LEVERS: A COMPUTER-ASSISTED INSTRUCTION

A THESIS
SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

IN THE GRADUATE SCHOOL OF THE
TEXAS WOMAN'S UNIVERSITY

COLLEGE OF NATURAL AND SOCIAL SCIENCES

BY
JUDITH A. TATE, B.S., M.A.

DENTON, TEXAS
AUGUST 1982

ACKNOWLEDGEMENTS

Changing careers can be a traumatic experience. Sometimes one is lucky enough to encounter people and situations that are extremely helpful in achieving new and different goals. The author wishes to offer a special "thank you" to the following:

Dr. David Marshall, thesis advisor, for his generous assistance during the realization of this project. His humor and informality were much appreciated.

Ms. Bobbie Ferrell and Dr. Shelley Saffer for serving on the thesis committee.

The Department of Mathematics, Computer Science and Physics for making a career transition as painless as possible but yet offering a demanding challenge in a new field.

Dr. Alice Milner, Chairman, Department of Nutrition and Food Sciences, for providing the opportunity to learn and use computer skills.

Dr. Virginia Brewer for her encouragement and assistance and for the periodic use of her laboratory microcomputer.

Dennis Dimarco for his very helpful technical advice.

TABLE OF CONTENTS

ACKNOWLEGEMENTS iii
LIST OF FIGURES v
Chapter
I. INTRODUCTION 1
Statement of the Problem 3
Purpose of the Study 4
II. REVIEW OF RELATED LITERATURE 5
Introduction 5
Types of CAI 5
Historical CAI Development 5
Microcomputers in Education 9
CAI Effectiveness 10
CAI Design Techniques 1.1
Summary 14
III. PROGRAM DESIGN AND CONSTRUCTION 16
Program Design 16
Program Construction 20
APPENDICES 22
A. Program Listings 23
B. Program User Manual 84
REFERENCES 91

LIST OF FIGURES

Figure Page
III.-1 17
III.-2 18
III.-3 18
III.-4 19

CHAPTER I

Introduction
As in all other aspects of life, the country's largest industry, education, has been dramatically affected by the rapid technological advancement of the computer. Administrative functions such as class scheduling, record keeping, and payroll calculations have been assumed by computers in virtually all school districts. The potential of computer utilization in instructional enrichment has not yet been realized, however.

In the past, the relatively high cost of computers has made their use prohibitive in most classroom teaching environments. The present trend, however, shows computer costs declining to the point where, in some cases, it is now economically feasible to equip an entire school with adequate computer supplies to provide effective learning opportunities for all students. Indeed, Seidel and Rubin (29) predict that, soon, the cost of storing and transmitting information will be less than that required for print technology. Levien (20) agrees when he says that instructional computing costs will be reduced to "a few cents per student hour." There is more to consider in quality education than cost minimization however.

Ellis (l0) warns that we will be tempted to modify current proven educational practices so that our teaching materials will be readily available for computerization. He adds that, as a consequence, we could develop inferior concepts of education.

Another area of concern among potential classroom computer users is the lack of good quality educational software. Jackson (17) has stated that "the figures that go around the [computer] industry are that only 3-5\% of the educational programs that are available are worth looking at." He further explains that this void of good software can be attributed to the fact that the programs are either written by programmers who aren't educators or educators who aren't programmers. McGowan and Faust (22) concur when they state that writing and testing new computer assisted instruction (CAI) programs takes a considerable amount of time and talent. An individual must be knowledgeable in the subject matter and must possess skills in instruction design, program writing and CAI.

The emergence and refinement of computer graphics has added a new dimension to CAI increasing potential applications greatly. Graphics, in addition to non-textual displays, can give the illusion of motion making the computer more adaptable in curricula where physical movement is the medium of study. In particular, aspects of physical
education, physical therapy, and occupational therapy instruction can be enhanced. Currently, usage of CAI is minimal in these movement-oriented disciplines when compared to others (33).

It is often difficult for students to fully comprehend some of the concepts relating to principles of movement when they are introduced through traditional teaching methods. Textbook illustrations, because of their static nature, are of limited value in improving understanding. The development of sound and effective CAI software in curricula involving physical activity would not only improve learning in those areas of study but would produce a cornerstone for further development of $C A I$ in other instructional areas.

STATEMENT OF THE PROBLEM

This study entails the development of a computer program to aid in the teaching of a unit on levers and the concept of leverage. Through extensive use of interactive graphics, the effect of lever parameters on subsequent movement potential will be shown. Response-determined branching will be employed when appropriate and program capability will include the recording of student identification and response tracking in a separate file.

PURPOSE OF THE STUDY

The purpose of the investigation is to develop a computer program with graphics to be used as supplemental instruction in the study of the principles of leverage.

CHAPTER II

REVIEW OF RELATED LITERATURE

Introduction
The development of quality Computer Assisted Instruction is a very time consuming project. The following review of related literature was undertaken to ascertain the present state of the art in CAI software. In particular, the search will focus on 1) types of CAI, 2) historical CAI development, 3) microcomputers in education, 4) CAI effectiveness, and 5) CAI design techniques.

Types of CAI
Cleary, Mays, and Packham (5) define CAI as "the use of the computer as a sophisticated teaching machine which presents material to the student." They add that CAI can be presented in several types of modes:

1) Drill and Practice - the student is presented opportunities for application of acquired knowledge and allows the user to gain familiarity and competence with the material.
2) Tutorial - the student is presented with material for the first time. Acquisition of new facts and concepts is the main objective.
3) Dialogue - the student can ask the computer questions and carry on fairly sophisticated conversation.

Drill and practice and tutorial modes of instruction appear to dominate present CAI program development. Doerr (8) states that drill and practice techniques are of most value in the educational environment. She elaborates by stating that a human teacher seems to be unnecessary when practice of previously learned material is the major goal.

Tutorial CAI, however, is designed to replace the teacher in presenting new facts. Doerr feels that tutorial CAI can be particularly effective in make-up work or in specialized individual instruction.

Historical CAI Development
Historically, computer software development has occurred at a slower rate than has computer hardware. This is particularly true for CAI. In the late l950s the first uses of CAI were made almost exclusively by business and industry to train employees. Programming was complicated and tedious but IBM later produced an author language, Courseware 1, which enabled educators to program their ideas more directly (23). The first documented use of CAI in the schools occurred in 1959 when electric typewriters,
interfaced with an IBM 650 computer, presented instructional programs to New York elementary school children (3).

The noted success of IBM's experiment encouraged other major CAI development projects. In 1963 the Institute for Mathematical Studies in the Social Sciences at Stanford University produced a series of tutorial programs in mathematical logic. Additional drill and practice programs later supplemented Stanford's initial effort. Extensive program evaluation occurred during the following years. It was found that, when compared to a control group of students traditionally taught, CAI students performed better on SAT tests. This was true for both the tutorial and drill and practice CAIs. Stanford later instituted a Russian language program. It, too, met with similar success.

During the l950s, the University of Illinois, working in conjunction with Control Data and the National Science Foundation developed and produced PLATO (Programmed Logic for Automated Teaching Operations). An interesting feature of PLATO is its touch sensitive screen panel which enables a user to touch an option or selection. This eliminates typing ability or, in the graphics mode, reading ability as prerequisites for utilization. Such programs can be used by very young children and by those who don't speak English. PLATO can readily be used in various instructional modes. Magidson (25) surveyed over 2000 students who had used PLATO
for an average of seven hours each and found that, overall, student attitudes were highly positive in their evaluation of PLATO. The only drawback often cited was difficulty with computer or terminal malfunctions. Today, Control Data Education Corporation offers learning and training centers in 50 cities in the United States. Several universities, secondary schools and even prisons also enjoy plato instructional opportunities. Presently, there are available volumes of CAI field-tested software in most curricular areas (32).

In 1972 Brigham Young University, funded by the MITRE corporation, began developing and researching an innovative idea called TICCIT (Time-shared, Interactive, Computer-Controlled, Information Television). The project was designed to combine computer and television technologies in presentation of $C A I$ programs in Mathematics and in English. Instructional materials are presented on a television screen. Sequential displays are determined by the student, not the system. This is accomplished through a pad of "learner control" keys located on a keyboard interfaced with a computer. TICCIT is particularly designed for conceptual learning tasks. Evidence $(15,25)$ suggests that, when the student has control over program pathways, learning is accomplished more quickly.

These early efforts in creating effective CAI have
resulted in programs that are still widely used in education, business, and industry. Often these CAI programs are used as a standard in the evaluation of new CAI software.

