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ABSTRACT 

BRANDY MORRISSEY, B.S. 

OPTIMAL CONTROL OF PREDATOR-PREY MODELS 

AUGUST 2012 

 

A review of some models used to model ecological predator-prey populations is 

summarized.  The Lotka-Volterra, Holling Logistic, and Holling-Tanner models are 

analyzed through linearization with the Jacobian to characterize the equilibrium points, 

and computer simulations are obtained to observe the trends of the models’ 

trajectories.  Additionally, an analysis of papers on optimal control of predator-prey 

models is presented to show a few different focuses that have already been utilized in 

the field of optimal control.  Finally, an optimal control problem with two bounded 

controls for the Holling-Tanner predator-prey model is stated and solved.  A computer 

simulation of that control model at selected values of the parameters and several 

objective functions is also presented.  Furthermore, applications of such a control model 

are discussed in the context of real world predator-prey situations.   
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CHAPTER I 

INTRODUCTION 

There are over 1000 animal species around the world that are endangered at 

varied levels - creating a deepening importance for monitoring the populations of 

natural wildlife.  As the human population increases, natural habitats are being affected 

through destruction and environmental changes, which in turn affects the populations 

of wildlife, including predator-prey communities.  To understand the progression of 

predator-prey native environments involves understanding many issues, such as 

predator-prey interactions and population dynamics among others.   

The natural predator-prey interactions that exist between many species have 

been studied extensively.  Many studies attempt to study locations that are as 

untouched by human activities as possible to observe these complicated relationships.  

Despite outside factors that influence predator and prey actions, some dominant 

behaviors typically exist between sets of interacting species.  A primary behavior 

exhibited by prey species is migration to another area for a reduction in predation 

danger.  For instance, some species will abandon an asset, such as a good feeding area, 

to attain a safer environment.  However, predators usually respond to this alteration in 
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prey behavior with the intent of increasing their own chance of survival.  Consequently, 

the predator-prey interaction can become like a behavioral game.   

This behavioral game model has been studied by several mathematical 

ecologists.  Behavioral ecologist Larouche studied one instance of the behavioral game 

model by examining the interactions between white sharks and Cape fur seals [1].  In 

this study, adult seals displayed behavioral strategies in response to deviations from 

sharks.  In contrast, the sharks’ behaviors were influenced by the location of seal pups.  

Additionally, marine biologist Bjorndal conducted a study of tiger sharks in Australia 

which showed that tiger sharks alter the habitat selection of green sea turtles because 

of threatening proximity [2].  The sea turtles relocate to an area of lesser quality sea 

grass for feeding to reduce the risk of predation.  These examples reflect some of the 

behavioral game interactions that can occur between predator-prey populations. 

When studying the population dynamics of the growth or decline of a single 

population, factors such as the natural growth rate and the carrying capacity, or limiting 

amount, of the environment are taken into consideration.  Since mathematical ecology 

requires the study of the interaction of populations, each population affects the other’s 

growth and mortality rates.  Predator-prey population dynamics are often dramatic, 

such as the Canada lynx and snowshoe hare, in Canadian taiga (forest) biome. The 

Hudson’s Bay Company provided the best long-term data set through records of 
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numbers of animals trapped, showing the fluctuations of lynx and hare populations 

across Canada, as shown in Figure 1.1 [3].   

 

 

  An analysis of the dynamics of the two populations shows a correspondence in 

population values.  The snowshoe hare’s population fluctuates in cycles with an eight to 

ten year periodicity with a close following of the lynx cycle.  Observing the data for the 

hares, there is a peak of the population, where perhaps there is more food, followed by 

a decline in the population, and then another peak about ten years after the first.  The 

lynx data shows a similar periodicity, with an offset of one to two years.  The minimum 

population values correspond to very low populations of hares, indicating that there 

was not enough prey to sustain the population of lynx.  These data have caused many 
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mathematicians and scientists to question why the constant periodicity occurs.  English 

zoologist and animal ecologist Charles Elton published a paper in 1924 which was first of 

many publications to analyze this data set [4].  Speculations such as hare-resource 

interaction, human interaction, reproduction rate decline of hare and lynx populations, 

and climate changes have been considered to explain the population cycles and 

changes. 

In order to predict, describe, and explain such population changes in a species, 

mathematical models are developed, studied and improved.  Such models are capable 

of predicting future patterns of many situations.  Developments in science and 

technology have enabled people to increase the predictability of changes in natural 

populations and guide changes.  Many mathematicians and scientists have modeled 

situations of various predator-prey groups with different differential equations.  These 

models can be used to make predictions about the behavior of a number of different 

predator-prey populations, and provide clues as to why they behave as they do.  As 

some populations near extinction, it becomes necessary for biologists and ecologists to 

look at manipulations of such populations to determine if populations can be recovered 

through human intervention.  Therefore, the equations used for modeling become 

important to analyze and predict the populations to eliminate extinction.  

Predation models are some of the oldest in ecology, including Bazykin’s work on 

nonlinear predator-prey model dynamics [5], Volterra’s data analysis of Adriatic fish [6], 
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Holling’s studies with insects [7], and Tanner’s investigations with various predator-prey 

situations [8].  During the course of this thesis, some predator-prey models will be 

reviewed and analyzed.  Additionally, an analysis of papers on optimal control of 

predator-prey models will be presented to show the different focuses that have already 

been utilized.  Finally, an optimal control problem with two bounded controls for the 

Holling-Tanner predator-prey model will be stated and solved.  A computer simulation 

of that control model at selected values of the parameters and several objective 

functions will be presented.  Furthermore, applications of such a control model will be 

discussed in the context of real world predator-prey situations.   
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CHAPTER II 

REVIEW OF PREDATOR PREY MODELS 

Applications of mathematics to ecology have been a source of curiosity to 

mathematicians for hundreds of years.  Mathematicians have proposed models to 

describe the populations and still others have studied these models, honing them for 

particular situations.  For instance, Bazykin studies many nonlinear models, such as the 

Lotka Volterra Model and Holling Model, extensively and outlines three main types of 

interactions between species that are recognized in ecology:  mutualism or symbiosis, 

mutual competitive suppression or competition for a common resource, and predator-

prey or parasite-host interactions [5].  He develops a set of general differential 

equations to model these interactions: 



















),()(

),()(

vuDvCv

vuBuAu
 

where )(uA  is the rate of increase of prey in absence of predators, )(vC  is the rate of 

mortality of predators in absence of prey, ),( vuB  is the rate of predation, and ),( vuD  is 

the rate of reproduction of the predators.   Bazykin outlines types of functions to model 

interactions between predator and prey.    
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Bazykin concludes that there are some stabilizing factors that lead to a globally 

attracting equilibrium and other destabilizing factors that cause the model’s trajectories 

to go to infinity.  The stabilizing factors Bazykin notes are competition among prey, 

competition among predators for prey or other resources, and nonlinearity in the 

trophic function, ),( vuB , when the prey population density is small.  Destabilizing 

factors include predator saturation and nonlinear reproduction of the predator and prey 

populations at small densities.  Simultaneous consideration of two or more stabilizing 

factors or two or more destabilizing factors does not lead to new observations.  

