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ABSTRACT

LANEY WILLIAMS

MODELING SYMBIOSIS BY A LOTKA-VOLTERRA-TYPE SYSTEM
OF DIFFERENTIAL EQUATIONS

MAY 2013
Biological symbiosis is necess;ary for life on earth. However, population based models of
symbiosis are rare in literature. One problem is defining symbiosis, and whether is
includes mutualism, commensalism and parasitism, or only mutualism. Additionally,
there are obligate and facultative types. Another problem is that basic models of
symbiosis have relied on a variation of the Lotka-Volterra competition equation, which
can lead to unrealistic results, such as unlimited population growth. Several stable
models have limited the growth by using equations for carrying capacity which are
functions of the symbiont species. In this work a new model is proposed which uses a
modified/quIing Type Il functional response for the carrying capacities. The broadest
definition of symbiosis for thoroughness is used. This new model has stable equilibria

for many different types of symbiosis.
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CHAPTER |
INTRODUCTION

Symbiosis is an important and critical feature of biological life. Howevebr, in
literature, symbiosis has been either ignored or not discussed in depth. One of the
reasons is that the definition of symbiosis has not been agreed upon. Symbiosis is
complex and has different types. Another reason is that mathematical models of
symbiosis are often unrealistic or difficult to analyze. These issues often arise because
symbiosis is seen as the opposite of competition; however, it is much more complicated
than this.

According to Daida et al. [1] symbiosis is “relationships that are constant and
intimate between dissimilar species”. This is a very broad definition. Symbiosis can be
divided into several different types. These are mutualism, sommensalism, and
parasitism. In addition to these relationships, species in mutualism and commensalism
can be called either obligate or facultative. This definition is generally agreed upon;
however, some disagree whether commensalism and parasitism should be included in
symbiosis. Darwin belie‘vkedk that symbiosis was a syno;nym for mutualism [1]. This paper
will use the broadest definition in deﬁning symbiosis, including all the different types.
The relat‘ionships‘ar“e ﬂa’gre’e’d‘ to have tiie foilqwing deﬁnitions. In mutualism, both

species benefit from the relationship. In commensalism, one species benefits while the



other is neither benefited nor harmed. In parasitism, one species benefits while the
other is harmed. In the obligate form of symbiosis, a species must have the other
species to survive, while in facultative symbiosis a species can survive without the other.
While the terms mutualism, commensalism, and parasitism apply to the relationship
between the species, the terms obligate and facultative only apply to one species in the
relationship. Therefore, in a relationship between two species, both can be obligate,
both can be facultative, or one species can obligate and the other facultative.
There are many species which exhibit the different kinds of symbiosis. The following
list gives some examples:
e An example of obligate-obligate mutualism is lichens. Fungus and alga must
come together to form a lichen, each gaining essential nutrients from the other.
¢ An example of facultative-facultative mutualism is clownfish and sea anemone.
Clownfish gain protection from sea anemone and sea anemone gains nutrients

from clownfish activity, but either could live without the other.

¢ Anexample of obligate-facultative mutualism is flowering plants and butterflies.

Most flowering plants require external modes of pollination. Butterflies can

pollinate and consume the nectar, but have other food sources.

¢ An example of obligate commensalism is hermit crabs and gastropods. Hermit

crabs require gastropod shells for homes. Gastropods, which discard their shells,

are unaffected.



e An example of facultative commensalism is egrets and cattle. Grazing cattle
disturb insects which egrets feed on. The cattle are unaffected, and the egrets
gain easy access to food but can obtain food in other ways.

° An example of parasitism is fleas and mammals. Fleas feed exclusively on the
blood of mammals or birds and lay their eggs on the skin. The fleas require the
animals for nutrition, but the animals are harmed by blood loss and irritation
from the bites.

These relationships are listed in Table 1. A species that is harmed is denoted with a “-”,
a species that benefits in a facultative way from the relationship is denoted with a “+”,

and a species that benefits in an obligate way is denoted by “++”.

Table 1 Symbiotic Relationships

Relationship Species Example
A B
. . . Lichen Fungus (A)
Mutualism (obligate-obligate) ++ ++ Lichen Alga (B]
Mutualism (facultative-facultative) + + Clownfish (A)
Anemone (B)
. . . Flowering Plant (A)
- + + x
Mutualism (obligate-facultative) + Butterfly (B)
. . Hermit crabs (A)
| o+ ,
Commensalism (ob igate). + 0 Gastropods (B)
. : Egrets (A)
Commensalism (facultative) . |+ | 0 -/ Cattle (B)
o ‘ : Fleas (A)
g 4+ - 3
Rarasitism, Mammals (B)

Mathema'g‘icalk modeli‘ng of symbiosis is also ‘cl/ifﬁcult. This is because some k
models can give unrealistic results, such as unbounded growth. These models are often
based on the Lotka-Volterra competition equation. More realistic models are often
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complex, and involve many coefficients. These models will be discussed in the next
chapter.

In mathematical models of population growth, including symbiosis, there are
some common coefficients which have real-world meaning. One of these is the growth
rate. This is commonly denoted with the letter ’7. This is simply the rate at which the
population increases in a given time period, usually expressed as a percent. The
carrying capacity, denoted with the letter ‘K", is the maximum number of individuals
which the environment can sustain. Finally there is the symbiotic coefficient; usually the
letter ‘a’ but it could be any other letter. This is the quantification of how much one
species is affected by the other species. If it is greater that one, then the species is-

affected more by the other species than by members of its own species.