Microcomputers in Education
The recent marketing of relatively low-cost microcomputers has made the implementation of CAI accessible to most educational institutions. Microcomputers are "stand alone devices with binary data processing capability usually up to 54 thousand bytes." Presently prices vary from \$200 to $\$ 6000$ (13). Often other "peripheral" devices are necessary for educational computing (cathode ray tube, printer, disk drive, etc.). The National Science Foundation estimates that there are about 200,000 units in elementary and secondary schools and projected that, by 1985, one million microcomputers will be in service in these schools (13). Bork (4) estimated that from 1980 to 1985 the percentage of schools with CAI will increase from 54 percent to 74 percent.

This rapid introduction of microcomputers into the schools has manifested several problems. Some schools are purchasing many microcomputer and finding there is no one that can operate them. Teachers have found themselves lacking knowledge about computers and their possible
applications. Some (13) fear that teachers will resist computers much as they have earlier technologies.

Many microcomputers now offer capabilities to display graphics. Skyrme (30) states that "the human brain can quickly assimilate an image more easily than it can decipher text." Hammond (14) adds that software with graphics tends to show rapid learning of a task that would otherwise be difficult. Bork (4) states that graphics tend to separate the important from the trivial, and found student motivation higher with their use. When appropriately used, graphics can also demonstrate motion. This makes it particularly adaptable to motion oriented disciplines. Few applications are reported in subjects where movement or motion is the major medium.

CAI Effectiveness

Regardless of cost reduction, however, most institutions will not make this investment of time and money unless CAI has demonstrated cost-effective advantages over other traditional modes of instruction. Numerous investigations have been performed to compare learning effectiveness of CAI compared to that of other types of instruction. According to splittgerber (31), the decision to implement CAI should focus on three questions: 1. What are the relative advantages over less
expensive traditional methods?
2. What is the amount of learning gain compared with other methods?
3. Have the identified teaching advantages reduced costs to a point that allows school districts to adopt CAI?

Magidson (24) found that CAI was superior to traditional methods in 45 percent and at least as effective in 55 percent of the surveyed studies. Student attitudes and learning efficiency also favored CAI. Lewellen (21) and Visonhaler and Bass (36) compared standardized test scores in abstract reasoning and scholastic aptitude with those traditionally taught. Results showed that students who used CAI performed better than those who did not. It was concluded that "students are able to learn more material in less time when the computer is properly utilized in the educational process" (35). Gleason (13) summarized CAI research findings and reported a 20 to 40 percent time saving in learning favoring CAI. Those studies surveyed also suggest that retention of learning is often better than that of conventional learning.

CAI Design Techniques

The development of one hour of CAI usually takes a programmer several hundred hours to prepare. In addition,
course objectives must be defined, program content verified and, upon completion, the program should be administered to representatives of the population for whom it was authored. Gagne, Wager, and Rojas (11) warn that CAI authors must invest a considerable amount of advance planning before initiating actual software programming. Pre-programming procedures do not differ markedly from traditional preliminary planning for classroom instruction; the same principles of learning theory must be employed in both (13,24,27,28). Roblyer (28) offers several essential characteristics of good CAI software:

1. Statement of objectives - should be clearly stated and instructional rather than recreational.
2. Statement of entry skills - should define what preliminary information or abilities are necessary to benefit from the program.
3. Design of learning activities - mode of instruction is defined (i.e. drill and practice), proper learning sequence is determined; each element of presentation is matched to the stated objectives.
4. Design of tests - On line tests (if appropriate) are written and validated.
5. Content integrity - Evaluation of course content
for misspellings, grammatical errors, and misleading statements is performed.
6. Design of presentation - All possible learning distractions (i.e., overuse of flashing text) are identified and eliminated.

Other programming considerations are: learner control, feedback, response format, graphics and animation. Each is described briefly below:

Learner control

The pattern and amount of information in a CAI can be controlled by the system or by the user (learner). Most (11,15,25) studies indicate that when the presentation is learner controlled, the student learns more quickly and has a more positive attitude towards the program.

Feedback

When a student makes a response he/she should be provided information relative to the appropriateness of that response. This is known as feedback. Hanson (15) found that system controlled feedback reduced learner anxiety levels. When feedback was learner controlled, the time to complete a high level reasoning task was reduced.

Response format

Sometimes it is desirable to accept responses expressed
in different ways. Care should be taken to avoid negative feedback for any possible response that is correct. The program must allow for all possible responses to ensure proper program flow.

Graphics and animation
Roblyer (28) states that graphics and animation should be used only when diagram or movement is critical for concept understanding. He suggested that overuse of graphics tends to distract learning. Caldwell (5), however, recommends that graphics and animation be used whenever they might spark an interest in the course content.

SUMMARY

A gleaning of the literature reveals that the early anticipated potential of computer assisted instruction has not yet been realized. The introduction of low cost microcomputers has made CAI accessible to most educational institutions. Unfortunately, CAI software development has not kept pace. Very few programs apply the principles of proven learning theories and, at the same time, make optimum use of the computer as the learning medium.

When quality CAI programs are used, research tends to show favorable results in learning compared to those found with traditional teaching methods. As the number of computer literate people rises, the quality of future CAI
can be expected to improve dramatically. Sophisticated hardware and the development of new instructional programming languages will make CAI authoring easier and less time consuming.

CHAPTER III

PROGRAM DESIGN AND CONSTRUCTION

The purpose of this thesis was to develop a computer assisted instruction to supplement a student's introduction to the concepts of levers. Accomplishment of this task required two major phases: program design and program construction. An attempt was made, at all times, to follow CAI guidelines and recommendations as outlined in the literature review in Chapter II.

Program Design
Regardless of the method or type of knowledge transmission, there are several characteristics of optimally effective teaching. Theories of learning apply to the development of CAI just as they do in more traditional teacher planning.

The initial step in designing a course is to prepare a detailed description of the knowledges or skills that the student will possess upon successful course completion (22). These should always be available to the student and expressed in terms that will enable him to evaluate progress.

The following objectives were prepared for the CAI unit on levers. These objectives are available, on line, to the
student and also appear in a user manual (See Appendix B). Upon completion of all modules the student will:

1. Identify lever parts
2. Classify levers
3. Define lever terms
4. Perform lever calculations
5. Classify simple tools in terms of leverage

Course content and order of presentation were then established to optimally meet the objectives. Concurrently, a test was developed to assist in later program evaluation.

Course content was placed into one of three learning modules according to degree of difficulty and importance in understanding other related concepts. Module descriptions appear in Figure 1. Elaboration of each module's content appears in the user's manual in the Appendix. While the program allows for branching to any of these modules, the recommended learning sequence would be l) definitions, 2) applications, and 3) quiz.

Figure III.-l: Program Branch Options

Upon completion of any module, the student has the option of branching to either of the other modules or of quitting. The learner therefore has some control over material presented.

Program flow is different for each module. In the definitions module, flow is linear; presenting and defining terms. Graphic displays are used to help define each term and demonstrate its relationship to other terms. Sample flow for the definitions module appears in Figure 2.

Figure III.-2: Program Flow for Definitions Module
This tutorial mode has little flexibility and is basically system-controlled. The student must progress through the entire program but he can control the speed of presentation. The applications module was designed to provide opportunities to apply knowledge learned in the definitions module.

Program flow is somewhat more sophisticated. An

Figure III.-3: Program Control for Applications Module example is shown in Figure 3.

Again, graphics were used extensively to provide the questions and to enhance explanations.

The quiz module was constructed to be used for either drill and practice or for evaluation of student progress. Questions are presented in order of difficulty and incorrect answers receive a graphic explanation. Quiz questions assume the student has acquainted himself with the course content in the other two modules. Sample program control appears in Figure 4.

Upon completion of the quiz the student is provided with the number of incorrect answers and is given an

Figure III. -4 : Program Flow for Quiz Module student information along with the questions missed and answers selected can be sent to a record keeping "filewriter" for later analysis by the instructor.

Program Construction

All programming was done in BASIC (Beginners All-purpose Symbolic Instructional Code). BASIC enjoys almost universal use in microcomputers (13). The programs were written for an APPLE II plus with 48 K and an interfacing CRT (cathode ray tube). The APPLE is presently the most popular microcomputer in educational institutions (13) and has graphic capabilities superior to its
(13) and has graphic capabilities superior to its competitors.

Shape tables for high resolution graphic displays were prepared with the aid of special software authored by Robert Clardy and marketed by Synergistic Software. Text was formatted on coding forms designed specifically for the APPLE screen dimensions. A short introductory program was written to provide the user with the program title, author, and unit objectives. The shape table which is used in all three modules is loaded from this program. A "relocation" program was written to load each of the modules at an address lower than Apple's standard loading address. This was necessary to prevent the module from overwriting the high resolution screen.