Therefore, combinations of stabilizing and destabilizing factors would need to be 

studied to produce new equilibria or other results of stabilization or destabilization.    

Bazykin considers combinations of each factor and outlines them. 

 Other mathematicians, such as Berryman [9], have also outlined the various 

models associated with predator-prey population predictions throughout the years.  

Since such models are capable of providing feedback about population levels, many 

ecologists and mathematicians have studied the history of such models.  Some of the 

various models that have been used will be described in the next section. 

 

2.1 Malthusian Model.  Thomas Malthus was the first to recognize a definitive 

theoretical treatment of population dynamics in 1798 [5].  Naturally, the first model 

typically introduced to estimate population growth is his model, known as the 
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Malthusian model, where the rate of change in the population is proportional the 

population,  

kPP '   

where 
dt

dP
P ' and k  is the proportionality constant.  This is a separable differential 

equation and is easily solved to get ktAeP  .  To find a particular solution representing 

either the predator or prey population, it would be necessary to utilize data to find the 

particular values for constants A  and k .  However, this model continues to grow 

exponentially, as observed in Figure 2.1, and does not realistically describe populations 

in the wild, since most populations are limited by resources. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Malthusian Model of Exponential Growth,  
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2.2 Verhulst-Pearl Model.  Verhulst described the dynamics of a population that was 

restricted in size by some limited resources first by the equation 

 
k

xkax

dt

dx 
  

now known as the logistic equation, in 1838 [5].  a  is the rate of exponential population 

growth at small population size, while k is the carrying capacity of the population 

density, determined by the available resources.  Pearl rediscovered this work in 1927 

after it was forgotten.  This model grows exponentially as the Malthusian model at first, 

but reaches a point where the rate of growth is a maximum and then the rate of growth 

begin to decline as shown in Figure 2.2. 

 

 

 

 

 

 

 

 

 

 Figure 2.2: Verhulst-Pearl Logistic Model, ,  
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If a population were to become larger than the carrying capacity, for instance 

with the introduction of new offspring or animals via human transport, then the 

population would decline and approach the carrying capacity because of the limited 

resources.  However, this model still does not address the many interactions between 

predator and prey, such as competition for resources and satiation of the predator.  

From a mathematical point of view when describing two species, one equation cannot 

model all of the interactions and dyanamics exactly.  Therefore, multiple equations are 

advantageous since such equations could model the populations of the predator-prey 

better. 

 

2.3 Lotka-Volterra Model.  Umberto D’Ancona, an Italian biologist, studied the 

variations in population density of interacting fish species in the Mediterranean 

following World War I.  His data give the average percentage of total catch of selachians 

(sharks, skates, etc) for 1914-1923, shown in Table 2.1 [6]. 

 

Table 2.1:  Average Percentage of Total Catch for Selachians for 1914-1923 
Year 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 

Percent 
Catch of 
Selachians 

11.9% 21.4% 22.1% 21.2% 36.4% 27.3% 16.0% 15.9% 14.8% 10.7% 

 

The data show a large increase in the percent selachian catches for 1915-1922.  

D’Ancona reasoned that the reduced fishing activity during the war accounted for this 
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abnormality.  This reasoning led him to question the affects of the intensity of fishing on 

fish populations [6]. This anomaly was also important to the fishing industry, since it 

would influence fishing practices. 

D’Ancona theorized that reduced fishing for food-fish gave rise to an increased 

food-fish population, and therefore, an increased selachian population.  However, this 

theory does not explain why reduced fishing is more beneficial to sharks than food-fish.  

D’Ancona consulted with Vito Volterra on this situation [6]. 

Vito Volterra investigated a wide range of ecological problems, including the 

effects of migration and of several species simultaneously interacting and developed a 

predator-prey model to help explain the fish studies of D’Ancona.  Independently and 

concurrently, Alfred Lotka initially proposed a predator-prey model, extended the model 

to organic systems using a plant and herbivore as an example, and utilized his equations 

to analyze predator-prey interactions.  The subsequent model describing two species 

predator-prey and competition models are called the Lotka-Volterra model in honor of 

both the biologist and mathematician who developed the basic model.  The pair of 

equations is a set of first order, nonlinear differential equations: 

 

 













 dxcydxycy
dt

dy

byaxbxyax
dt

dx
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where x  is they number of prey, a  is the prey population growth rate, b  is the attack 

rate of predators, y  is the number of predators, c  is the rate of predator decline in 

absence of prey, and d  is the predator population growth rate due to predation.   

The Lotka-Volterra Model makes several assumptions about the environment 

and predator-prey evolutions, including that the prey population finds ample food at all 

times, that the food supply of the predator population depends entirely on the prey 

populations, that the rate of change of population is proportional to its size, and that 

during the process, the environment does not change in favor of one species, and 

genetic adaption is slow. 

 

2.4 The Fishing Activity Modified Lotka-Volterra Model.  D’Ancona concluded that wide 

variations in fishing activities during WWI caused the variation in the percent increase of 

selachian catch [6].  To address the fishing effects, Volterra modified his equations with 

several thoughts in mind.  First he reasoned that fishing activity decreased food-fish 

populations at a rate ex  where 0e  and reflects the intensity of fishing activity.  

Secondly, he concluded that fishing activity decreases selachian populations at a rate of

ey .  So he modified his equations:  

 

 













 dxyyeceydxycy
dt

dy

bxyxeaexbxyax
dt

dx

 

As long as 0 ea , the model has a structure similar to the previous model. 
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2.5 Holling Logistic Model.  C.S. Holling modified the Lotka-Volterra system with the 

logistic equation x
k

x
r

dt

dx








 1  , where k is the carrying capacity of the population 

density, with the conclusion that it models a single prey population better [7].  Let 'x

denote  
dt

dx
.  When x  is small, there is very little interspecies competition for resources, 

k

x
1  is close to 1, and the reproductive rate per individual 










k

x
k

x

x
1

'
 is very close to 

k .  As x  increases, interspecies competition increases, 
k

x
1  approaches 0, and the 

reproductive rate per individual approaches 0.  Using this logistic model as the model 

for the prey population and keeping the predator population model, the model 

becomes 

 























 dxcy
dt

dy

bxyx
k

x
a

dt

dx
1

 

 

2.6 Holling-Tanner Model.  The predation rate increases with increasing prey density as 

studies by Holling and others have shown, until the predation rate reaches a limiting 

capacity.  Holling introduced the function 
xr

x
wy


  to satisfy the predation rate when 

predators will not or cannot kill more prey even when preys are available [7].  James 

Tanner did extensive studies with this refinement to determine its application [8]. w  
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and r  are constants that determine how fast the functional response increases at low 

densities of the prey.  Increasing or decreasing the value of r increases or decreases the 

rate at which the predation function approaches its limit.  r  is interpreted as the 

predator search time.  w  is the maximum predation rate (i.e. the predation limit as x  

approaches infinity). 