Technological Symbiosis

In industrial applications, symbiosis can be used to describe two technological
innovations that have a relationship [2, 3]. This would be a situation where the
technologies function together as complementary goods. This is contrasted with
competition where one technology is a substitute for the other. Modis [3] gives a

similar to the table in the above to describe the relationships between two

technologies. Symbiosis can be used to model the growth of these technologies in the

economy.



Both Pistorius and Utterback [2] and Modis [3] use Lotka-Volterra sets of
differential equations to model the economic situation. In the models the coefficients
have different meanings than in biological models. The growth rate is the measure of
attractiveness of the technology. The carrying capacity would be the niche capacity or
the number of technologies that the economy can sustain. The symbiotic coefficient
represents how well one technology can substitute for another. Using these models,

companies can help make economic decisions.



CHAPTER Il
REVIEW OF OTHER MODELS
There are two main types of symbiotic functions. Each is based on the logistic growth
equation. The first type describes the interaction of the two species with a function,
and the second type describes the species carrying capacity as a function. fhere have

been several different models within each type. A few will be discussed in this section.

Interaction functions

The Lotka-Volterra competition equation was formulated separately by Lotka and
Volterra. It is based on the logistic differential equation for population growth, with an

extra term added. The Lotka-Volterra Competition (LVC) equations take the form:

dx n
a‘t‘ = '[Ex(lﬁ — X = a53y)

dy
qat 7(‘2‘}’(1{2 -y —0az1X)

These are identical to the logistic equation, except that an extra term is subtracted to
represént the effect that y has on the growth of x (with coefficient a,,) and the effect x
has on the growth of y (with coefficient az). In other words, the “a”-coefficients

represent the success of the competitor in substituting for or replacing the other



species. The “r’-coefficients represent the growth rate, the “K”-coefficients represent
the carrying capacity.
The LVC equations have very well-known behavior, dependent on the values of

the coefficients. The nullclines for the LVC are:
K
x=01 y=—1/a12x+ 1/a12

y=0, y=—a;x+K;

The equilibria for LVC occur at (0,0), (K1,0), (0,K2), and the intersection point

(K1"‘112K2 Kz—az1K;

Ky—aq12K;
)
1-a32021 1-Q12a21 1-

) if it exists. The solutions for x will converge to 0,
ai2021

. . Kp—az1K . . .
The solutions for y will converge to O, —1-&1—1, or K,. At the intersection point
1

—Qa;2Qaz

_ (Ki—a12Kz Ky—a21Ky
(x*, y*) - (

, ) , in the first quadrant, the following inequalities hold:
1-a;za21 1-Q42021

0 < x*<K,and0 < y* <K, From thisinformation, we can see that the solutions for
x will be bounded from below by 0 and bounded from above by K3, and solutions for y
will be bounded from below by 0 and bounded from above by K>, as long as initial values

are 0 < x(0) € Ky and 0 £ y(0) £ K.

In order to show the behavior at the equilibria, the Jacobian matrix for LVC is

analyzed:
r 21y X T1Q12 71812
| ——X — —
Jo = K, K, K,
L 12021 r 21, T2021
— Y — 2 —
K, K> K;

At point (0,0):



£ 0]
0 n

Here, the eigenvalues will always be positive, because the growth rates will always be
positive. Therefore, (0,0) is always a source.
At (K1,0):

[—7& —TiQ12

K,
0 r (1 — a1 I—{;)

As this is an upper triangular matrix, the eigenvalues are the diagonal values. The first

eigenvalue will always be negative. Either the point will either be a saddle, |f-a—2 > K,
21

as in Figure 1 and Figure 4, or the point will be a sink iff—z— < K;, asin Figure 2 and
21

Figure 3.
At (0,K»):
(1 Kz) 0
T — Q=
[ 1 12 K, ]
—T20a21 -T2
As this is a lower triangular matrix, the eigenvalues are the diagonal values. The second

eigenvalue will always be negative. The point will be a saddle if(f—1 > K, as in Figure 2
12

and Figure 4. It will be a sink if :—1 < K, as in Figure 1 and Figure 3.
; : 12 :

Ki—a12K; Kz—a21Ky

At point ( ), calculating eigenvalues of the Jacobian becomes

1-a1201 ' 1-012821
complicated. However, there is a well-known relationship between the sign of the

trace, the sign of the determinant, and the signs of the eigenvalues.



e If det{J) is negative, eigenvalues will have opposite signs. The pqint is a saddle
point.

e If det(J) is positive and trace(J) is positive, eigenvalues will both be positive. The
point is a source.

e If det(/) is positive and trace(J) is negative, eigenvalues will both be negative.

The point is a sink.