Screen advancing is controlled by the student who can, therefore, take as much time as he needs. A message is flashed for any entry inconsistent with the type requested and the student is given another opportunity to respond. A program user manual appears in Appendix B. The set of program listings can be found in Appendix A.

APPENDICES

APPENDIX A

PROGRAM LISTINGS

INTRODUCTION PROGRAM

```
    9 D$ = CHR$ (4): REM LOAD TITLE CHAR
    10 PRINT CHR$ (4);"BLOAD LEVERS"
    20 POKE 232,252
    30 POKE 233,29
    35 HOME
    40 HGR
    50 HCOLOR=3
    6 0 ~ S C A L E = ~ 8 ~
    70 ROT= 0
    80 x = 50
    85Y = 70
    90 FOR I = 1 TO 3
    95 IF I = 1 THEN GOSUB 300
    95 IF I = 2 THEN GOSUB 600
    97 IF I = 3 THEN GOSUB 300
    100 DRAW I AT X,Y
    105 GOSUB 700
    110 X = X + 30
    120 NEXT I
    125 I = 2
    126 GOSUB 500

130 DRAW 2 AT X,Y: REM USING "E" AGAIN?'
135 GOSUB 700
\(140 \mathrm{X}=\mathrm{X}+30\)
150 FOR I \(=4\) TO 5
155 IF I \(=4\) THEN GOSUB 300
150 IF I \(=5\) THEN GOSUB 600
166 DRAW I AT X,Y
167 GOSUB 700
\(158 x=x+30\)
170 NEXT I
180 FOR J = 1 TO 3000: NEXT J
190 TEXT
200 HOME
202 INVERSE : FOR I = 2 TO 39: VTAB 2: HTAB I: PRINT " ": N EXT

203 FOR I = 2 TO 23: VTAB I: HTAB 39: PRINT " ": NEXT
204 FOR I = 39 TO 2 STEP - 1: VTAB 23: HTAB I: PRINT " ":
NEXT
205 FOR \(I=23\) TO 2 STEP - \(1:\) VTAB I: HTAB 2: PRINT " ": N EXT

206 NORMAL
\(210 \operatorname{VTAB}(7): \operatorname{HTAB}(19): \operatorname{PRINT}\) "BY"
\(211 \operatorname{VTAB}(10): \operatorname{HTAB}(15):\) PRINT "JUDY TATE"
\(212 \operatorname{VTAB}(13): \operatorname{HTAB}(7): \operatorname{PRINT}\) "TEXAS WOMAN'S UNIVERSITY"
213 VTAB (16): HTAB (18): PRINT "1982"?'

220 FOR J = 1 TO 4000: NEXT J
221 HOME : VTAB 3: HTAB 15: INVERSE : PRINT "OBJECTIVES": N ORMAL

222 VTAB 5: HTAB 1: PRINT "WHEN YOU FINISH THIS SET OF PROG RAMS YOU": VTAB 8: HTAB 1: PRINT "SHOULD BE ABLE TO:" 223 : VTAB ll: HTAB 5: PRINT "]. IDENTIFY LEVER PARTS" 224 VTAB 13: HTAB 5: PRINT "2. CLASSIFY LEVERS" 225 VTAB 15: HTAB 5: PRINT "3. DEFINE LEVER TERMS" 226 VTAB 17: HTAB 5: PRINT "4. PERFORM LEVER CALCULATIONS" 227 VTAB 19: HTAB 5: PRINT "5. CLASSIFY SIMPLE COMMON TOOLS ": VTAB 21: HTAB 8: PRINT "IN TERMS OF LEVERAGE": VTAB 24: H TAB 7: INVERSE : PRINT "PRESS ANY KEY TO CONTINUE";: NORMAL : GET KEY\$

228 HOME : VTAB 8: HTAB 7: PRINT "CHOOSE ONE OF THE FOLLOWI NG: "

230 VTAB ll: HTAB 7: PRINT "l. DEFINITIONS AND EXAMPLES"
235 VTAB 14: HTAB 7: PRINT "2. TEST"
240 VTAB 17: HTAB 7: PRINT "3. QUIT"
244 INVERSE
245 VTAB 20: HTAB 14: PRINT "CHOOSE 1,2, OR 3";
246 NORMAL
250 GET CHO\$: GOSUB 9700
251 IF PEEK \((705)=1\) THEN POKE 705,0: GOTO 250
252. ON CHO GOTO \(255,270,290\)

253 HOME : VTAB 12: HTAB 14: PRINT "PLEASE WAIT"
```

 254 ON CHO GOTO 255,270290
 255 PRINT " ": PRINT D$;"RUN RELOCATE"
 270 PRINT " ": PRINT DS;"RUN MOVEMEM"
 290 HOME : END
 300 REM BRINGS LETTERS FROM BOTTOM OF
 301 REM SCREEN
 310 FOR Y = 140 TO 80 STEP - 10
 320 DRAW I AT X,Y
 325 GOSUB 700
 330 FOR J = l TO 100: NEXT J
 340 XDRAW I AT X,Y
 360 NEXT Y
 370 RETURN
 600 REM BRINGS LETTERS FROM TOP
 GO1 REM OF SCREEN
 610 FOR Y = 0 TO 70
 6 2 0 ~ D R A W ~ I ~ A T ~ X , Y ~
 625 GOSUB 700
 630 FOR J = 1 TO 100: NEXT J
 640 XDRAW I AT X,Y
650 Y = Y + 10
650 NEXT Y
670 RETURN ?'
7 0 0 ~ R E M ~ P R O D U C E S ~ C L I C K ~ W I T H ~ E A C H ~ L E T T E R ~ D R A W ~
705 S = - 15336

```
```

710 SOUND = PEEK (S) - PEEK (S) + PEEK (S) - PEEK (S) +
PEEK (S) - PEEK (S) + PEEK (S) + PEEK (S) - PEEK (S) +
PEEK (S) - PEEK (S)

```
720 RETURN
9700 REM **CHECKS FOR VALIDITY
9701 REM ** OF ANSWER
9705 IF ASC (CHO\$) > 48 THEN IF ASC (CHO\$) < 53 THEN CHO
    \(=\) ASC (CHO\$) - 48: RETURN
9710 POKE 705,1: VTAB 23: HTAB 4: PRINT "ENTER THE ";: INVE
RSE : PRINT "NUMBER";: NORMAL : PRINT " OF YOUR CHOICE ";
9715 FOR I \(=1\) TO 2000: NEXT
9750 RETURN

\section*{DEFINITIONS PROGRAM}
```