With this new model for predation, the revised system becomes 

 

























 dxcy
dt

dy

xr

x
ywx

k

x
a

dt

dx
1

 

This still leaves the predator model as the original.  Since the revised prey model more 

accurately reflects how the prey population growth rate responds to the particular 

predator and prey combinations, the predator equation should also be revised to reflect 

the predator growth and decline rates.  dxycx
dt

dy
  implies that as the prey 

population approaches infinity, the predator growth rate approaches infinity as well.  

Natural growth rate assuming infinite resources would better model this situation.  If 

the predator population is less than the natural carrying capacity defined by limiting the 

resources, the predator population would grow at a rate between zero and the 

maximum.  If the predator population is more than the natural carrying capacity defined 

by limiting resources, the predator population would decline.  These observations 

suggest that the predator population is similar to the logistic equation introduced for 
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prey.  However, the limiting resource in predator population is considered a function of 

the prey population.  These considerations introduce the model for predators as

y
x

jy
cy

j

x

y
c

dt

dy




























 11 , where j  is the number of prey required to support one 

predator at equilibrium. 

Now the model becomes 

y
x

jy
c

dt

dy

xr

x
ywx

k

x
a

dt

dx























1

1

 

Other mathematicians, such as May, also did work independently regarding this 

model and its applications [10]. 

 

 

 

 

 

 

 

 

 



 

 16 

 

 

CHAPTER III 

ANALYSIS OF MODELS 

 In addition to creating the model mathematically, the model should be analyzed 

to determine not only if it simulates the situation well, but also to determine overall 

characteristics of the solutions curves to gain an understanding of the changes in 

populations.  Different methods such as the use of nullclines, the process of linearization 

using the Jacobian, or numerical methods using computer programs such as Maple 

and/or Matlab can be used to observe features and trends. 

 

3.1 Analysis: Nullclines and Linearization.  The nullclines, or zero-growth isoclines, of a 

system of differential equations are the geometric shape for which 0
dt

dx
 and 0

dt

dy
.  

The equilibrium points of a system are located where the nullclines intersect.  The 

trends of the solution curves can be observed by looking at the signs of 
dt

dx
 and 

dt

dy
 in 

the sections that the nullclines bound. 
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Population equilibrium occurs when neither population level is changing, so 

0
dt

dx
 and 0

dt

dy
.  When the system of differential equations is solved, equilibrium 

points are obtained.   The stability of each point can be determined by analyzing the 

Jacobian matrix:   







































n

mm

n

x

y

x

y

x

y

x

y

J







1

1

1

1

 

Each equilibrium point can be analyzed individually using the characteristic equation to 

determine the eigenvalues to produce the stability conclusion.   

 

3.2 Lotka-Volterra Model Analysis.  The Lotka-Volterra model 

 

 













 dxcydxycy
dt

dy

byaxbxyax
dt

dx

 

has been analyzed by many mathematicians, such as Braun [6], to find equilibrium 

points and trends of trajectories. 

For prey 0
dt

dx
 so )(0 byax  .  Since a  and b  are constants the zero growth 

nullcline for prey is a constant, defined by predator numbers, 
b

a
y  .  For predators 
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0
dt

dy
 so )(0 dxcy   .  Since c and d are constants, the zero nullcline for predators is 

also a constant defined by prey numbers, 
d

c
x  .  An analysis of the signs of  

dt

dx
 and 

dt

dy
 leads to the conclusions in Figure 3.1 below. 

 

 

 

Population equilibrium occurs when neither population level is changing, so 

)(0 byax
dt

dx
  and )(0 dxcy

dt

dy
  .  When solved two equilibrium points are 

obtained:  )0,0(  and 








b

a

d

c
, .   

  

 

 
 

 

Food-fish 

               

Selachians 

 

 

 

dy/dt<0 

 

 

  

Figure 3.1:  Nullcline analysis of the Lotka-Volterra Predator-Prey System 
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The stability of each point can be determined by analyzing the Jacobian matrix:   















cdxdy

bxbya
yxJ ),(  

For the fixed point at the origin,  











 c

a
J

0

0
)0,0(  

producing the characteristic equation 0)(2  acca  , with eigenvalues a  and c

.  Since 0a  and 0c , the eigenvalues have opposite signs, implying that )0,0(  is a 

saddle point.  This unstable equilibrium point represents the point of extinction of both 

species.  If it were stable, non-zero populations could be attracted towards it and lead to 

extinction. 

For the second fixed point 








b

a

d

c
, , 



























0

0
,

b

ad
d

bc

b

a

d

c
J  

producing the characteristic equation 02  ac , with eigenvalues aci .  Since the 

eigenvalues are purely imaginary, closed trajectories surround the point on the phase 

portrait.  The equilibrium solution is a center and is neutrally stable or just stable.  

Therefore, levels of predator-prey oscillate around the point. 
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The Lotka Volterra models predator-prey situations more realistically.  Analyzing 

the dynamics of the model, observations show that the predators thrive when there is 

plentiful prey, but ultimately, outstrip their food supply and decline.  As the predator 

population is low, the prey population will increase again.  These dynamics continue in a 

cycle of growth and decline, as shown in Figures 3.2 – 3.4.  However, in the absence of 

predators, the prey population still grows according to the Malthusian model.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2:  Phase portrait with  
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Figure 3.4:  Phase portrait with , , ,  

Figure 3.3:  Phase portrait with , , ,  
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Analyzing the dynamics of the Lotka-Volterra model, observations show that 

although predators thrive in conditions with abundant prey, ultimately, their population 

will decline once the food supply dwindles.  Once the predator population reaches its 

minimum, the prey population will increase again.  These dynamics continue in a cycle 

of growth and decline, shown in figure 3.5 using the same values of parameters as 

shown in figure 3.2, and show a similar pattern as the lynx-hare empirical data collected 

by the Hudson’s Bay Company as seen in figure 1.1.  

 

 

 

3.3 The Fishing Activity Modified Lotka-Volterra Model Analysis.  Once Lotka modified 

his model for fishing activity, his model became 
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Figure 3.5:  Lotka-Volterra population dynamics 
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Braun and other mathematicians have analyzed this model to find equilibrium points 

and to draw conclusions on the inclinations of the solution curves [6]. 

So for prey, )()(0 byeaxbxyxea
dt

dx
 and for predators,

)()(0 dxecydxyyec
dt

dy
  produce the nullclines 

d

ec
x


 , 

b

ea
y


 .  An 

analysis of the signs of 
dt

dx
 and 

dt

dy
 leads to the conclusions drawn in Figure 3.6 below, 

which are identical to the first model, provided 0 ea . 