Ki—aq12K; Ky—az41K:
1—Q1282 Kz—021 1)are:

The trace and determinant at ( s
1-aq2021 1—-Q412421

£ (K1K2 — . K% — a KR + K1K2a1zaz1)
KiK>(1— a12021)

det(Jc) =

ra;.K,” + 1205, K% — 11K Ky — 1K1 K>
K. K,(1 - a12021)

trace(J,) =

When det(Jc) <0, K1Ko-a21K12-012K>>+K1K2a12a21 > 0, this factors to (a12K2-K1)(@21K1-K2) >
0, or when Kz > Ki/ay; and Ky > K2/a33, the point will be a saddle point, as in Figure 3.
When trace(Jc) <0, rlalszz +rzaz1K12-r1K1K2-rzK1K2 > 0, this factors to riK>(K1-K>a12)+
roK1(K2-K1a21) > 0, or when Ki/a1, > K2 and Ka/a21 > K. This is exactly when det{J¢) >0,

meaning the point is a sink, as in Figure 4.
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The LVC equations assume that x and y have a negative interaction with each
other. However, according to Pistorius and Utterback [2] and Modis [3], this equation
can be modified to model symbiosis. The model of the Lotka-Volterra symbiosis (LVS)

4equations takes the form:

dx n
'&? = Ex(KH —x + as2y)
dy

it K, y(K; —y + az1%)

All that has been done is to change the signs of the coefficients a;2 and a,; in LVC to
account for the positive effect each species has on the other. However this model can
lead to a population with uncontrolled growth toward infinity, which is not realistic. The

nullclines for LVS are:

K
x=0' y=1/a12x_ 1/(1.12

y=0, y = az;x +K;

The equilibria for LVS occur at (0,0), (K1,0), (0,K>), and the intersection point

(K1+a12K2 Kz +a21K1

, ) if it exists. Unlike the LVC, in the LVS the intersection coordinates
1-a12021 1—01202;

(x*,y*) = (l;lzalil(z ; 11{2";“2;1(1), in the first quadrant, the following inequalities hold:
—H812421 —li12421

x* = Kl‘and y* = K,. The LVS solutions for x and y are bounded from below by 0
(when initial values are kgre\ater than 0), but are nbt bounded from above, and could
increase infinitely.

To shqw the behavior at the equilibria, the Jacobian matrix for LVC is analyzed:

12
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5 021 - b 21, 2021
K, © 2 KT K
At point (0,0)':
[r1 0
0 r

Here, the eigenvalues will always be positive, because the growth rates will always be
positive. Therefore (0,0) is always a source.
At (K1,0):

[—T1 raio

Ky
0 r (1 + azq F)
2

As this is an upper triangular matrix, the eigenvalues are the diagonal values. The first
eigenvalue will always be negative, and the second eigenvalue will always be positive.
Therefore, (K3,0) is always a saddle point, as shown in Figure 5 and Figure 6.
At (0,K;):
, 6
[1"1 (1+a12?1) 0 ]
T2Q21 -T2

As thisis a vIower’:triangq|ar matrix, the eigenvalues are the diegonal values. The first
eigenvalue will always be positive, and the second eigenvalue will always be negative.

Therefore (0,K;) is always a saddle p;oi‘r;\t, as shown in Figure 5 and Figure 6.

"At p’oi‘nt (

Kit+ay12Kz Kz+a21K;
’
1-a12021 " 1-Q12021

), calculating eigenvalues of the Jacobian becomes

compl'i_eated, I-)IoWever, | WiI‘I ruvse th’e sa’r'n:e relatiohshi’p between the sign of the trace,

13



the sign of the determinant, and the signs of the eigenvalues, as stated above. The

. Ky+a,2Ks KataziK
trace and determinant at( 1z 22l 1) are:
1-a12Q21 1-Q12Q21

—-nr; (K1K2 +ax K + a2 K% + K1K2a12a21)
K, K>(ai20;; — 1)

det(Js) =

T1a12K22 + rz.a21K12 + TIKIKZ + T2K1K2

trace(Js) =
Us) KiK>(a1202; — 1)

The numerator of det(Js) will be negative, and the numerator of trace(Js) will be positive.
The denominators of det(Js) and trace(/s) are the same and equal to Kle(dlzan-l). For
the nullclines to intersect in the first quadrant, the slope of the y-nullcline must be Ie;s
than the slope of the x-nulicline, az; < 1/a1,, OF 0120211 < 0. Therefore, the
denominators of det(Js) and trace(Js) are negative. This makes det(Js) positive and
trace(/s) negative. Therefore, this pointis a sink when it exists in the first quadrant, as in
Figure 6. If this point does not exist in the first quadrant, then (0,0) will still be a source,

and there will be unbounded growth, as in Figure 5.
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Wright [4] created a model of mutualism that uses handling time. He used the

Holling Type lI functional response to model the benefits of interaction with the other

species.
dx { + ( b, Ay )
ar - e Y\
dy b,Ax
2 ==+ ()

In these equations, “r” is the growth rate, “b” is the mutualism coefficient, and “A” is
Holling's instantaneous discovery rate, and “h” is the handling time. The nullclines for

Wright’s model are:

1‘1(C1x - 1)
x=0, y =
A(rih + by — ryc1hx)
2+ (Ah'rz + Abz)x
y= O, =

1% (1 + Ahx)

The equilibrium points (0, cl), (i, O) are saddle points. The other equilibrium point
. .