10 REM ************************
12 REM BRANCH TO DEFINITIONS *
14 REM
16 SP = 100
18 DIM T$(40)
20 PRINT CHR$ (4);"BLOAD NEWTAB,A$8000"
25 POKE 232,0: POKE 233,128
26 SP = 255: POKE 700,0
27 POKE 705,0: POKE 702,0
100 REM *** PAGE 1 ***
105 HOME :V = 8:H = 5:T$ = "EVERY LEVER HAS THREE PARTS:"
110 GOSUB 5000
111 T = 2000: GOSUB 8000
115 V = 11:T\$ = "1. RESISTANCE (R)"
117 GOSUB 5000
118 T = 1000: GOSUB 8000
120 V = 14:T\$ = "2. AXIS (A)"
121 GOSUB 5000
122 T = 1000: GOSUB 8000
125 V = 17:T\$ = "3. FORCE (F)"
125 GOSUB 5000
127 T = 2000: GOSUB 8000

```
\(128 \mathrm{~V}=23: \mathrm{H}=15: \mathrm{T} \$=\) "PRESS ANY KEY TO CONTINUE": INVERSE
: GOSUB 5000: NORMAL
130 GOSUB 9000
200 REM *** PAGE 2
201 REM
202 HOME
\(205 \mathrm{~V}=8: \mathrm{H}=2: \mathrm{T} \$=\) "THE ARRANGEMENT OF THESE THREE PARTS": GOSUB 5000
\(210 \mathrm{~V}=11: \mathrm{H}=8: \mathrm{T} \$=\) "(RESISTANCE, AXIS, FORCE)": GOSUB 500 0

215 VTAB 14: HTAB 4: PRINT "WILL DETERMINE TO WHICH ";: INV
ERSE : PRINT "CLASS";: NORMAL : PRINT " A"
\(220 \mathrm{~V}=17: \mathrm{H}=13: \mathrm{T}\) = \(=\) LEVER BELONGS.": GOSUB 5000
230 GOSUB 9000
300 REM *** PAGE 3 ***
301 REM
303 HOME
\(305 \mathrm{~V}=8: \mathrm{H}=4: \mathrm{T} \$=\) "THERE ARE THREE CLASSES OF LEVERS:": G
OSUB 5000
\(310 \mathrm{~T}=1000:\) GOSUB 8000
\(315 \mathrm{~V}=11: \mathrm{H}=8: \mathrm{T} \$=\) "1. FIRST"
317 GOSUB 5000
\(318 \mathrm{~T}=1000:\) GOSUB 8000
\(320 \mathrm{~V}=14: \mathrm{TS}=\) "2. SECOND": GOSUB 5000
\(325 \mathrm{~T}=1000\) : GOSUB 8000
\(330 \mathrm{~V}=17: \mathrm{T} \$=\) "3. THIRD": GOSUB 5000
\(335 \mathrm{~T}=1500:\) GOSUB 8000
\(340 \mathrm{~V}=21: \mathrm{H}=4: T \$=\) LET'S LOOK AT EACH ONE SEPARATELY.":
GOSUB 5000
350 GOSUB 9000
360 TEXT : HOME
362 REM ** INSTRUCTION PAGE **
365 HOME : \(V=7: H=5: T \$=" T H E\) SEQUENCE OF LEVER COMPONENT
S": GOSUB 5000
367 V = 10:H = 13:TS = "DETERMINES LEVER": GOSUB 5000
369 V = 13:H = 17:T\$ = "CLASS.": GOSUB 5000
370 GOSUB 9000: HOME
\(371 \mathrm{~V}=8: \mathrm{H}=6: \mathrm{T}\) = \(=\) "ON THE FOLLOWING DIAGRAM MOVE": GOSUB 5000
\(373 \mathrm{~V}=12: \mathrm{H}=10: \mathrm{T} \$=\) "THE AXIS AND WATCH THE": GOSUB 5000 \(375 \mathrm{~V}=16: \mathrm{H}=6: \mathrm{T}=\) "LEVER CLASSIFICATION CHANGE.": GOSUB 5000: GOSUB 9000

376 HOME
\(377 \mathrm{~V}=10: \mathrm{H}=3: \mathrm{T}=\mathrm{T}=\mathrm{TO}\) MOVE THE AXIS TO THE LEFT TYPE 'L'
": GOSUB 5000
\(379 \mathrm{~V}=13: \mathrm{TS}=\mathrm{"TO}\) MOVE THE AXIS TO THE RIGHT TYPE 'R'": GO SUB 5000
\(381 \mathrm{~V}=15: \mathrm{TS}=\) "TO COME BACK TO THIS PAGE TYPE 'I'": GOSUB 5000

385 GOSUB 9000
```

 400 REM *** DISPLAY LEVER SYSTEM ***
 \triangleO1 GOSUB }510
 460 V = 22:H = 10:T$ = "A FIRST CLASS LEVER": GOSUB 5000
 470 V = 24:H = l:TS = "THE AXIS IS BETNEEN FORCE AND RESISTA
 NCE": GOSUB 5000
 480 T = 3000: GOSUB 8000: HOME
 500 X = 125: GOSUB 6200
 505 IF AX$ = "I" THEN TEXT : GOTO 376
 600 REM *** PAGE 6 ***
6 0 1 ~ R E M
503 TEXT : HOME
605 V = 8:H = 7:T\$ = "LEVERS ENABLE A USER TO GAIN": GOSUB 5
000
610 VTAB l1: HTAB 16: INVERSE : PRINT "EITHER": NORMAL
515 VTAB 15: HTAB 13: PRINT "FORCE ";: INVERSE : PRINT "OR"
;: NORMAL : PRINT " SPEED"
520 V = 19:H = 18:T\$ = "BUT...."
621 GOSUB 5000
525 GOSUB 9000
700 REM ** PAGE 7 **
701 REM
705 HOME :V = 11:H = 13:T\$ = "BEFORE CONTINUING": GOSUB 500
0
710 V = 14:H = 6:TS = "WE NEED TO LEARN SOME NEW TERMS:": GO
SUB 5000

```

711 GOSUB 9000
712 HOME
\(715 \mathrm{~V}=8: \mathrm{H}=5: T \$=\) "FORCE ARM - PERPENDICULAR DISTANCE": G OSUB 5000
\(720 \mathrm{~V}=10: \mathrm{H}=18: \mathrm{TS}=\) "BETWEEN THE AXIS AND": GOSUB 5000
\(725 \mathrm{~V}=12: \mathrm{TS}=\) "THE POINT OF APPLICA-": GOSUB 5000
\(728 \mathrm{~V}=14: T \$=\) "TION OF FORCE.": GOSUB 5000
\(735 \mathrm{~V}=22: \mathrm{H}=13: \mathrm{T} \$=\) "FORCE ARM = FA": GOSUB 5000
740 GOSUB 9000
800 REM ** GRAPHICS (FA) **
801 REM

805 GOSUB 6100
\(808 \mathrm{X}=125: Y=158\)
810 GOSUB 5500
815 GOSUB 9000
820 REM *** PAGE 7B
825 TEXT : HOME :V = 7:H = \(5: T \$=\) "RESISTANCE ARM - PERPEND
ICULAR": GOSUB 5000
\(830 \mathrm{~V}=9: \mathrm{H}=18: \mathrm{T} \$=\) "DISTANCE BETWEEN THE": GOSUB 5000
\(835 \mathrm{~V}=11: T \$=\) "AXIS AND THE POINT OF": GOSUB 5000
\(840 \mathrm{~V}=13: \mathrm{T} \$=\) "RESISTANCE. (RA)": GOSUB 5000
\(845 \mathrm{~V}=22: \mathrm{H}=10: \mathrm{TS}=\) "RESISTANCE ARM = RA": GOSUB 5000
845 GOSUB 9000
847 GOSUB 6100
\(848 \mathrm{X}=125:\) DRAW 5 AT \(\mathrm{X}, 80: \mathrm{X}=122\)
```

 849 POKE 705,l:Z = 92
 850 GOSUB бб00
 855 GOSUB 9000
 860 REM ** PAGE 10
 86l REM
 865 TEXT : HOME : SPEED= 255
 870 VTAB 5: HTAB 3: PRINT "A ";: INVERSE : PRINT "SECOND";:
 NORMAL : PRINT " CLASS LEVER ALWAYS HAS A"
 875 V = 12:H = 7:TS = "LONGER FORCE ARM AND FAVORS": GOSUB 5
 000
 880 V = 18:H = 17: INVERSE :T$ = "FORCE": GOSUB 5000: NORMAL
 885 GOSUB 9000
 887 X = 71: POKE 700,1
 8 9 0 ~ G O S U B ~ 6 1 0 0 ~
 892 X = 71: DRAW 5 AT X,80
 893 GOSUB 6000: VTAB 2l: HTAB l: PRINT "FORCE ARM IS LONGER
 THAN RESISTANCE ARM"
 894 GOSUB 7200:Y = 158
895 X = 71: GOSUB 6500
898 T = 300: GOSUB 8000
900 Y = 92:X = 71
901 GOSUB 6900
905 GOSUB 9000
950 REM *** PAGE 10B

```
```

 951 REM
 952 TEXT : HOME
 955 VTAB 6: HTAB 4: PRINT "A ";: INVERSE : PRINT "THIRD";:
 NORMAL :50 VT$ = "LONGER RESISTANCE ARM AND FAVORS": GOSUB 5
 000
 965 INVERSE :V = 18:H = 17:T$ = "SPEED": GOSUB 5000: NORMAL
 970 GOSUB 9000
 972 GOSUB 6100: DRAW 5 AT 185,80
 975 GOSUB 6000: VTAB 21: HTAB l: PRINT "RESISTANCE ARM IS L
 ONGER THAN FORCE ARM"
 976 X = 185: GOSUB 7200
 977 Y = 92
 978 Z = 151
 979 POKE 705,0: GOSUB 6600
 980 GOSUB 9000
 985 X = 183:Y = 92:Z = 161
 987 GOSUB }593
 989 GOSUB 9000
1000 REM ** PAGE 10B
1001 REM
1005 TEXT : HOME
1010 VTAB 4: HTAB 6: PRINT "A ";: INVERSE : PRINT "FIRST";:
NORMAL : PRINT " CLASS LEVER MAY HAVE"
1015 VTAB 8: HTAB 17: INVERSE : PRINT "EITHER": NORMAL

```
```