 

 

When )()(0 byeaxbxyxea
dt

dx
 and 

)()(0 dxecydxyyec
dt

dy
 ,  the equilibrium points )0,0( and 
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Selachians 

 

 

 

 

 

 

Figure 3.6:  Nullcline analysis of the Fishing Activity Modified Lotka-Volterra 
Predator-Prey System 
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






 

B

ea

d

ec
,  are produced.  The stability of each point can be determined by analyzing 

the Jacobian matrix:   















ecdxdy

bxbyea
yxJ ),(  

For the fixed point at the origin, 















ec

ea
J

0

0
)0,0(  

producing the characteristic equation 0))(()2(2  eceaeca  , with 

eigenvalues ea   and )( ec  .  Since 0a  and 0c , and as long as 0 ea , the 

eigenvalues have opposite signs, implying that )0,0(  is a saddle point.  This unstable 

equilibrium point once again represents the point of extinction of both species. 

For the second fixed point 






 

b

ea

d

ec
, , 

 

 




























 

0

0
,

b

dea
d

ecb

b

ea

d

ec
J  

producing the characteristic equation 0))((2  ecea , with eigenvalues 

))(( eceai  .  The eigenvalues are purely imaginary with closed trajectories once 

again surrounding the stable point on the phase portrait.  Similarly, levels of predator-

prey oscillate around the point.  These conclusions can be observed in the phase 
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portraits of the system of differential equations in Figures 3.7 – 3.9 below.  In addition, 

the relationships of the two equilibrium points remain the same with various values of 

the constants just as in the first model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7:  Phase portrait with , , , ,  
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Figure 3.8:  Phase portrait with , , , ,  

Figure 3.9:  Phase portrait with , , , ,  
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For the fishing activity modified Lotka-Volterra model, the data D’Ancona 

collected agrees with the analysis.  During WWI, fishing fleets were less likely to go out.  

If e , the intensity of fishing activity, is decreased, then 
b

ea 
 increases, so selachian 

populations increase and 
d

ec 
 decreases so food-fish populations decrease.  Therefore, 

e  would decrease and the equilibrium point for food fish would decrease while the 

equilibrium point for selachians would increase.   The result of an increase in the 

percentage of selachians available is reflected in the data.   

However, there is insufficient data to obtain more than a general overview of the 

effect of fishing activity on the population dynamics.  Future statistical studies would 

need to be done to verify results for other geographical locations and extend the model 

to other, more complex, situations.    

 

3.4 Holling Logistic Model Analysis.  Holling did many analyses [7] on his model 

 










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







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 dxcy
dt

dy

bxyx
k

x
a

dt

dx
1

 

This system’s equilibrium points can be found by first finding the nullclines. 
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For prey 


















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



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
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by
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x
ax

bxyx
k

x
a

dt

dx
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This implies that either 0x or that  



















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








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a
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x
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k

x
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So the nullclines for prey are 0x  and 









k

x

b

a
y 1 , where a  and b  are constants. 

For predators 0
dt

dy
 so )(0 dxcy  .  Since c  and d  are constants, the zero nullcline 

for predators is a constant defined by prey numbers, 
d

c
x  .   

An analysis of 
dt

dx
 and 

dt

dy
 leads to Figure 3.10 below.  In part a, k

d

c
 , which 

gives the equilibrium points (x*, y*)= 









kbd

ac

b

a

d

c
, , )0,0( , 








0,

d

c
, and )0,(k .  In part b, 
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k
d

c
  which gives the equilibrium point )0,0( and )0,(k .  In part c, k

d

c
  yields 

equilibrium points )0,0( , )0,(k  and 







0,

d

c
. 

 

 

(a) k
d

c
         (b)  k

d

c
     (c)  k

d

c
   

Figure 3.10:  An analysis of the nullclines for Holling’s Logistic refinement model 

 

The Jacobian matrix is given by the partial derivatives of the system: 
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The linearization at the interesting equilibrium point is  

 

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The trace of the matrix is 
kd

ac
 which must be negative since a , c , k  and d  are 

positive parameters.  The determinant 
dk

cdkac )( 
 is positive, the eigenvalues are 

negative, and the equilibrium point is a sink as long as 0 cdk .   

The equilibrium point  









kbd

ac

b

a

d

c
, = 


















kd

c

b

a

d

c
1,  determines that if kd  is 

smaller than c  the predator population would be negative.  Since the population cannot 

be negative, this implies 0 cdk . Therefore, as long as the equilibrium point remains 

above the axisx , it will be a sink, as shown in Figure 3.11, the phase portrait of the 

Holling Logistic Model. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11:  Phase Portrait of Holling Logistic Model, where ,  

, , ,  
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The solutions to this system are very different from the Lotka-Volterra system.  

In the Lotka Volterra system, solutions cycle around the equilibrium point of interest.  

The solution curves in the Holling Logistic model show a much safer cycling.  In the Lotka 

Volterra system, any agitations (e.g. an accidental death to a normally insignificant 

portion of prey population) in the predator or prey system could push the populations 

down to 0 and lead to extinction.  In this modified system, after a maximum of one pass 

close the axis, the solutions spiral away from the possible extinction and toward the 

equilibrium point of interest. 

Safe, stable populations seem to be guaranteed as time approaches infinity if the 

equilibrium point is a sufficient distance from both axes to protect from random 

distresses.    With predator actions in mind, namely a predator will have a limited 

capacity to kill and a limited motivation to kill once they have enough sustenance, a 

weakness is perceived with this system. Utilizing  the prey equation, the harm done to 

the prey population is bx  per predator.  Therefore, in a given time interval, each 

predator will slay some fixed fraction of the prey population.  This linear predation is not 

a realistic interpretation of predator-prey interactions.   

 So although this model is an improvement, it still does not model the 

predator-prey interactions perfectly.  A better model would be of the form  
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 

 













)(),()(

)(),()(

212
2

211
1

txtxgtx
dt

dx

txtxftx
dt

dx

 

where  )(),( 21 txtxf  and  )(),( 21 txtxg  model the prey and predator situation in a 

logistic fashion.  The next model will consider this approach to determine of the model 

is a better fit for predator-prey interactions. 

3.5 Holling-Tanner Model Analysis.  Several dynamical behavior analyses of the Holling-

Tanner model  

y
x
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1

 

have been studied extensively, by Tanner [8] and May[9] among others, researching the 

model analysis and trends of solution curves. 

The system’s equilibrium points are found as before by starting with the 

nullclines.  For prey 
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Either 0x  or 
xr

yw

k

x
a










 10 , so 
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Hence, the nullclines are 0x  and )(1 xr
k

x

w

a
y 








  for prey.  Manipulating the 

second nullcline gives intercepts of k  and r  and 
w

ar
x

wk

arak
x

wk

a
y 


 2  .  Since 

all parameters are positive, it can be concluded that the parabolic nullcline opens down.  

Some values of k  and r  would have the vertex in the first quadrant. 

The predator nullclines are found similarly using 
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The predator nullclines are 0y  and
j

x
y  .   
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(a)  Equilibrium point to the right of the vertex (b) Equilibrium point to the left of the vertex 
 
Figure 3.12:  Nullclines for Holling-Tanner Model 
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The equilibrium points can found from the intersection of the nullclines as 

shown in figure 3.12.  There are two equilibrium points observed:  one at )0,(k   and 

another at  **, yx   where the nontrivial prey nullcline intersects the nontrivial predator 

nullcline in the first quadrant.  This equilibrium point could be located right of the vertex 

of the parabolic nullcline as shown in part a, or left of the vertex as shown in part b.  