C1

will be the intersection of the nullclines. Finding the formula for the nulicline
intersection point is.a quadratic formula which will always have real numbers. However
the symbolic formula is quite long. It is not important, however, it is only necessary to
see under what conditiohs they will intersect, because that will determine if the this

system is stable. This system has horizontal and vertical asymptotes. For the x-nulicline,

o Ahri+biA R
it is at x = ——2=. ‘For the y-nullcline, itisaty =
. p AhT1C1 LY Wi : k

Ahrz'l'bzA
yrw— These asymptotes are

positive, and they will always intersect in the first quadrant. Therefore, the nullclines
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i 1s . 1 Ahri{+bA 1 Ahry+byA
will intersect at point (— <x<—/—E —<y< —2—2—) i ill alw
% i, Ve y ahrae, )" This system will always

have a stable equilibrium. The intersection will be a sink point and the other

equilibrium points will be saddle points, as in Figure 7.

X =x(1-x+al) al=6.3"V/(1+y)  a2=6.3%W(1+X)
Y =y(1-y+a2)
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Figure 7. Wright Model
The coefficient ¢ could also be seen as 1/K, where K is the carrying capacity in the
absence of the other species. By representing the functional responses as functions,

Wright’s model is similar to the Pistorius and Utterback model.

dx X

Z=nx(1 —E+f(y))
dy _ y )
E—rzy(l K2+g(x)
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Pistorius and Utterback used a Holling Type | functional response, and Wright used a
Hblling Type Il functional response.

Carrying capacity functions

Dean [5] established a mutualism model based on the logistic growth equation.
instead of a constant, carrying capacity is a function of y for species x, and a function of

x for species y. Dean derives exponential functions:

: —(ay+C,y)
ki(y) = K4 (1 —e K )

—(bx+Cy)
kz(x) = Kz (1 —e K2 )

Dean establishes that the carrying capacity can be modeled as a functional response.
This carrying capacity function is put in the following logistic equations that describe the

growth of the species:

dx _rix(ki(y) — %)

dt - k)
d_y_ _ 2y (k2 (%) — ¥)
dt k(%)

The nullclines will be the carrying capacity functions. The nullclines for Dean’s model

are:

' 1
X = 0, y = _'a‘(Kl ln(K1 = x) - Klln(Kﬂ + Cl)

—(bx+C2)
y =0, y=Kz(1—e Ka )
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—Cz
The equilibrium points are (0,0), (0, —%1 , (—%, 0) , (0, K, (’1 —ekz )) , (K1 (1 -

=
ek ) ) 0) and the nullcline intersection points, if they exist. The points

Cq Cz | :C_'z_ :C'—l 3 .
( 3 ——;) , (—?,O) 1 0,K, (1 —ek2 ) , (K1 (1 —ek ), O) will be saddle points, when

they exist in the first quadrant. When the integral constant is equal to zero (obligate
mutualism), and the nullclines intersect in the first quadrant, (0,0) will be a saddle point
and the intersection point will be a sink, as in Figure 8. When the integral constant is
greater than zero (facultative mutualism), and the nuliclines intersect in the first
quadrant, (0,0) will be a source and the intersection point will be a sink, as in Figure 9.
When the integral constants are less than zero (obligate mutualism), there is a threshold
below the first intersection where there is unstable behavior, as in Figure 10. When the
nullclines do not intersect, there will be no mutualism and the system will approach

(0,0), as in Figure 11.
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K= (0APC(H(x)/K1))

K1=(1-exp(-2%y-0))

K2=(1-exp(-2%0))
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Done.
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Figure 8. Dean Model Case 1

X = (OAP(IHERK1)
¥ = (0 Y(HYIK)

K1=(1-exp(-2y-0 3))

K2=(1-exp(-2%-0 3))

T Y A VA
R A A A T T T T AT P 4 L s
[ P A A T O T T (T Z 2 &
/R RN A R A VR S T O T T T A A A
Lt } ‘L | | A
l l i \),. N A N . v v « « <
i, L L y \ \ \ 5 N \ v ‘. - < €
i l FOA N N “ \ -
{ T TR T T - - e - <
I 4% v s ~ = o o -
B o L. . .
I i VAR . P
Lo - Ti - - e
. & . 5 \ - . o
' PR ey e e R R 25
i W A e ey R am e .
- r B m R AL e @ e @ -
T Y e e e vl B B B ;
. e A e e B e b e B ~ _
0 01 02 03 04 05 06 07 08 03 1 11 12 13 14 15

Figure 9. Dean Model Case 2

20



K= (0AP%(H(xVKD) K1=(1-exp(-(4%y-1)))  K2=(1-exp(-(4"%-1)))
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Figure 11. Dean Model Case 4
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Yukalov et al. [6] also created a model of mutualism, which uses carrying
capacities as a function in the logistic growth functions. The functions for the carrying
capacities are:

ki(x,y) = Ay + Byxy

ka(x,y) = Az + Boxy
Here, A is the carrying capacity of the given surrounding livelihood, and B is the intensity
of producing, or destroying, the carrying capacity in the symbiotic process. These
carrying capacities are substituted in the logistic growth equations:

dx C,x?
at - T ky)

dy Coy?