1020 V = 12:H = 11:T\$ = "A LONGER FORCE ARM": GOSUB 5000
1025 VTAB 16: HTAB 19: INVERSE : PRINT "OR": NORMAL
1030 V = 20:H = 8:T\$ = "A LONGER RESISTANCE ARM": GOSUB 5000
1032 GOSUB 9000
l035 HOME :V = 5:H = 4:T\$ = "WHENEVER WE DIVIDE THE LENGTH
OF"
1037 GOSUB 5000
1040 V = 8:H = l0:T\$ = "THE FORCE ARM BY THE": GOSUB 5000
1045 V = 11:H = 7:T\$ = "LENGTH OF THE RESISTANCE ARM": GOSUB
5 0 0 0
1050 V = 14:H = 14:T\$ = "WE GET THE": GOSUB 5000
1055 V = 17:H = 10:T\$ = "MECHANICAL ADVANTAGE": INVERSE : GO
SUB 5000: NORMAL
1060 V = 20:H = 17:TS = "SO...": GOSUB 5000
1062 GOSUB 9000: HOME
1055 V = 10:H = 22:T\$ = "FA": GOSUB 5000
1070 V = 11:H = 16:T\$ = "MA = ---": GOSUB 5000
1075 V = 12:H = 22:T\$ = "RA": GOSUB 5000
1080 GOSUB 9000
2060 TEXT : HOME :V = 5:H = 8:T\$ = "ON THE FOLLOWING DIAGRA
M": GOSUB 5000
2055 V = 8:H = 13:T\$ = "MOVE THE AXIS": GOSUB 5000
2070 V = 11:H = 7:T\$ = "AND NOTICE THE CHANGES IN:": GOSUB 5
00
2075 V = 14:H = 15:T\$ = "l. CLASS"

```
```

 2076 GOSUB 5000
 2080 V = 15:T$ = "2. FORCE ARM"
 2081 GOSUB 5000
 2085 V = 18:T$ = "3. RESISTANCE ARM"
 2085 GOSUB 5000
 2090 V = 20:T$ = "4. MECHANICAL ADVANTAGE"
 2091 GOSUB 5000
 2095 GOSUB 9000
3000 POKE 700,0: GOSUB 6100: GOSUB 7100
4000 TEXT : HOME :V = 10:H = 4:T\$ = "IT IS IMPORTANT TO UND
ERSTAND THE": GOSUB 5000
4005 V = 14:H = 12:T\$ = "PRECEEDING TERMS.": GOSUB 5000: GOS
UB 9000
4008 HOME
4015 V = 9:H = 6:T\$ = "FOR NOW, WOULD YOU LIKE TO:": GOSUB 5
000
4020 V = 12:H = 12:T\$ = "l. TAKE A QUIZ": GOSUB 5000
4030 V = 15:T\$ = "2. QUIT": GOSUB 5000
4040 V = 23:H = 4:T\$ = "ENTER THE NUMBER OF YOUR CHOICE": GO
SUB 5000
4050 GET CHO\$: GOSUB 9700: NORMAL
4051 IF PEEK (709) = 1 THEN POKE 709,0: GOTO 4050
4055 IF CHO = 1 THEN HOME :: VTAB 12: HTAB 15: PRINT "PLEA
SE WAIT": PRINT CHRS (4)"RUN MOVEMEM"
4070 HOME

```
```

 4999 END
 5000 REM **** THIS SUBROUTINE PRJNTS
 5001 REM **** LINES ONE AT A TIME ****
 5002 REM
 5005 SPEED= 255
 5010 HTAB H
 5015 FOR I = 1 TO LEN (T$)
 5017 VTAB V
 5020 PRINT MIDS (TS,I,I);
 5030 NEXT I
 5050 RETURN
 6000 REM *** SETS LABEL WINDOW ***
 6 0 0 1 ~ R E M
5005 VTAB 24: HTAB 12
5 0 1 0 ~ C A L L ~ - ~ 9 5 8 ~
6 0 5 0 ~ R E T U R N
600 REM *** DRAWS LEVER SYSTEM ***
601 REM
6105 HGR : HCOLOR= 3: ROT= 0: SCALE= 1
6ll0 DRAW l AT 100,80
5115 DRAW 2 AT 85,77
6120 DRAW 3 AT 149,84
5125 DRAW 4 AT 145,77
5 1 2 7 ~ I F ~ P E E K ~ (7 0 0) ~ = ~ 1 ~ T H E N ~ R E T U R N ~
6130 DRAW 5 AT 125,80

```
```

 6150 RETURN
 6200 REM *** MOVES AXIS ***
 6201 REM
 6202 HOME
 6203 V = 22:H = l2
 6204 T$ = "FIRST CLASS LEVER ":G$ = T$
 6205 INVERSE : GOSUB 5000: NORMAL : GOSUB 6400
 6207 X = 125: REM SETS AXIS AT ORIGIN
 \zeta210 GET AXS
 6 2 1 4 ~ I F ~ A X \$ ~ = ~ " C " ~ T H E N ~ R E T U R N
 6 2 1 5 ~ I F ~ A X \$ ~ = ~ " L " ~ T H E N ~ G O T O ~ 6 2 5 0
 6220 IF AX$ = "R" THEN GOTO 6280
 6 2 2 5 ~ I F ~ A X \$ ~ = ~ " I " ~ T H E N ~ R E T U R N
 6230 VTAB 23: HTAB 5: INVERSE : PRINT "ENTER ONLY L,R OR C"
 : PRINT "": NORMAL : GOTO 6210
 6260 XDRAW 5 AT X,80:X = X - 5: GOSUB 7400: DRAW 5 AT X,80
6265 GOSUB 6300
6270 IF X < 90 THEN GS = "SECOND CLASS LEVER": POKE 702,1:
GOTO 6290
6271 IF X < 165 THEN G\$ = "FIRST CLASS LEVER "
5272 GOTO б290
6280 XDRAW 5 AT X,80:X = X + 5: GOSUB 7400: DRAW 5 AT X,80:
GOSUB }630
6 2 8 1 ~ I F ~ X ~ > ~ 1 6 0 ~ T H E N ~ G \$ ~ = ~ " T H I R D ~ C L A S S ~ L E V E R " : ~ P O K E ~ 7 0 2 , 1 :
GOTO 6:T\$ = GS: INVERSE :V = 22: GOSUB 5000: NORMAL

```
```

 6291 V = 22
 6 2 9 5 ~ G O T O ~ 5 2 1 0
 6 2 9 9 ~ R E T U R N
 6 3 0 0 ~ R E M ~ * * ~ P R O D U C E S ~ S O U N D ~ W H E N
 6 3 0 1 ~ R E M ~ * * ~ C L A S S ~ C H A N G E S ~ * * ~
 6 3 0 2 ~ R E M
 6310 S = - 16336
 5315 SOUND = PEEK (S) - PEEK (S) + PEEK (S) - PEEK (S) +
 PEEK (S) - PEEK (S)
 6330 RETURN
 6400 REM ** PRINTS DISPLAY INSTRUCTIONS
 6 4 0 1 ~ R E M ~ * * ~ F O R ~ A X I S ~ M O V E M E N T ~ * * ~
 6405 VTAB 21: HTAB 2: PRINT "L=LEFT R=RIGHT C=CONTI
 NUE"
 6415 VTAB 23: HTAB POS (1) + 1
 6420 VTAB 23: HTAB 30
 6450 RETURN
 6500 REM ** FORCE ARM
 6 5 0 2 ~ R O T = ~ 0 ~
6505 DRAW 7 AT X,90
6510 GOSUB 6300: REM ** SOUND **
6515 FOR I = l TO 200: NEXT
5520 X = X + 3
6530 IF X = Y THEN ROT= 16: DRAN 7 AT X + 3,90: ROT= 0:P =
8:Q = 9: GOSUB 7300: RETURN

```
```

 6545 GOTO }650
 6550 RETURN
 6500 REM ** RESISTANCE ARM **
 5510 DRAW 7 AT X - 3,90: GOSUB 6300
 6612 ROT= 0
 6615 T = 200: GOSUB 8000
 562.5 X = X - 2
 6626 P = 8:Q = 9: IF PEEK (705) = 1 THEN P = 10
 6630 IF X = Z THEN ROT= 16: DRAW 7 AT X,90: ROT= 0: GOSUB
 7300: RETURN
 6 6 3 5 ~ G O T O ~ Һ 6 1 0 ~
 6640 POKE 705,0
 6650 RETURN
 \zeta700 REM *** MOVES AXIS ***
 6701 REM
 6 7 0 5 ~ G E T ~ A X S ~
 5 7 1 0 ~ X D R A W ~ 5 ~ A T ~ X , 8 0 ~
 6715 IF AX$ = "C" THEN RETURN
 679.0 IF AXS = "L" THEN X = X - 5: GOTO 6740
 6730 IF AX$ = "R" THEN X = X + 5: GOTO 6740
 6735 VTAB 21: HTAB 1 PRINT "
 ": VTAB 2l: HTAB ll PRINT "ENTER ONLY L,R, OR C"
 6740 DRAW 5 AT X,80: GOSUB 6300
 5745 GOSUB 6800
 6750 RETURN

```
```