 

 

 

 

 

 

 
 
 
 
 
 

 
While the exact coordinates can be found by setting the equations for the 

nullclines equal and solving, this does not provide useful information because of the 

large number of parameters.  Instead, if x , y , r , and k  are divided by the values at the 

critical points, namely 1* x   and  1*  jy , following May’s procedure [8], [9], the 

Jacobian becomes 
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The determinant of this matrix is 
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All parameters are positive so the determinant must be positive. 

If the trace is less than zero, the eigenvalues will be negative which will make the 

equilibrium point a sink. 
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For 1* x  and 
j

y
1*  for our equilibrium point and the nullcline )(1 xr
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For our equilibrium point, the trace of the characteristic equation will be greater than 

zero if 
a
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




)1(

1
2

2

.  The maximum of the prey nullcline is at 
2

rk 
.  If the x -value 

of the maximum of the nullcline is less than the x -value of the equilibrium point, that is  

)1(
2

*x
rk




, then 
2

rk 
 and  

)1(

1
2

2

rk

rk















 will be negative.  Therefore, for all values 

of 
a

c
 the model is stable if the equilibrium point is to the right of the vertex of the 

parabolic nullcline, as shown in figure 3.13. 
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Figure 3.13:  Phase portrait of Holling-Tanner Model with equilibrium point to the right of the vertex,  

where 1a , 1c , 4j , 400k , 5r , 5.0w  

If *x  is to the left of the parabolic prey nullcline, that is  )1(
2

*x
rk




then 

both fractions are positive.  The equilibrium point will be stable for 
c

a
  larger than  

)1(

1
2

2

rk

rk















, as shown in figure 3.14. 
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Figure 3.14:  Phase portrait of Holling-Tanner Model with stable equilibrium point to the left of the vertex, where 

5.0a , 1c , 5.1j , 400k , 5r , 5.0w  

 

Otherwise, solutions started near the equilibrium point will travel away from the 

equilibrium point and out toward a limit cycle, as shown in figure 3.15.   
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Figure 3.15:  Phase portrait of Holling-Tanner Model with unstable equilibrium point to the left of the vertex, where 

5.0a , 1.0c , 5.1j , 400k , 5r , 5.0w  

 

Theoretically, different behaviors can be exhibited and manipulated depending 

on the parameters from the Holling-Tanner Model.  Conversely, real world behavior 

from predator-prey communities is more difficult.  For instance, changing a  or c  could 

mean interfering with the natural reproductive rates of one species while leaving the 

other alone.  In addition, lowering the nutritional value of prey could increase j  the 

satiety of a predator which could make predators kill more often, but this manipulation 

could possibly affect health and longevity. 

Furthermore, this system is not linear so the process of linearization does hold 

for solutions near the equilibrium point, but there is no guarantee that these solutions 
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will behave similarly further away.  Solutions could possibly start near the unstable 

equilibrium point and do many different things further out.  Further analysis is 

necessary to fully understand the long term behavior of this system. 

 Currently, the Holling-Tanner model describes the interactions of the 

predator-prey communities much better than other models.  However, it does not 

consider human intervention, such as seasonal hunting or fishing.  Obviously, human 

involvement would change the dynamics of the model and the equilibrium.  For 

example, fishing can destroy an ecosystem by reducing the population to a level which 

would not recover and lead to extinction.  Mankind can equally choose to protect such 

ecosystems by interventions, such as establishing criteria and resolutions for hunting 

and fishing through quotas or restrained time periods of hunting or fishing.  For 

instance, consider a fishing circumstance where predator and prey are caught and 

removed from the ecosystem.  How much fishing, i.e. how many fish can be caught, in 

order to maximize the population of both the predator and prey populations?  In order 

to solve such problems, an optimal control problem must be stated.  This topic will be 

considered in the last section of this thesis. 
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CHAPTER IV 

REVIEW OF OPTIMAL CONTROL THEORY & LITERATURE 

 Optimal control theory, principally due to the work of Lev Pontryagin and his 

collaborators in the Soviet Union and Richard Bellman in the United States, is a branch 

of mathematics developed to find optimal ways to control a dynamic system, or a 

system that evolves over time.  A clear mathematical description of the system to be 

optimized, constraints imposed on the system, and the objective function to be 

maximized (or minimized) is required before any solution can be attempted.   

For instance, consider a simple case where a state equation,  

  0)0(,)(),( xxtutxfx 


 

where )(tx  is a state variable that depends on time and )(tu  is a control function to 

achieve the desired criterion, and 0x is the initial state, is introduced that describes the 

behavior of the underlying dynamical system.  Next, constraints are imposed on state 

and control variables.  For instance, for each  Tt ,0 , )(tx  and )(tu ,  could satisfy 

   Tttutxg ,0,0)(),(  .  

The objective function 

)()(
max))(),(,()(

1

0

TDu

t

t

dttutxtFuJ


   
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gives and quantitative measure of the performance of the system over time, with 

appropriate measure of quantities such as profits, sales, or populations.   

The goal is to find an admissible control, )(* tu , which maximizes (or minimizes) 

the objective function subject to the state equation and control restraints.   Pontryagin’s 

Maximum Principal (PMP) states that if ))(),(( ** tutx is an optimal pair, then there exists 

a continuous function, )(t , the adjoint function, such that for all   in        , )(* tuu   

maximizes the so-called Hamiltonian, defined as  ttutx ),(,),(   for )()( TDu  , where 

)(TD  is the set of all permissible controls.  In addition, the PMP specifies that 

  ))(),(),((),(),(),( ***** ttutxHtttutxH    for all )(TDu  

The PMP’s conditions are a set of necessary, but not sufficient conditions for the 

optimality.   Further information on the introduction of optimal control theory can be 

found in many books, such as Kirk [11]. 

 Since the development of optimal control theory, many mathematicians have 

studied and expanded work in this field.  For instance, Berkovitz sketches out the 

historical development of optimal control theory in 1976 [12].  In this paper, he outlines 

problems, such as the servo problem, the linear time-optimal problem, nonlinear 

optimal control problem, calculus of variations and sub problems derived, and the 

maximum principle.   

Additionally, Hartl, Sethi, and Vickson compile an overview of the various forms 

of Pontryagin’s maximum principle and the different sets of optimality conditions, with 
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“State Variable Inequality Constraints (SVICs)” [13].  In this work, the authors not only 

demonstrate the different forms of analysis but also concentrate on applications that 

frequently appear in the engineering and mechanics fields. 

