are dividing the screen into increasing (positive) and decreasing (negative) 
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slopes in the regions of the system. Where the nullclines intersect is an equilibrium point 

(red points). The 𝑥-nullcline (red lines) and the 𝑦- nullcline (yellow lines) detail the 

regions on the phase plane surrounding the equilibrium points to determine the stability 

of each point. Starting with the lower left-hand point (0,0), the nullcline arrows move 

away or repel (called a repeller) from the equilibrium point. This point is an unstable 

point and is classified as a node source. The top left-hand point (0,8) has the x-nullcline 

arrows moving toward and away from the equilibrium point and is considered semi-

stable. The lower right-hand point (7,0) has the y-nullcline towards x-nullcline arrows 

moving away and towards the equilibrium point and is also considered semi-stable. 

These semi-stable points are classified as saddle points. The top right-hand point (4,6) 

has the 𝑥-nullcline and 𝑦-nullcline arrows moving towards the equilibrium point making 

this a stable attractor. This point is classified as a node sink: 

 

Figure 8. All four equilibrium points on nullcline and arrow graph. 
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Labeling the equilibrium points on the graph is accomplished by clicking the Edit 

tab and selecting Enter Text Annotation. Next, enter the point as (0,0) that is going to be 

labeled. Then click Ok, and use the mouse to right-click on the graph where the point is 

to be labeled. Repeat this process for all four equilibrium points (see Figure 9). 

 

Figure 9. Labeled graph of four equilibrium points. 

Placing the point labels incorrectly is easily fixed by clicking on the Edit tab and 

selecting either Erase Last Text Annotation (removes one) or Erase All Text Annotations 

to clear all the labels. The nullcline arrows on the phase portrait illustrate the slopes of 

𝑑𝑥

𝑑𝑡
 and 

𝑑𝑦

𝑑𝑡
 the direction of growth or decay within a given bounded region. Using the 

bounded area in the center of the four equilibrium points, we will investigate the direction 

of the trajectories at four initial values from this area. 
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Placing the point labels incorrectly is easily fixed by clicking on the Edit tab and 

selecting either Erase Last Text Annotation (removes one) or Erase All Text Annotations 

to clear all the labels. The nullcline arrows on the phase portrait illustrate the slopes of 

𝑑𝑥

𝑑𝑡
 and 

𝑑𝑦

𝑑𝑡
 the direction of growth or decay within a given bounded region. Using the 

bounded area in the center of the four equilibrium points, we will investigate the direction 

of the trajectories at four initial values from this area. 

The directions are located by evaluating a point in the 
𝑑𝑥

𝑑𝑡
 and 

𝑑𝑦

𝑑𝑡
 system. 

Evaluating the points (1,1), (1,7), (3,5), and (6,1) in Equation 9 yields the following 

components of the direction vectors in listed order: 

 

Notice that the rate of change in 𝑥 and 𝑦 with respect to time is positive. This means that 

for points in this region the trajectory will have a positive slope. This population model 

means that any population of competing species, whose sizes are in this region, will be 

expected to move along the trajectory in the direction of growth. Finding a group of these 
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direction vectors creates the trajectories on the phase portrait. Transiting to change the 

graph back to the direction field with nullclines (see Figure 10) is accomplished by 

clicking on the Solution tab. Then select the Show Nullclines, which will produce the 

same graph with the green arrows showing the direction vectors. 

 

Figure 10. Direction field with nullcline and labeled points. 

These direction vectors are tangent to the trajectories on a phase portrait and 

give the flow pattern in a given region of the solution curve. The bounded area between 

the equilibrium points shows the trajectories starting at the left-hand side moving up then 

over to the right. This will create the two nodal and the two saddle points. Creating a 

phase portrait including the solution curves, the equilibrium points, and the trajectories is 

the next step. The solution curves illustrates the behavior over time. We can graph the 

trajectories by clicking anywhere on the graph. These clicks represent a point on the 

trajectory.  
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The more clicks made, the easier it is to determine the classification of the 

equilibrium points–such as spirals, node, saddle, or center points. The lines of the phase 

portrait may obscure the four equilibrium points. This may be rectified by re-finding the 

equilibrium point over the previous found points (the red dots). The phase portrait (see 

Figure 11) shows all four of the equilibrium points and the trajectories of the entire graph. 

The zoom feature in PPLANE gives a clearer view of the stability surrounding each 

equilibrium point as an individual graph. 