 6800 REM ** CALCULATES AND PRINTS FA,
 5 8 0 1 ~ R E M ~ * * ~ R A , ~ A N D ~ M A ~ * * ~
 6805 FA = ABS (160-X):RA = ABS (X - 90)
 6815 CL$ = "IST"
 5820 IF X < 90 THEN CL$ = "2ND"
 5825 IF X > 164 THEN CL$ = "3RD"
 6826 IF RA = 0 THEN RA = 1
 6828 IF FA = 0 THEN FA = 1
 5829 MA = FA / RA
 6830 MA = (INT (MA * 100)) / 100
 5832 INVERSE
 6835 VTAB 21: HTAB 21: PRINT CL$
 6836 VTAB 22: HTAB &: PRINT FA
 6 8 3 7 ~ V T A B ~ 2 2 : ~ H T A B ~ 2 2 : ~ P R I N T ~ R A
 6838 VTAB 22: HTAB 35: PRINT MA
 6 8 4 0 ~ N O R M A L
 6 8 5 0 ~ R E T U R N
5900 REM ** MAKES DASHED LINES **
6901 GOSUB 9000
6 9 0 2 ~ D R A W ~ 7 ~ A T ~ X , 1 0 0 ~
6 9 0 3 ~ R O T = ~ 0 , ~
6905 DRAW 7 AT X - 3,100
6 9 0 8 ~ G O S U B ~ 6 3 0 0 ~
5909 T = 300: GOSUB 8000
5910 IF X = Y - 7 THEN ROT= 16: DRAW 7 AT X + 3,100: ROT=

```
```

 0:P = 10:Q = 9: GOSUB 7300: RETURN
 5912 IF X = Y - 7 THEN DRAW 7 AT X + 3,100:P = 10:Q = 9: G
 OSUB 7300: RETURN
 6915 x = X + 7
 6 9 2 0 ~ G O T O ~ 5 9 0 5 ~
 6 9 2 5 ~ R E T U R N
 6930 REM **MAKES DASHED LINES **
 6 9 3 1 ~ R E M ~ * * ~ G O I N G ~ L E F T ~ * * * * * * *)
 6 9 3 8 ~ D R A W ~ 7 ~ A T ~ X , 1 0 0 ~
 6 9 4 0 ~ R O T = ~ 0 , ~
 6 9 5 0 ~ D R A W ~ 7 ~ A T ~ X ~ - ~ 1 , 1 0 0 ~
 5958 GOSUB }530
 6960 FOR I = l TO 200: NEXT
 5965 IF X = Y - 7 THEN ROT= l6: DRAW 7 AT X + l,100: ROT=
 0:P = 10:Q = 9: GOSUB 7300: RETURN
 6970 x = x - 7
5975 GOTO 5950
5 9 8 0 ~ R E T U R N
7 0 0 0 ~ R E M ~ * * ~ P R I N T S ~ L A B E L S ~ * * ~
7005 GOSUB 6000
7010 V = 21:H=8
7020 GOSUB 5000
7025 RETURN
7100 REM DRAWS LEVER SYSTEM
7105 X = 125

```

7106 GOSUB 5000: VTAB 21: HTAB 15: PRINT "CLASS "
7108 VTAB 22: HTAB 1: PRINT " FA = \(\mathrm{RA}=\) M \(A=\quad "\)

7109 GOSUB 6800: VTAB 22: HTAB 39: GET AX\$
7110 GET AX\$: GOSUB 6300: GOSUB 7500
7111 IF AX\$ = "C" THEN RETURN
7112 IF AXS = "L" THEN XDRAW 5 AT X,80:X = X - 5: GOSUB 74 00

7114 IF AXS = "R" THEN XDRAW 5 AT X,80:X \(=X+5:\) GOSUB 74 00

7115 IF PEEK (709) = 0 THEN VTAB 23: HTAB 2: PRINT "ENTER ONLY 'L','R', OR 'C'"

7117 POKE 709,0: DRAW 5 AT X,80
7118 GOSUB 6800
7120 GOTO 7110
712.5 RETURN

7200 REM *** PRINTS CLASS LABELS ***
7205 CLS = "1ST CLASS LEVER"
7210 IF \(\mathrm{X}<90 \mathrm{THEN}\) CLS \(=\) "2ND CLASS LEVER"
7215 IF \(\mathrm{X}>165\) THEN CLS \(=\) "3RD CLASS LEVER"
7223 INVERSE
7225 VTAB 23: HTAB 12: PRINT CLS
7230 NORMAL
7250 RETURN
7300 REM PRINTS RA AND FA ******
```

 7305 DRAW P AT X - 4,110
 7310 DRAW Q AT X + 4,110
 7350 RETURN
 7400 REM ** COMPARISON FOR LIMITS
 7405 IF X > 180 THEN X = 180
 7410 IF X < 70 THEN X = 70
 7412 POKE 709,1
 7415 RETURN
 7500 REM CLEARS LINE FOR }680
 7510 INVERSE : VTAB 22: HTAB 8: PRINT " "
 7515 VTAB 22: HTAB 22: PRINT " "
 7520 VTAB 22: HTAB 35: PRINT " "
 7525 NORMAL
 7530 RETURN
 7700 REM ** DRANS ARROW **
 7705 ROT= 32
 7710 IF PEEK (702) < > 0 THEN ROT= 0
 7712 XDRAW 5 AT 180,80
 7715 DRAW 6 AT 180,80
 7720 ROT= 0
 7725 RETURN
8000 REM **** DELAYS PRINTING
8005 FOR I = 1 TO T: NEXT
8050 RETURN
9000 REM *** WAITS FOR INPUT

```

\section*{9001 REM}

9005 VTAB V: HTAB POS (2) +1
9010 FLASH
9012 POKE - 16368,0
9015 GET KEY\$
9020 NORMAL
9050 RETURN
9700 REM ** TEST FOR VALIDITY **
9701 REM ***********************
9705 IF ASC (CHO\$) > 48 THEN IF ASC (CHO\$) < 53 THEN CHO
\(=\) ASC (CHO\$) - 48: RETURN
9710 POKE 709,1
9715 VTAB 23: HTAB 4: INVERSE : PRINT "ENTER THE NUMBER OF YOUR CHOICE"

9750 RETURN

\section*{APPLICATIONS PROGRAM}
```