—_— =T — —
dt ¥ Tl y)
Here ris the growth rate, and C is the intensity or intraspecies competition. The

nullclines for Yukalov’'s model are:

_ O _ Clx - 7"1A1
#=H ¥ rB;x
_ nA

y_o' y—Cz—Tszx

A A o .
The equilibrium points are (rlc :, 0), (O, T'zC 2), and at most two nullcline intersection
1 2

points. The first two listed equilibrium points will be saddle points. The nullclines have

vertical and horizontal asymptotes. For the x-nullcline, itisaty = %. For the y-
11

nullcline, itis at x = -r—%:'. These asymptotes are positive, and they will always intersect
202
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C

in the first quadrant. Therefore, the nullclines will intersect at point ( L<x<
2

TzB

A A i . .
_nc z —rC; <y< rZTZ) Since the solution involves the quadratic formula, the
1 121 2

intersection will not exist when there are imaginary numbers. This intersection point
will not exist when 24, B 1 1,¢, ¢ + 24,B111%15%A, B, + 2A,Byri15¢,C5 >

A% B %1212 + ¢,2c,2 + A, °B,2r, 21,2, As Yukalov et al. observed, the system can
have exactly one stable equilibrium point in the first quadrant, the lesser of the two
intersection points, which will be a sink point. The other intersection point will be a
saddle point. This can be seen in Figure 12. Even when the stable equilibrium exists, a
threshold exists beyond which there can be unbounded growth. Furthermore, as they
also observed, the system will have unbounded exponential growth when the nuliclines

do not intersect in the first quadrant, as in Figure 13.
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Figure 13. Yukalov Model Case 2

24



If Cis taken to be equivalent to r, then these equations are the same as Dean’s, but with
different functions for the carrying capacities. Dean uses an exponential functional

response, and Yukalov et al. use a linear functional response.

Predator prey similarities

According to Korobeinikov [7], the Leslie-Gower predator prey model defines the
carrying capacity of the predator’s environment to be a function that is proportional to

the number of prey.

%%C—rlx(l—%—ay)
d
a%— 2)’(1“%);)
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The equilibrium points are (0,0), (K, 0), and the nulicline intersection at

( K mK
maK+1’ maK+1

a spiral sink, as seen in Figure 14.

X = (0.1)(1%y)

Y = 07y (1-(v/(9)

). The points (0,0), (K, 0) are saddle points, and the intersection point is
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Figure 14. Leslie-Gower Predator-Prey Model

According to Nindjin et al. [8], the term y/mx of this equation is called the Leslie-Gower

term, which measures the loss in the predator population due to the per capita rarity of

its favorite food. Nindjin et al. model the case in which the predator can switch to

another food source by adding a positive constant to the denominator.

Similarities between the symbiosis equations and these predator-prey equations

can be seen when the equations are written another way:
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dx %
= (1-%) — a0t

@

The first equation in the Leslie-Gower system is identical to the Lotka-Volterra
competition equations and the symbiosis equations, if the sign on the last termis
changed to positive. The Pistorius-Utterback, and Wright models are similar to this type
of equation for species x, but for both species in mutualism. If ¢(x) = x and instead f(y)
is a functional response, because in mutualism the functional response is a function of
the other species, then the Pistorius-Utterback and Wright models are obtained. As
previously mentioned, Pistorius-Utterback use a Holling type | functional response, and
Wright uses a Holling type I functional response. The second equation is identical to
the logistic type symbiosis equations with a function for carrying capacity. Dean and

Yukalov et al. use this type for their mutualism equations.
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CHAPTER IlI
NEW SYMBIOSIS MODEL
In this paper, a new model of symbiosis is proposed. This new model uses the
basic logistic growth differential equation that the Lotka-Volterra equation is based on.
However, the carrying capacities are functions of the other species. For two symbionts

M and N, the system will be:

am M (1 M )
T (V)
dN N(l N )
dt 2 ey (M)

The carrying capacity functions for the obligate-obligate model are:

ks (N) = Kia N
1 K, +aN
KzazM
k2 (M) - KZ + azM

The carrying capacity functions for the facultative-facultative model are:

_ Ki(aiN + Kyp)

ka(N) = K, + a,N
K;(a;M + Kj)

kZ(M) - KZ + azM

The carrying capacity functions for the obligate-facultative model are:
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Kia N

ki(N) = ———

a(H) K+ a,N
ke, (M) = K;(a;M + K)
2 Kz +a2M

The carrying capacity functions for the commensal-obligate model are:

k,(N) = K
_ KoM
S

The carrying capacity functions for the commensal-facultative model are:
ki (N) = K,

Ky (a;M + K3)
Kz + a2M

k(M) =

The carrying capacity functions for the parasitic model are:

2

Ky (N) = —2

1()—%N+&
KzazM

ka(M) = K, + a,M

Derivation

To derive the Holling Type !l functional response for species z, Holling begins

with the following equation [9]:
f(z) = ATz
A is taken to be the attack rate, or the encounter rate, and T; is the search time which is

a function:
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Ts =T —hf(2)
T is the total time, h is the handling time, so h*f(z) is the time spent handling all prey
items. If the total time is taken to be equal to one unit of time, such as one day, the
equation is:

T, =1-hf(2)
Substituting gives the Holling Type Il functional response:

_ Az
fz) = 1+ Ahz

This is the same functional response used by Wright [4] in their modified Lotka-Volterra
type equations.