Some mathematicians are focusing specific methods of solutions using analytical 

techniques.  For instance, Rupp uses the technique of multipliers applied to a nonlinear 

optimal control problem [14].  In this work, Rupp outlines the technique by saying: 

“Hestenes’ method of multipliers is to embed the differentially constrained problem in a family 

of unconstrained problems so as to preserve standard sufficiency criteria.  Given an initial 

estimate of the Lagrange multipliers, a convergent sequence of arcs is generated.  They are 

minimizing with respect to members of the above family, and their limit is the solution to the 

differentially constrained problem.” 

Rupp then reviews the sufficiency criteria and sufficiency theorems in order to apply the 

method.  Finally, he applies the method to a nonlinear optimal control problem. 

 An optimal control problem is much more difficult to solve with the existence of 

a singular control.  This degree of challenge means that the same methods cannot be 

used with all optimal control problems.  Consequently, numerical methods of solving 

optimal control problems have a definite place in the field.  Khmelnitsky discusses a 

graph based numerical method for the solution of bang-bang and singular control 

problems [15].  Khmelnitsky begins his process by using the bounded control to find the 

locally optimal trajectories.  Nodes and arcs are then constructed along the trajectories, 

although a singular arc may not be produced.  The globally optimal solutions may be 
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found by finding the shortest path between the arcs in the graph.  This numerical 

method can be used for finding both regular and singular optimality.  Other numerical 

methods include using spreadsheets to solve continuous time optimal control problems, 

such as Nævdal’s work [16].  In his work he outlines his method and illustrates several 

examples ranging from simple to hard.  Although this method is useful, it is typically 

used only for problems with one variable and one control. 

 The technique of solving problems by using a switching function, analyzing the 

behavior of the function under each condition, has been utilized as well.  Some work has 

been done by d’Onofrio, et al, while researching cancer to analyze drugs for tumor 

eradication [17].  Theoretical methods that allow to use switching functions for finding 

the type of optimal control analytically have been developed in the work of E. V. 

Grigorieva and E. N. Khailov  (students of Lev Pontryagin) . These methods found 

applications in solving practical problems n economics, managements, life sciences and 

biology [18] – [22].  Moreover, their approach can be used for complex models with 

several bounded controls and several state variables. This method will be utilized in the 

following section. 
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CHAPTER V 

OPTIMAL CONTROL OF HOLLING TANNER MODEL 

5.1 Literature on Optimal Control of Holling-Tanner Model.  The Holling-Tanner model 

and other predator-prey models have been the subject of mathematicians in the area of 

optimal control previously.  Kar considered a control problem with the Holling model, 

altered to incorporate a prey refuge, in which two species are harvested independently 

[23].  Kar analyzed the model for stable limit cycles and studied a control problem with 

an objective function to maximize the present value of a continuous time-stream of 

revenues.  The goal was to determine the optimal trade-off between current and future 

harvests in commercial fisheries.  Furthermore, Luk’yanova investigated a control 

problem for the Holling-Tanner model with controlled parameters applied to a 

technology predator-prey application [24].  Old-generation technology is considered 

prey while the new-generation is the predator.  The author utilized numerical 

integration techniques to make observations about the trajectories of the solution.  

Additional work has been done with the Holling model as well by Apreutesei [25] and 

Zhijun[26].   
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5.2 Holling-Tanner Model with Controlled Parameters.  In recent literature, a modified 

form of the Holling-Tanner model has been presented.  As referenced and described by 

Maiti [27], the functional response of the predator, 
xr

wxy


, has been replaced by 

xry

wxy


.  

Maiti mentions that one reason for such a switch would be to achieve the ratio 

dependent functional response for predators in comparison to the prey-dependent 

counterpart.  Maiti studies this model’s dynamical behavior when the environment is 

assumed to be deterministic and presents his results using computer simulations.   

This modified Holling-Tanner model will be considered with the introduction of 

controls )(tu

 

and )(tv  that represent the possibility of harvesting or capturing the 

populations of predator and prey: 

0)0(,0)0(

)(,)(
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x
a

d
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



 

where 0,,,,, jcrwka and the total population is represented by )()( TyTx   . 

Luk’yanova studies a similar optimal control of the original version of the Holling-

Tanner model [24].  In her paper, she presents and proves that the solution of her 

system satisfies inequalities  0)(1 tx  , 0)(2 tx , and 0t .  Also, she theorizes that the 

optimal control exists for every initial state 00

1 x  and 00

2 x .  Similarly, she writes a 
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proof for her theory.  She determines the Hamiltonian of her system and presents an 

adjoint system where she offers a theory and brief proof that there are no singular 

cases.  In this thesis, similar findings will be examined for the modified Holling-Tanner 

model. 

The number of parameters makes an analysis challenging, so the system will be 

simplified using the same process as used in as Maiti’s work by means of substitutions:   

k

x
x 1 ,  

k

ry
x 2 , and at  . 

For the first equation: 
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And then the second equation:
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The system becomes 

 
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
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
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The notation 
ra

w
  , 

a

c
 , and 

r

j
 will be introduced to further simplify.

 

For the first equation: 
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And the second equation: 
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Finally, the system becomes 
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                       (1) 

where  ,,  are given positive constants. 

The following Lemma and proofs illustrate an important property of the system 

(1) that will be utilized in the optimal control situation. 
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Lemma 1.  Solutions of system (1) are positive for all ],0[ Tt . 

Proof 1a.  Using the first equation of system (1) 
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and integrating after separation of variables 
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 then 0)(1 tx , and the 

lemma is proven for the first equation of system (1). 

Proof 1b.  Similarly, using the second equation of system (1) 
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and integrating after separation of variables  
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 then 0)(2 tx , and the lemma is 

proven for the second equation of system (1). 

This property can be generalized for predator-prey systems since almost all 

utilize the form 
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For the first system, integrating after separation of variables 
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2 x  

then for all ))(),(()),(),(( 2121 txtxgtxtxf , 0)(1 tx  and 0)(2 tx  .  This observation is 

interesting in that it appears to apply to most predator-prey systems that have been 

utilized to model scenarios. 

Lemma 1 illustrates the property that the solutions )(1 tx  and  )(2 tx  must be 

positive.   Utilizing this property of positiveness of solutions and equation (2), the 

following inequality can be written. 
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In addition, from equation (3) and the property from Lemma 1 of the positiveness of 

solutions  )(1 tx  and  )(2 tx  , a second inequality about the predator-prey system can be 

written as follows:  
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Then, via the work of Hartman on differential equations [28], it follows that )(1 tx  and  

)(2 tx  of equation (1) exist on ),0( T  and obey the inequalities: 
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5.3 Statement of Optimal Control Problem.  Fisheries management utilizes fisheries 

science in order to obtain maximum sustainable yield from a target species.  Modern 

fisheries management is typically idealized by rules constructed by defined objectives 

and management to implement the rules through monitoring and surveillance.  For 

instance, quotas on amounts of catch of fish are stated and management must make 

sure that fishing does not exceed this quota.   