REM
7 REM BRANCH TO APPLICATIONS
8 REM
9 DIM TS(40)
10 PRINT CHR\$ (4);"BLOAD NEWTAB,A$8000"
 15 POKE 232,0: POKE 233,128
 18 F = 10:R = 60
 19 POKE 300,0: POKE 700,0: POKE 701,0
 20 SP = 255
 25 HOME :V = 9:H = 7:TS = "LET'S SEE HOW WELL YOU CAN": GOS
 UB 5000
 30 V = 12:H = 10:T$ = "APPLY YOUR KNOWLEDGE": GOSUB 5000
35 V = 15:H = 15:T\$ = "OF LEVERS.": GOSUB 5000
40 GOSUB 9000
100 REM PAGE 2
105 HOME :V = \zeta:T\$ = "TO MAKE A LEVER BALANCE, THE AMOUNT":
H = 2: GOSUB 5000
110 V = 9:H = 2:TS = "OF RESISTANCE TIMES THE LENGTH OF THE"
: GOSUB 5000
115 V = 12:TS = "RA MUST EQUAL THE AMOUNT OF THE ":H = 4: GO
SUB 5000
120 V = 15:T\$ = "FORCE TIMES FA.":H = 12: GOSUB 5000

```
\(125 \mathrm{~V}=18: \mathrm{H}=18: \mathrm{T}=\mathrm{FSO}=\mathrm{C}\) : GOSUB 5000
130 GOSUB 9000
200 REM PAGE 3
205 GOSUB 4000
\(210 \mathrm{X}=125:\) GOSUB 6100
215 GOSUB 6200
220 IF PEEK (300) = 1 THEN GOTO 210
300 REM ** PAGE 4 **
302 REM ************
305 HOME :V = 8:H = 5:T\$ = "OF COURSE, LEVERS ARE USED FOR"
: GOSUB 5000
\(310 \mathrm{~V}=11: \mathrm{H}=6: \mathrm{T} \$=\) "PURPOSES OTHER THAN BALANCE.": GOSUB 5000

315 VTAB 14: HTAB 5: PRINT "MANY ";: INVERSE : PRINT "TOOLS ";: NORMAL : PRINT " APPLY THE PRINCIPLES"
\(320 \mathrm{~V}=17: \mathrm{H}=15: \mathrm{T} \$=\mathrm{OOF}\) LEVERAGE": GOSUB 5000: GOSUB 9000
400 REM ** PAGE 5 **
402 REM
405 HOME : V = 5:H = 5:T\$ = "FOR INSTANCE, A WHEELBARROW CAN
": GOSUB 5000
\(410 \mathrm{~V}=8: T \$=\) "BE CLASSIFIED AS A LEVER WITH": GOSUB 5000
\(415 \mathrm{~V}=11: \mathrm{T} \$=\) "THE FOLLOWING PARTS:": GOSUB 5000
\(420 \mathrm{~V}=14: \mathrm{TS}=\) " 1. AXIS = WHEEL AXLE": GOSUB 5000
\(425 \mathrm{~V}=16: \mathrm{T} \$=\) "2. \(\mathrm{R}=\) WEIGHT OF LOAD": GOSUB 5000
\(430 \mathrm{~V}=18: \mathrm{T} \$=\mathrm{F} 3 . \quad \mathrm{F}=\) LIFTING FORCE AT": GOSUB 5000
\(435 \mathrm{~V}=20: \mathrm{H}=15: \mathrm{T} \$=\) "HANDLES": GOSUB 5000
440 GOSUB 9000
500 REM ** PAGE 6 **
502 REM
505 HOME : V = 8:H = 4:T\$ = "LOOK AT THE FOLLOWING WHEELBARR OW": GOSUB 5000
\(510 \mathrm{~V}=11: \mathrm{H}=9: \mathrm{T} \$=\) "AND TELL ME WHAT LEVER": GOSUB 5000 \(515 \mathrm{~V}=14: \mathrm{H}=10: \mathrm{T} \$=\) "CLASSIFICATION IT IS.": GOSUB 5000 520 GOSUB 9000
\(522 \mathrm{X}=100: \mathrm{Y}=110: \mathrm{X} 2=113: \mathrm{Y} 2=87: \mathrm{X} 3=115: \mathrm{Y} 3=72: \mathrm{R}=64\)
525 GOSUB 9500: GET ANS\$: GOSUB 9700
525 IF PEEK (705) = 1 THEN POKE 705,0: GOTO 525
528 TEXT : HOME
530 IF ANS \(=2\) THEN V \(=11: H=2: T \$=\) VVERY GOOD, A WHEELBA RROW IS AN EXAMPLE": GOSUB \(5000: \mathrm{V}=14: \mathrm{H}=9: \mathrm{T} \$=" O F\) A SECO ND CLASS LEVER.": GOSUB 5000: GOSUB 9000: GOTO 540
\(535 \mathrm{~V}=11: \mathrm{H}=8: \mathrm{T} \$=\) "WRONG! A WHEELBARROW IS A": GOSUB 500 0
 UB 9000

545 GOSUB 9500
560 HOME : VTAB 23: HTAB 12: INVERSE : PRINT " 2ND CLASS LEV ER": NORMAL

570 GOSUB 9000
600 REM **START SCISSORS**
```

6 0 1 ~ R E M
605 TEXT : HOME
610 V = 8:T\$ = "ANOTHER TOOL THAT IS A LEVER":H = 7: GOSUB 5
000
615 V = 11:H = 10:TS = "IS A PAIR OF SCISSORS": GOSUB 5000
620 GOSUB 9000
700 REM ** PAGE 2 OF SCISSORS **
7 0 1 ~ R E M
705 HOME
710 V = 9:H = 4:T\$ = "WHAT CLASS OF LEVER DO THINK": GOSUB 5
000
715 V = 12:H = 9:T\$ = "A PAIR OF SCISSORS IS?": GOSUB 5000
720 GET ANS$: GOSUB 9700
721 IF PEEK (705) = 1 THEN POKE 705,0: GOTO 720
722 TEXT : HOME
725 IF ANS = 1 THEN GOTO 765
730 V = 11:H = 7:TS = "NO, A PAIR OF SCISSORS IS A": GOSUB 5
0 0 0
735 V = 14:H = 12:T$ = "FIRST CLASS LEVER": GOSUB 5000
740 GOSUB 9000
7 4 5 ~ H O M E
750 V = 8:H = 2:T\$ = "LOOK AT OUR SCISSORS. WHEN THEY CUT":
GOSUB 5000
755 V = 11:H = 1:TS = "PAPER THE RESISTANCE IS THE PAPER AND
": GOSUB 5000

```
\(758 \mathrm{~V}=14: T \$=\) "THE AXIS IS THE CONTACT POINT OF THE TWO":H = 1: GOSUB 5000
\(759 \mathrm{~V}=17: \mathrm{T} \$=\) "PARTS AND FORCE IS AT THE HANDLES.": H = 2: GOSUB 5000

7ヶ0 GOSUB 9000: GOTO 785
765 HOME
\(770 \mathrm{~V}=12: \mathrm{T} \$=\) "RIGHT! A PAIR OF SCISSCORS IS A 1ST":H = 2:
GOSUB 5000
\(772 \mathrm{~V}=15: \mathrm{H}=15: \mathrm{T} \$=\) "CLASS LEVER": GOSUB 5000
775 GOSUB 9000
\(785 \mathrm{X}=144:\) GOSUB 9400
3999 END
4000 HOME :V = 10:H = 13:T\$ = "BALANCE MEANS": GOSUB 5000
\(4005 \mathrm{~V}=13: \mathrm{H}=12: \mathrm{T} \$=\mathrm{F} \mathrm{F}\) XA \(=\mathrm{RX}\) RA": GOSUB 5000
4010 GOSUB 9000
4020 RETURN
5000 REM **** THIS SUBROUTINE PRINTS
5001 REM **** LINES ONE AT A TIME
5002 REM
5005 SPEED \(=255\)
5010 HTAB H
5015 FOR \(I=1\) TO LEN (TS)
5017 VTAB V
5020 PRINT MIDS (T\$,I,l);
5030 NEXT I
```

 5050 RETURN
 6000 REM *** SETS LABEL WINDOW ***
 6 0 0 1 ~ R E M
 6005 VTAB 24: HTAB 12
 6010 CALL - }95
 6050 RETURN
 6100 REM *** DRAWS LEVER SYSTEM ***
 6 1 0 1 ~ R E M
 6105 HGR : HCOLOR= 3: ROT= 0: SCALE= 1
 6110 DRAW 1 AT 100,80
 6115 DRAW 2 AT 85,77
 5l20 DRAN 3 AT 149,84
 6125 DRAW \triangle AT 146,77
 6130 DRAW 5 AT X,80
 6l50 RETURN
 6200 REM BALANCE LEVER
 5205 VTAB 2l: HTAB l: PRINT "FORCE = ";: INVERSE : PRINT F;
 : NORMAL : PRINT " RESISTANCE = ";: INVERSE : PRINT R:
 NORMAL
6 2 0 7 ~ I F ~ P E E K ~ (3 0 0) ~ = ~ 2 ~ T H E N ~ G O T O ~ 6 2 1 5
6208 VTAB 23: HTAB l: PRINT "
6210 VTAB 23: HTAB 5: INVERSE : PRINT "TYPE 'B' WHEN LEVER
WILL BALANCE": NORMAL
6215 GOSUB 9100
62.17 IF PEEK (300) = 2 THEN RETURN

```

6220 VTAB 23: HTAB 39: GET AX
6225 IF AXS < > "R" THEN IF AX\$ < > "L" THEN GOTO 6230
6226 XDRAW 5 AT X,80
6230 IF AX\$ = "B" THEN GOSUB 9200: RETURN
6235 IF AXS = "L" THEN X = X - 5: GOTO 6240
6237 IF AXS \(=\) "R" THEN X = X + 5: GOTO 6240
6238 VTAB 23: HTAB 1: PRINT "
": VTAB 23: HTAB l: PRINT "ENTER ONLY L, R, OR B": FOR
\(I=1 \mathrm{TO}\) 2000: NEXT
6239 GOTO 6205
6240 GOSUB 7400
6245 DRAW 5 AT X,80
6250 GOSUB 6300
6255 GOSUB 9100
6260 GOTO 6220
5270 RETURN
6300 REM ** PRODUCES SOUND WHEN
6301 REM ** CLASS CHANGES **
5302 REM
6310 S = - 16335
6315 SOUND \(=\operatorname{PEEK}(S)-\operatorname{PEEK}(S)+\operatorname{PEEK}(S)-\operatorname{PEEK}(S)+\) PEEK (S) - PEEK (S)
\(\zeta 330\) RETURN
Ђ400 REM ** PRINTS DISPLAY INSTRUCTIONS
6401 REM ** FOR AXIS MOVEMENT
```