For the new model, the functional response is actually a carrying capacity. If the
species cannot survive without the other species (i.e. obligate mutualists) then the
carrying capacity function is:

k(z) = ak'z
Here, a is the symbiotic coefficient (a constant), and k’ is the rate at which the carrying

capacity grows with respect to species z. This is given by Dean [5] to be:

K—k(z
o K—k@
K
where K is the maximum carrying capacity. Substituting gives the new functional

response for carrying capacity:

Kaz

k(z) = K +az
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However, if the species can survive without the other species (i.e. facultative mutualists)
then the carrying capacity function is:

k(z) =ak'z+ K,
where Ky is the carrying capacity in the absence of the other species, which is assumed
to be less than the maximum carrying capacity. Substituting in the same equation for k’

gives the new functional response for carrying capacity:

K(az + K,)

k(z) = K+az

In a commensal relationship, where one species benefits but the other has no effect, the
carrying function would be the facultative mutualists equation with Ko = K
k(z) =K

For parasitic relationships, another carrying capacity equation must be made. If
the ‘a’ coefficient is changed to negative, there would be a vertical asymptote at x=K/a,
where the carrying capacity would approach negative infinity from the left and positive
infinity from the right. This makes no sense biologically. Instead, there is a kind of
function similar to Holling’s type Il functional response, which is Langmuir’s equation.
Langmuir’s equation is used in physiology and pharmacology to describe molecular
binding. This is where an agonist binds to a receptor. This is analogous to a molecular

symbiosis. According to Bindslev [10] Langmuir’s equation is:

y=f(5) = g2

F+1
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Here S is the agonist concentration, and Ks is the dissociation constant, and ymax is the
maximum number of binding sites. The reverse of this is the concentration of inhibitors,
l, to the binding. This is sometimes called the reverse Langmuir equation or hyperbolic

decay [10].

This transformation was done by creating a new logistic equation with an exponent of
In(Ks)-In(S), and then reversing the sign of the exponent [10]. If mutualist symbionts are
the agonists, then parasitic symbionts are the inhibitors. The same kind of
transformation is used to obtain an equation for how the parasites affect the carrying

capacity of the other species.

2

k(z) =

az+ K

The carrying capacity will begin at K and then decrease asymptotically to zero and the
number of parasites, x, approaches infinity. The symbiotic coefficient ‘a’ has the same

kind of meaning, and must be greater than zero.

Nondimensionalization

To reduce the number of parameters, a nondimensionalization scheme similar to

Maiti and Pathak [11] was used. The following substitution of variables is used:

N M ;
=—,y=—,T=T
T TR
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For the obligate-obligate model, the following equations are obtained:

(1659
-r (1 (30)

K K r: . . .
L B =—2-,y = 2. In other words, a is the ratio of the carrying
Kza, Kya; L£]

where a =

capacities K; to K; multiplied by 1/a4, and B is the ratio of K, to K; multiplied by 1/a5, and
vy is the ratio of the growth rates r; and r,.

For the facultative-facultative model, the following equations are obtained:
dx 1 (y -+ a)
at " x y+46
dy 1 (x + B)
dr vy y x+e€
K10

where § = K10 o — K20 |5 other words, & is the ratio of the carrying capacity of
K,aq Kia;

species one without the other species Ko to K, multiplied by 1/ay, and € is the ratio of
carrying capacity of species one without the other species Ky to K3 multiplied by 1/a,.

For the obligate-facultative model, the following equations are obtained:

dy B 1 (x + ﬂ)
dr vy y x+e€
For the commensal-obligate model, the following equations are obtained:
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dx

E=x(1—x)

)

For the commensal-facultative model, the following equations are obtained:

dx
i x(1—x)

2o (1-v(E9)

For the parasitic model, the following equations are obtained:

dx

== x(1—x(1+1ny))

)

wheren = a,K,

Phase plane analysis

For the phase plane analysis, it is only necessary to analyze the first quadrant of
the Cartesian x-y plane. This is because the population of species will never be negative.
Phase plane analysis will be done by finding the nullclines and the intersections of the
nullclines, or the equilibrium points, and analyzing the behavior of the system around
the equilibrium points.

The nullclines for obligate-obligate model are:
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1—af 1-af
a+1’ f+1

Equilibrium points are (0, 0),( ) The nullclines will always intersect at (0,0).

1—-aff 1-af
at+1’ B+1

However, the intersection point ( ) will only be positive when af > 1, that is

when both a and B are greater than one. When af > 1, the intersection point

(boet et

, ) will be a sink point, and (0,0) will be a saddle point. Otherwise, the
a+l * f+1

nullclines will not intersect in the first quadrant and (0,0) will be a sink point, and all
solutions to x and y will approach zero. The phase plane analysis and phase portrait
when aff > 1 are in Figure 15 and Figure 16 respectively. The phase plane analysis and

phase portrait when af < 1 are in Figure 17 and Figure 18 respectively.