 

Figure 11. Phase portrait of the system. 

Figure 11 details the solution curves as predicted. These curves start at the lower 

left in the region between the equilibrium points and move up and to the right. The two 

nodal and the two saddle points are easily seen. The solution curves may predict the 

population sizes of each species. 
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The equilibrium point (0,0) is the trivial case in which the population and the rate 

of growth are null. The local region about the equilibrium point (7,0) the system is 

unstable as seen in Figure 11. The local region about the equilibrium point (0,8) the 

system is unstable as seen in Figure 11. By choosing any positive initial population in 

the region bounded by the four equilibrium point, say 𝑥0 and 𝑦0, then the point (𝑥(𝑡), 

𝑦(𝑡)) will approach the stable equilibrium point (4,6) as 𝑡 → +∞ as seen in Figure 11. 

This demonstrates the peaceful coexistence to both of populations. Both of the 

populations are small and the birthrates outnumber the death rates. The resources 

available are plentiful to sustain both populations. 

Model Case One Graph 

The zoom feature may be easier to use if the graph is completely cleared; then 

remake the phase portrait after the zoom graph is completed. However, it is not required. 

Clear the phase portrait by re-running the phase plane by clicking on the PPLANE 

Equation Window. Clicking the Graph Phase Plane button will clear the phase portrait, 

but not the point labels. Clear the point labels by selecting the Erase All Test 

Annotations under the Edit tab in the PPLANE Phase Plan window. Next, create a zoom 

graph of the first equilibrium point (0,0). 

The zoom graph is created by selecting the Edit tab and then by clicking on the 

Zoom-in: Select rectangle button. While the shift key is depressed, use the mouse to 

drag a rectangle box around the area to be defined. Release the mouse button, and the 

zoom graph will appear, as shown in Figure 12. The small blue circles (open dots on the 

graph) are clicks on the graph to make the phase portrait. The graph of Figure 12 shows 

that all the trajectory arrows (green arrows) are moving away from the equilibrium point 

(0, 0), which is considered a nodal source since no spiraling has occurred. 
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Figure 12. PPLANE graph point (0,0). 

There are different types of nodal points. The nodal point is unstable (nodal 

source) when both eigenvalues are positive and is asymptotically stable (nodal sink) if 

both are negative. A proper nodal source has trajectories moving away from the point 

and has two repeated positive eigenvalues, which have two independent linear 

eigenvectors. An improper nodal source has either two distinct or two repeating positive 

real eigenvalues that will not have the two independent linear eigenvectors.  

The equilibrium point (0,0) has two eigenvalues that are real and distinct with like 

signs. This point is unstable and is an improper nodal source. The solutions for the 

eigenvalues and eigenvectors, along with the type of equilibrium point, may be seen in 

the PPLANE Messages window (see Figure 13). 
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Figure 13. PPLANE messages window point (0,0). 

Model Case Two Graph  

The directions for making the zoom graph of Figure 8 should be followed to make 

the remaining equilibrium point zoom graphs. The equilibrium point (7,0) phase portrait 

(see Figure 14) shows the trajectory arrows (green arrows) moving both toward and 

away from the equilibrium point (7,0). 

 

Figure 14. PPLANE graph point (7, 0). 
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Notice these trajectories will never cross the equilibrium point. The trajectory 

arrows starting from above the equilibrium point (7,0) on the left side of the point, coming 

from negative infinity on x-axes moving to the left toward the equilibrium point then 

moving to positive infinity (on y-axis). The right side of the point, coming from positive 

infinity on x-axis moving left toward the equilibrium point then moving to positive infinity 

(on y-axis). The trajectory arrows from below the equilibrium point (7,0) on the left side 

of the point, coming from negative infinity on x-axes moving toward the equilibrium point 

then moving to negative infinity (on y-axis). The right side of the point, coming from 

positive infinity on x-axis moving left toward the equilibrium point then moving to 

negative infinity (on y-axis). The point (7,0) is an unstable saddle point because the 

eigenvalues are real and unequal and are opposite signs as seen in Figure 15. 

 

Figure 15. PPLANE Messages window point (7, 0). 

Model Case Three Graph  

The phase plane portrait of the equilibrium point (0,8), Figure 16, shows the 

trajectories that again will never cross the point. 
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Figure 16. PPLANE graph point (0,8). 