For this instance, consider the optimal control problem of maximizing the entire 

population at the terminal time T  under harvesting efforts  
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Here A  and B  are nonnegative constants, with both constants less than or equal to 

one, so called scaling factors.  These constants can be interpreted as the economic 

importance of certain species. Thus, for 1B  then the predator population is 

important, for 5.0B  the predator population it is less important, and if 0B , it is not 

that important.  The existence of the optimal solution to a problem of optimal control of 

equations (1) and (4) follows from the work of Lee and Markus on optimal control 

theory [29]. 

Applying the Pontryagin Maximum Principle, the Hamiltonian for this optimal 

control problem is as follows: 
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of the adjoint system can be obtained using 
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Likewise, the second equation from system (1) can be utilized to find )(2 t


  . 
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Finally, these derivations yield the adjoint system as listed below. 
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with the boundary condition  AT )(1  and BT )(2 .  Since   is linear for controls, 

)(1 tu and )(2 tu , it follows from PMP that optimal controls )(
*

1 tu  and )(
*

2 tu  can be 

written as  
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Here 111 )( xtL   , 222 )( xtL  are so-called functions of switching because their 

behavior determines the type of the optimal control.  Then, following to the ideas of 
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Grigorieva and Khailov [18] – [22], an attempt will be made to rewrite the adjoint 

system in terms of the new variables )(1 tL  and )(2 tL . 

Making the change of variables using 111 xL   , then  
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where 0)()( 11  ATxTL . 
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Similarly, employing a change of variables using 222 xL   , then  
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where 0)()( 22  BTxTL . 

Therefore, the system of differential equations for the switching functions  )(1 tL  and 

)(2 tL is 
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    (5) 

It can be seen that 0)()(,0)()( 2211  TBxTLTAxTL  . 

Now an important characteristic of the switching functions )(1 tL  and )(2 tL  is discussed 

in Lemma 2. 
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Lemma 2.  Functions of switching )(1 tL  and  cannot be zero on any finite time  

interval  .  

Proof 2a.   Assume the opposite is true, that is   for  .   

Then, .  From the first equation of system (5), it is obtained that 

.  The second equation holds for interval .  Then  and   

for the entire interval   which contradicts the boundary condition and nontriviality 

of functions   and .  Thus, the assumption is false, and the statement is proven. 

Proof 2b.  Assume the opposite is true, that is 0)(2 tL   for ],0[ Tt   .   

Then, 


ttL ,0)(2  .  From the second equation of system (5), it is obtained that 

 ttL ,0)(1 .  The first equation holds for interval .  Then 0)(1 tL  and 0)(2 tL   

for the entire interval ],0[ T   which contradicts the boundary condition and nontriviality 

of functions )(1 tL  and )(2 tL .  Thus, the assumption is false, and the statement is proven. 

Consequently, through Lemma 2, the singular control cannot be optimal and the 

optimal solutions do not contain singular arcs.  Graphs for  )(1 tL   or )(2 tL  such as shown 

in figure 5.1 would be impossible since switching functions )(1 tL  and )(2 tL  cannot be 

zero on any finite time interval. 

)(2 tL
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0)(1 tL ],0[ Tt 
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ttL ,0)(1

 ttL ,0)(2  0)(1 tL 0)(2 tL
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Since for no finite interval ],0[ T  in which 0)(2,1 tL , from PMP, the optimal controls 

can be adjusted to  
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 Moreover,  and  as was stated earlier are both negative at t  (the 

last moment) and functions )(1 tL  and )(2 tL are continuous.  Hence, the optimal controls 

must take the minimal values at least at the end of the time interval  ,0 .  However, 

)(1 tL )(2 tL

 

Figure 5.1:  Impossible graphs for   or  for  
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until system (5) is solved using, for example, the methods developed in [18] – [22], the 

different number of zeros in the switching function can be recognized, and depending 

on the number of zeros, the different types of the optimal controls. In Figure 5.2,   

different possible types of the switching functions )(2,1 tL and corresponding optimal 

controls are shown. 

 

 

 

Further investigation with the analysis of the second and higher derivatives of 

the switching functions can be completed to relate to the number of zeros and draw 

more analytical conclusions.   Upon successful completion, with at least the maximum 

possible number of switchings analytically found, then a very complex two point 

: Optimal solution for  

  

         

    

  

    

    

    

  
        

 

     

  

  

  

  

 

: Optimal solution for   : Optimal solution for   

  

  

(a) 
 
with one zero  (b)  with two zeros  (c)   with three zeros 

  
Figure 5.2: Possible forms and number of zeros of  
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boundary value problem for the PMP can be rewritten as one of the finite dimensional 

optimization.  Papers of Grigorieva and Khailov show examples of this type of process   

[18] – [22]. 

For example, if it was analytically established that there were at most three 

switchings, then an optimization computer program can be written and the precise 

positions of the switchings in the optimal control would be found, and the maximum of 

the objective function would be evaluated.  Since this model is quite complex (bilinear 

with two bounded control functions), the analytical solution of the problem was not the 

goal of the thesis.  

In the next section, numerical methods will be attempted to solve system (1) for 

different types of the piecewise constant optimal control with at most two switching for 

selected objective functions, given by cases 1, 2 and 3.  Results of the computer 

modeling of system (1), with one only control function )(1 tu , will be demonstrated and 

discussed.  
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CHAPTER VI 

COMPUTER SIMULATIONS 

 With the degree of difficulty in analysis of the optimal control problem of the 

Holling Tanner model, a computer program in MAPLE that solves the problem 

numerically is advantageous.  Some preliminary numerical simulations were done using 

a computer program in MAPLE to solve the optimal control problem for the predator-

prey system (1) with only one control function )(1 tu .  In order to simulate the predator- 

prey model with an assumption to harvest only the prey and with consideration  that 

the optimal control has at most two switching on the time interval  ,0   and ends in 

the minimal value (minimal harvesting rate), the program must contain )(1 tu  as a 

piecewise constant function of the type minmaxmin ,, uuu .  The program of finite 

dimensional optimization calculates all possible values of the objective functions for all 

possible positions   210   over time interval  ,0  and finds the maximum value 

of  2121 ,,0),( utuJ .  Then, the program gives the exact value of the switching 

position, and therefore, the exact type of the optimal control. 
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Results of the computer modeling were obtained for three cases of the objective 

functions: 

a) Case 1:  
)()(

121
1

max)()0),((
tDu

TxutuJ


  

Here, only population of the prey will be maximized at moment t  using 

the best harvesting strategy with at most two switching, ending at the 

minimal rate 1

minu . 

b) Case 2:   
)()(

2121
1

max)()(0),(
tDu

TBxTAxutuJ


  

In this instance, once more, only the prey will be harvested on the interval 

 ,0  using the best harvesting strategy with at most two switching, ending 

at the minimal rate 1

minu , where 1A and 1B , and the total number of both 

species  will be maximized (saved) at terminal time  . 

c) Case 3:   
)()(

2121
1

max)()(0),(
tDu

TBxTAxutuJ


  

Yet again, only the prey will be harvested at moment t  using the best 

harvesting strategy with at most two switching, ending at the minimal rate

1

minu , but where 7.0A and 2.0B , and the weighted total number of both 

species  will be maximized (saved) at terminal time  . 
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6.1 Case 1.
  )()(),(