X

Figure 15. Obligate-Obligate Case 1 Phase Plane Analysis
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Figure 16. Obligate-Obligate Phase Case 1 Phase Portrait

2

’ f d/'
/ L< 0
dt
dy
% —>0
AN dt
0 HE———r e . ;
0 0.5 1 1.5 B

Figure 17. Obligate-Obligate Case 2 Phase Plane Analysis
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Figure 18. Obligate-Obligate Phase Case 2 Phase Portrait

The nullclines for facultative-facultative model are:

0 ax— 98
x =0, =
Y 1-x
0 _ X+ e
y="5u Y =X+ B
Equilibrium points are
(0,0) —(aB+e-6-1)+/(aB+e-6-1)2+4(a+1)(BS+¢e) —(a[>’+s—6—1)+2as+\/(a[i+s—8—1)2+4(a+1)(ﬁ6+£)>
L 2(a+1) " aB-e+S+1+2B+(aBfre—6-1)2+4(a+1)(BS+e)

, (é, O) , (02) The nullclines will always intersect in the first quadrant at the point
a

—(af+e-86-1)+(af+e—6-1)2+4(a+1)(BS+e) —(af+e-6—1)+2as+/(af+e-86-1)>2 +4(a+1)(B<5‘+e))
2(a+1) " aB-e+8+1+2B+/(af+e—5-1)2 +4(a+1)(BE+¢)

This is because the nullclines will start at y = /B and increase asymptotically to y = 1 for
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the y-nullcline, and start at x = §/a increase asymptotically to x = 1 for the x-nulicline.

The intersection will be (§/a<x < 1, ¢/B <y < 1). Furthermore the intersection will be a

sink point, while(g, 0) , (0, %) will be saddle points, and (0,0) will be a source. The

phase plane analysis and phase portrait are in Figure 19 and Figure 20 respectively.

] i >0 dx <0
dt dt
‘ 5 a‘y
‘ E<O
dy
: F>O
| )
0 8/a 15 2

Figure 19. Facultative-Facultative Phase Plane Analysis
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Figure 20. Facultative-Facultative Phase Portrait

The nuliclines for obligate-facultative model are:

0 _ax
=RV TIR
i _x+e
AT

Equilibrium points are

0 O) (_(aﬁ+g—1)+mﬁ+e—1)2+4(a+1)(£) —(aB+£—1)+2a£+\/(aB+£—l)2+4(a+1)(£)> ( i)
e 2(a+1) " oapf-e+1+2f+ (aBre-1)2+4a(a+1)(e) )\ p)

The nullclines will always intersect in the first quadrant at the

. —(aB+£—1)+\/(a[3+£—1)2+4(a+1)(£) —(aB+£—1)+2a£+J(aﬁ+s—1)2+4(a+1)(£)) L.
pomt( 2(a+1) " oaB-e+142B+(af+e-1)2+4(a+1)(e) - This is

because the nullclines will start at y = £/B and increase asymptotically to y = 1 for the y-

nullcline, and start at x = 0 and increase asymptotically to x = 1 for the x-nulicline. The
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intersection will be (0<x <1, &g/B <y<1). Furthermore the intersection will be a sink

point, while (0,0), (0,%) will be saddle points. The phase plane analysis and phase

portrait are in Figure 21 and Figure 22 respectively.

)
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0 &

X

s T

5

Figure 21. Obligate-Facultative Phase Plane Analysis
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Figure 22. Obligate-Facultative Phase Portrait

The nullclines for commensal-obligate model are:

R AETY
. 1 . : . 1 .
Equilibrium points are (0, 0), (1,1—:/);) ,(1,0). The intersection point (1,;:1—;) will always

be in the first quadrant, and will be a sink. Points (0, 0), (1,0) will be saddle points. The

phase plane analysis and phase portrait are in Figure 23 and Figure 24 respectively.
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Figure 24. Commensal-Obligate Phase Portrait

The nullclines for commensal-facultative model are:
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Equilibrium points are (0, 0), (1,%:—;) el ), (0,%). The intersection point(l,i—:—g) will

always be in the first quadrant, and will be a sink. Points (0,0), (1,0) will be saddle

points. The phase plane analysis and phase portrait are in Figure 25 and Figure 26

respectively.

(=1
(=]

Figure 25. Commensal-Facultative Phase Plane Analysis
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Figure 26. Commensal-Facultative Phase Portrait

The nullclines for parasitic model are:

—0 _1—x
g =1l 3= ”
¥=5 y_x+[3

i Fl 2 . 1-B++/ B2+2B+4pn+1 1- B+ B2+2B+4n+1
Equilibrium points are (0, 0),( ey SFTICEM e ) ,(1,0). The

. . [(1-B+JBEF2B+4Bn+1  1-B+/B2+2[+4Pn+1 ) . .
intersection pomt( i SYr Ty ey will always be in the

first quadrant. This is because the nullclines will start at y = 0 and increase
asymptotically to y = 1 for the y-nullcline, and startat x = 1 and decrease asymptotically

to x = O for the x-nullcline. The intersection will be (0 <x<1,0<y<1). Furthermore,
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the intersection will be a sink point, while (0,0), (1,0) will be saddle points. The phase

plane analysis and phase portrait are in Figure 27 and Figure 28 respectively.

dx
—d?<0
| 7;(1
T e’
C_ii dy

ad

0
v

Figure 27. Parasitic Phase Plane Analysis
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Figure 28. Parasitic Phase Portrait