The trajectory arrows starting from above the equilibrium point (0,8) coming from 

negative infinity (on positive y-axes) and move toward the left to negative infinity and 

toward the right to positive infinity on the x-axis. The trajectory arrows from below the 

equilibrium point (0,8) start from negative infinity (on the y-axis) moving towards the 

equilibrium point then move toward the left towards negative infinity and toward the right 

to positive infinity on the x-axis. The equilibrium point (0,8) is an unstable saddle point 

with eigenvalues that are real and unequal and have opposite signs as seen in Figure 

17. 

 

Figure 17. PPLANE Messages window point (0,8). 



 

58 

Model Case Four Graph  

The zoom graph of the equilibrium point (4,6), Figure 18 has the trajectories 

moving towards the point. 

 

Figure 18. PPLANE graph point (4, 6). 

Check the PPLANE Messages window (Figure 19) output data. Both eigenvalues are 

real, and both have negative signs with two independent linear eigenvectors. This makes 

the equilibrium point (4,6) a stable nodal sink. Every trajectory (green arrows) is 

approaching the equilibrium point making this point asymptotic stable. 

 

Figure 19. PPLANE Messages window point (4,6). 
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The equilibrium point (4,6) is a proper nodal sink that has the trajectories moving 

towards the point and has two independent linear eigenvectors with two negative real 

eigenvalues. This concludes the investigation of the population model of two species. 
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CHAPTER V  

CONCLUSION 

An extended period of time is perhaps a nontraditional college math student’s 

worst enemy. The mathematical concepts learned in one course become the 

prerequisites required in future courses. Postsecondary institutions offer students help 

understanding their assignments in the form of math labs. Nontraditional students have 

time restraints due to work and family schedules and may find it difficult to seek help 

during lab hours. Nontraditional students using online web sources to search 

mathematical definitions may find it troublesome, since the online search for ODE 

(ordinary differential equation) retrieved about 28,500,000 results in 0.92 seconds. The 

online computer searches, however, cannot distinguish between an ordinary differential 

equation and a lyric poem called an ode, meaning that finding online math help is only 

as good as the user. 

Having a mathematical guide that contains examples of the prerequisite 

mathematical concepts used in future courses, including a section on how to use the 

math tools (computer programs) and at least one specific example from the new course 

is information that students have hands-on access to even late at night. More research is 

needed to investigate how much of the mathematical concepts students lose due to 

prolonged period in completing their degree, if a mathematical guide, such as this, will 

help improve students’ chances of obtaining degrees.
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APPENDIX 

Vocabulary 
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Vocabulary 

Asymptotically stable - the all the equilibrium solutions that starts near the equilibrium 

point and moves toward the point as time increase.  

Center point - an equilibrium point where the trace of a matrix is greater than zero and 

the determinant equals zero. The trajectories will orbit around the point.  

Eigenvalues - the characteristic roots are the critical points (values) of polynomial 

characteristic equations.  

Eigenvectors - a trajectory from the initial condition (usually with respect to the 

independent variable of time which equals zero) of equation in the form of the 

eigenvalues that will multiply to the eigenvector to lengthen the vector in the same 

direction of the initial condition of the vector.  

Equilibrium point - a stationary point in a system which the x or y values have no 

change.  

Isoclines – the equation of 𝑦 ′ = 𝑓(𝑥, 𝑦) is the one-parameter family of curves within a 

plane, given by 𝑓(𝑥, 𝑦) = 𝑚, where m is the slope and it is a constant.  

Node - indicates no spiraling has occurred. 

Nullclines – provide a skeleton picture of the changes at different points in a plane. The 

x-nullcline is the region of point where 𝑓(𝑥, 𝑦) = 0. The y-nullcline is the region of points 

where 𝑔(𝑥, 𝑦) = 0.  

Phase-plane portrait - the possible solutions within a given dimensions of a Cartesian 

plane (an x/y plane) and the lines tangent to the phase trajectory over a given period of 

time for differential equations.  

Saddle point- an equilibrium point has the determinant of a matrix is less than zero.  

Sink or source - the discriminate of a matrix is less than zero, then the equilibrium point 

is a stable spiral or an unstable spiral, respectively.  

Solution curves - the trajectory of a system in a Cartesian plan (an x/y plane).  
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Stable points - a sink where all the trajectories will move towards the equilibrium point.  

Unstable points - a source where all the trajectories will move away from the equilibrium 

point.  

Vector field graphs - groupings of arrows that represent short line segments (direction 

and magnitude) which are the approximate solutions of a system of differential equation. 