121
21

max)(),(
tDuu

TxuuJ


    

Consider the case with only one control ( )(1 tu  and 0)(2 tu ), using positive 

values for the parameters  ,, .  This circumstance could be a signification situation if 

only the prey is going to be harvested.  For instance, in the fishing industry perhaps only 

the food fish, i.e. crab, lobster, etc., are considered significant enough to harvest and 

the predator fish are not of substantial importance.  With parameter values of

1,1,67.0   , 06.01

min u , and 11

max u  , graphs in figures 6.1-6.5 are presented 

that represent an optimal solution with the only one switching at the middle of the 

second day ( 5.2t ).  This shows that harvesting at the maximum rate should continue 

only for 2.5 days.  At this point, it must be at the minimal rate 1

minu .  It is interesting to 

note that the population does not reach zero so the prey would not die off.  The graph 

in figure 6.1 shows how the value of the functional  211 ,),( tuJ  is changing depending 

on the positions of two switchings 210   . 
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It is interesting that though control )(1 tu  had originally two switchings, the 

maximum of the objective function  211 ,),( tuJ  happened for the optimal harvesting 

rate with only one switching at time 5.2t . For this situation, it means that if the prey 

population is maximized the prey population at the final moment t  by harvesting 

only prey species, the optimal strategy described above should be followed.  This 

strategy would maximize the amount of the preys at the tenth day  10  under the 

optimal harvesting strategy shown below, during the ten day time period. 

 

 

 

 

Figure 6.1 Case 1: Prey population at  versus  and  
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Figure 6.2 Case 1: Optimal control harvesting strategy 

Figure 6.3 Case 1: Prey population over time 
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Figure 6.4 Case 1: Phase portrait of prey population 

Figure 6.5 Case 1: Prey and Predator populations over time 
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6.2 Case 2.   
)()(

2121
1

max)()(0),(
tDu

TBxTAxutuJ


  

Consider the case with again one control, )(1 tu , and 0)(2 tu  (Predators are not 

caught during harvest), using positive values for the parameters  ,, , and where 

1A , 1B , 06.01

min u , and 11

max u  .  The objective function indicates that the total 

number of the both species at terminal time   will be maximized (saved).  Using the 

fishing industry as an example again, the harvest would consist of only the prey fish and 

not the predator fish.  With parameter values of 1,1,67.0   , graphs in figures 

6.6-6.10 are presented that represent the optimal solution with the harvesting rate 

switching at the end of the first day ( 1 ).  This shows that harvesting at the maximum 

rate should continue only for one day.  Then, fishing would be done for nine days at the 

minimal rate.  Once again, it is interesting to note that the population does not reach 

zero so the prey would not die off.  The graph in figure 6.6 shows how the value of the 

functional  211 ,),( tuJ  is changing depending on the positions of two switchings 

210   .  

 

 

 

 

 

 



 

 68 

 

 

 

 

 

 

 

 

 

 

Although control )(1 tu  had originally two switchings, the maximum of the 

objective function  211 ,),( tuJ  happened for the optimal harvesting rate with only one 

switching at time 1t . For this situation, it means that if the predator and prey 

populations are maximized at the final moment t  by harvesting only prey species, 

the optimal strategy described above should be followed.  This strategy would maximize 

the amount of the predators and preys at the tenth day  10  under the optimal 

harvesting strategy shown below, during the ten day time period. 

 

 

 

Figure 6.6 Case 2: Prey and predator population at 

 versus  and   
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In this case, the minimal rate needs to be switched earlier than in case 1.  The 

predator population is important since predators must eat prey, so if harvesting of prey 

continues for a longer period of time, there would be no food for the predators and 

)()( 21 TxTx  would not be maximized. 

 

 

 

 

 

 

 

Figure 6.7 Case 2: Optimal control harvesting strategy 

Figure 6.8 Case 2: Prey population over time 
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Figure 6.10 Case 2: Prey and Predator populations over time 

Figure 6.9 Case 2: Phase portrait of prey population 
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6.3 Case 3.  
)()(

2121
1

max)()(0),(
tDu

TBxTAxutuJ


  

Finally, consider the case with two controls, using positive values for the parameters

 ,, , and where 7.0A , 2.0B , 06.01

min u , and 11

max u .   As stated earlier, A  and 

B  are nonnegative constants, less than or equal to one, that can be interpreted as the 

economic importance of certain species.  Thus, for 2.0B , the predator population is 

much less important than the prey population where 7.0A . With parameter values of

1,1,67.0   , graphs in figures 6.11-6.15 are presented that represent an 

optimal solution over the period of ten days, which shows that harvesting at the 

maximum rate should continue until the end of the second day.  For a third time, it is 

interesting to note that the populations do not reach zero so the prey and predators 

would not die off.   

 

 

 

 

 

 

 

 

 

Figure 6.11 Case 3: Prey and predator population at  

versus  and  
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In this case, the minimal rate needs to be switched earlier than in case 1, but later than 

in case 2.  The prey population is the more important value.  However, the predator 

population is still of some importance again since predators must still eat prey to 

survive. 

 

 

 

 

 

 

 

 

Figure 6.12 Case 3: Optimal control harvesting strategy 

Figure 6.13 Case 3: Prey population over time 
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Figure 6.14 Case 3: Phase portrait 

Figure 6.15 Case 3: Prey and Predator populations over time 
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CHAPTER VII 

CONCLUSIONS 

The following summarizes the work done: 

1. Models used for predator-prey situations were reviewed, including the 

Malthusian model, the Verhulst-Pearl model, the Lotka-Volterra model, the 

Holling model, and the Holling-Tanner model. 

2. The Verhulst-Pearl model, the Lotka-Volterra model, the Holling model, and the 

Holling-Tanner model were analyzed for the number and type of equilibrium 

points.  Additionally, computer phase portraits were presented of the models. 

3. An optimal control problem was formulated for the Holling-Tanner model and 

was investigated to determine important characteristics of the optimal controls 

and optimal trajectories using the methods of the switching functions. 

4. An optimization computer program in MAPLE was employed to simulate our 

model numerically for certain type of the possible control and in order to 

determine the optimal solution that maximizes three types of the objective 

functions.  Results of different outputs are discussed.  
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The work done in this thesis lends itself to further investigation and expansion.  

Continuing work on the Holling-Tanner model could be done by investigating the second 

and higher derivatives of the switching functions of system (5) by finding the maximum 

number of the switchings.  This way, a very complex two point boundary value problem 

for the maximum principle (systems (1) and (5)), would be reduced to one of the finite 

dimensional optimization.  Then, the best optimal strategy (optimal control) with 

precise positions of the optimal control for the model would be found numerically.    

One can assume that this would help the fishing industry to plan their harvesting policy 

over given time interval with minimal harm to the ecological systems.  As the need for 

help with ecosystems continues to grow, mathematical studies with optimal control in 

this area will be of importance. 
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