Limits for obligate mutualism

For obligate mutualism, in either x ory, the equations can be written in a

simplified way:

YBYy®
b 4

dy 5
e Yy —VvYy

Neither x nor y can be equal to zero. To find out what is happening at x =0 ory =0, the

limits must be found. The limits as X and y approach zero from the right are:
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l _—= i —
xLl’(l;l_}_ dt 0' yll)%‘l+ dt @
dy dy
lim —=— im = =
30 dt = J}Lrtl)1+ dr 0

The limits as x and y approach zero from the left are:

y dx =0 " dx
A=t il = te
dy dy
l. -_—= i _—=
Jm o=t g =t

To get a better idea of what will happen when the system approaches (0,0), the

nullcline will be analyzed again. The equation for the y-nullcline for an obligate

mutualist or is yy (1 -y (ﬂ)) = 0. There is a horizontal line is y = 0, and the line

X

y = —fb- has an asymptote at x = 0 where the limit as x approaches zero from the right
X

is negative infinity and from the left positive infinity. The equation for the x-nullcline for
an obligate mutualist is x (1 X (%E)) = 0. There s a vertical line is x = 0, and the

line y = 2% has an asymptote at y = 0 where the limit as y approaches zero from the
1—x
right is negative infinity and from the left is positive infinity. Therefore, the limit as (x,y)

approaches (0,0) does not exist.

To get a better idea of what is happening at the equilibrium point at (0,0), the

Jacobian matrix will be analyzed:
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2ax ax?

l-2x—— N
y y?

YBy? 2yy

2 Y—ZY}’—T

The limit as x approaches zero from the right for the Jacobian matrix:

2 2
lim (1 —2x - ﬂ) L
x-0+ y x-0+ yz — [ 0 0 ]
i VBV . | e e
= im (2=

The limit as y approaches zero from the right for the Jacobian matrix:

20x ax?
lim (1 — 2% — ——) lim —-
y-0+ y y-0+ Yy _ [+oo —OO]
lim vBy” lim ( - 2yy— -2—)2) 0 0
y-0+ X2 y—0+ v ey X
The limit as x approaches zero from the left for the Jacobian matrix:
_ 2ax i ax?
Hi] (1 T T) x0- 32 [0 0
2 2yy —00 400
lim Yﬁf lim (y - 2yy — ——)
x-0- X x—>0— X

The limit as y approaches zero from the left for the Jacobian matrix:

] 20x I ax?
yl.l_,r(r)]_ (1 —2x- y ) ylr(r)]— y? _ [-—oo +oo]
Lo 0
YBy? . ( 2)/;v)
i lim - 2yy ——
;/11»%]— x2 y-0- r—er X

Since the limits as x and y approach zero are not equal, and the limits from the left and
right are not equal, the limit for the Jacobian matrix at (0,0) does not exist.
Since the limits do not exist, the nulicline and Jacobian provide useful

information, but tell nothing of what the trajectories will approach if x and y approach
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zero. The only case where this would happen is in the obligate-obligate model where
af <1, or Case 2 seen in Figures 17 and 18. To investigate further, the numerical
solution will be found for this case. This is done using Matlab’s fourth/fifth order

Runge-Kutta method. The results can be seen in Figure 29.

x1

0 01 02 03 04 05 06 07 08 09 1

x2

e — 4 4 { 1

0 01 02 03 0.4 05 06 0.7 08 09 1

x2

1 1 1 1 1

i 1 i 1
00 1l0 20 30 40 50 60 70 80 90 100

Figure 29. Numerical Solution to Obligate-Obligate

The solutions for x and y will decrease asymptotically to zero. This would be a collapse

for both populations. Therefore, if two species are both obligate mutualists in relation

to each other, and the constants a; and a; are less than one, then both species will

become extinct.
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CHAPTER IV
CONCLUSION

Since symbiosis is a complex phenomenon with different types of relationship
for each species, a mathematical model of symbiosis needs the same characteristics.
Some of the models in Chapter Il did not address this, such as Pistorius-Utterback and
Wright. Yukalov’s model does address the different types of symbiosis, but not whether
a species is obligate or facultative. However, like Pistorius-Utterback it can exhibit
unlimited growth which is biologically unrealistic. Dean’s model does address obligate
or facultative mutualism, but not the other types of symbiosis, commensalism or
parasitism. Dean’s model can also lead to unstable behavior for certain values of the
coefficients.

The new model of symbiosis, presented in Chapter lil, does address the different
types of symbiosis, as well as obligate and facultative species. Furthermore, the models
have stable positive equilibria. The parasitic modelis similar to the Leslie-Gower
predator prey model, except that there is an extra term added to the predator (parasite)

for intra-species competition. This changes the phase portrait significantly. Thereisan

issue with the models that have obligate species, in which the system cannot be zero for

either species. However, the solutions will only converge to zero in one particular case,

which is in the obligate-obligate model in Case 2. As shown, the limits of the system at
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the origin do not exist. However, in the numerical solution, it is shown that in this case,
that the solution will asymptotically fall to zero. This would effectively be an extinction
of both species. In all other types of symbiosis, whether with obligate or facultative
species, there will be a positive solution for both species, as shown in the existence of
positive stable equilibria. Therefore, this new model can be a useful model for

symbiosis.
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