 6405 V = 21:H = 2:TS = "L=LEFT R=RIGHT C=CONTINUE":
 GOSUB 5000
 5415 V = 23
 6450 RETURN
 7000 REM ** PRINTS LABELS **
 7005 GOSUB 6000
 7010 V = 21:H = 8
 7020 GOSUB 5000
 7025 RETURN
 7200 REM *** PRINTS CLASS LABELS ***
 7205 CLS = "1ST CLASS LEVER"
 7210 IF X < 90 THEN CL$ = "2ND CLASS LEVER"
 7215 IF X > 165 THEN CL$ = "3RD CLASS LEVER"
 7223 INVERSE
 7225 VTAB 23: HTAB 12: PRINT CL$
 7230 NORMAL
 7 2 5 0 ~ R E T U R N
7300 REM PRINTS RA AND FA
7305 DRAW P AT X - 4,110
7310 DRAW Q AT X + 4,110
7 3 5 0 ~ R E T U R N
7400 REM ** COMPARISON FOR LIMITS
7405 IF X > 180 THEN X = 180
7410 IF X < 70 THEN X = 70
7415 RETURN

```
```

 7500 REM CLEARS LINE FOR 6800
 7510 INVERSE : VTAB 23: HTAB 8: PRINT " "
 7515 VTAB 23: HTAB 22: PRINT " "
 7520 VTAB 23: HTAB 35: PRINT " "
 7525 NORMAL
 7530 RETURN
 7700 REM ** DRAWS ARROW **
 7705 ROT= 32
 7710 IF PEEK (702) < > 0 THEN ROT= 0
 7712 XDRAW 5 AT 180,80
 7715 DRAW 6 AT 180,80
 7720 ROT= 0
 7725 RETURN
8000 REM **** DELAYS PRINTING
8005 FOR I = 1 TO T: NEXT
8050 RETURN
9000 REM *** WAITS FOR INPUT
9001 REM
9005 VTAB 24: HTAB 8
9010 FLASH
9012 POKE - 15368,0
9015 GET KEY\$
9020 NORMAL
9050 RETURN
9100 REM ** FINDS RA \& FA

```

9102 VTAB 22: HTAB 9: INVERSE : PRINT " ": VTAB 22: HTAB 3 0: PRINT " ": NORMAL
\(9105 \mathrm{RA}=(\mathrm{ABS}(\mathrm{X}-90)) / 5: \mathrm{FA}=(\mathrm{ABS}(160-\mathrm{X})) / 5\)
9110 VTAB 22: HTAB 1: PRINT " FA \(=\quad\) RA \(=\)
"

9112 RA \(=\) STRS (RA) :FA\$ \(=\operatorname{STR} \$(F A)\)
9114 INVERSE
9115 VTAB 22: HTAB 11 - LEN (FA\$): PRINT FA
9116 VTAB 22: HTAB 32- LEN (RA\$): PRINT RA
9117 NORMAL
9120 RETURN
9200 REM ** CHECKS FOR CORRECT ANSWER
9205 IF FA \(=12\) THEN TEXT : HOME :V = 10:H = l:T\$ = "EXCEL
LENT, YOU HAVE CHOSEN THE CORRECT": GOSUB 5000:V = 13:H = 6: \(\mathrm{TS}=\) "AXIS PLACEMENT FOR BALANCE": GOSUB 5000: GOSUB 9000: P OKE 300,0: RETUR

9215 IF PEEK (300) = 1 THEN GOTO 9260
9218 POKE 300,1
9220 TEXT : HOME
\(92.21 \mathrm{~V}=10: \mathrm{H}=6\)
9222 IF FA > 12 THEN T\$ = "NO, YOU HAVE PLACED THE AXIS": G OSUB 5000:V = \(13: \mathrm{H}=7: \mathrm{T} \$=\) "TOO FAR FROM THE FORCE": GOSUB 5000: GOSUB 9000: POKE 701,1: GOTO 9250

9228 TEXT : HOME
9230 T\$ = "NO, YOU HAVE PLACED THE AXIS": GOSUB 5000:V = 13:

H = 9:T\$ = "TOO CLOSE TO THE FORCE": GOSUB 5000
9240 GOSUB 9000
9250 HOME : \(\mathrm{V}=10: \mathrm{H}=9: \mathrm{T}=\) "REMEMBER, FOR BALANCE,": GOSU B 5000
\(9252 \mathrm{~V}=13: \mathrm{H}=13: T \$=" F \mathrm{X} F \mathrm{FA}=\mathrm{R} X \mathrm{RA} ": \operatorname{GOSUB} 5000\)
\(9254 \mathrm{~V}=23: \mathrm{H}=15:\) INVERSE \(: T \$=\) "TRY AGAIN": GOSUB 5000: N ORMAL

9256 GOSUB 9000: HOME : RETURN
9260 TEXT : HOME
9270 IF PEEK (701) \(=1\) THEN IF FA \(>12\) THEN V \(=8: H=7: T\) S = "AGAIN YOU HAVE PLACED THE": GOSUB 5000:V = 11:H = 4:T\$ = "AXIS TOO CLOSE TO THE RESISTANCE": GOSUB 5000: GOSUB 9000 : GOTO 9295

9280 IF FA > 12 THEN V \(=10: H=3: T \$=\) "THIS TIME YOU HAVE PLACED THE AXIS": GOSUB 5000:V = 13:H = 6:T\$ = "TOO CLOSE TO THE RESISTANCE": GOSUB 5000: GOSUB 9000: GOTO 9295

9285 IF PEEK (701) = 0 THEN IF FA < 12 THEN V \(=10: H=5:\) \(\mathrm{T}=\) "YOUR AXIS PLACEMENT IS STILL TOO": GOSUB 5000:V = 13:H = 11:TS = "CLOSE TO THE FORCE": GOSUB 5000: GOSUB 9000: GOT ○ 9295
\(9290 \mathrm{~V}=10: \mathrm{H}=5: \mathrm{T} \$=\) "THIS TIME YOU HAVE PLACED THE": GOSU B \(5000: \mathrm{V}=13: \mathrm{H}=6: \mathrm{T}=\) "AXIS TOO CLOSE TO THE FORCE": GOSU B 5000

9292 GOSUB 9000
9295 HOME : \(V=10: H=12: T S=" F X F A=R X R A ": G O S U B 5000\)
```

 9296 V = 13:H = 19:TS = "SO": GOSUB 5000
 9297 V = 16:H = 12:T$ = "12 X 10 = 60 X 2": GOSUB 5000
 9293 GOSUB 9000: POKE 300,2
 9300 REM ** BALANCE EXPLANATION
 9301 REM ** AFTER 2 TRYS
 9302 HOME :V = 11:H = 4:TS = "FOR THE CORRECT AXIS PLACEMEN
 T": GOSUB 5000:V = 14:H = ll:T$ = "LOOK AT THE FOLLOWING": G
 OSUB 5000: GOSUB 9000
 9303 X = 100
 9305 GOSUB 6100: GOSUB 6200
 9308 FLASH
 9310 VTAB 23: HTAB 8: PRINT "120"
 9311 VTAB 2.3: HTAB 29: PRINT "l20"
 9315 NORMAL
 9320 FOR X = 94 TO 84 STEP - 2: DRAW 7 AT X,106: NEXT
 9325 FOR X = 100 TO l55 STEP 2: DRAW 7 AT X,l00: NEXT
 9327 ROT= 16: DRAW 7 AT l50,100: DRAW 7 AT 85,106
 9329 Y = 118: ROT= 0
 9330 DRAW 9 AT l61,Y: DRAW 8 AT 155,Y: DRAW l0 AT 80,Y: DRA
 W 9 AT 85,Y
 9340 VTAB 23: HTAB 34: GET KEY$
 9345 TEXT
 9350 RETURN
 9400 REM ** GRAPHICS FOR SCISSORS
9401 REM

```
```

9 4 0 5 ~ H G R ~ : ~ H C O L O R = ~ 3 : ~ S C A L E = ~ 3 : ~ R O T = ~ 5 4 ~

```

9410 VTAB 2.2: HTAB 12: INVERSE : PRINT "FIRST CLASS LEVER" 9411 NORMAL

9412 VTAB 23: HTAB 8: PRINT "PRESS ANY KEY TO CONTINUE"
9415 DRAW 22 AT X,73: DRAW 23 AT X,74
9420 FOR I = 1 TO 500: NEXT
9425 XDRAW 22 AT X,73: XDRAW 23 AT X,74
9430 ROT= 72: DRAW 22 AT X,73: ROT= 56: DRAW 23 AT X,74
9435 FOR I = 1 TO 500: NEXT
9440 XDRAW 23 AT \(X, 74:\) ROT= 72: XDRAW 22 AT \(X, 73\)
\(9445 \quad \mathrm{ROT}=54\)
9450 IF PEEK ( -16384 ) > 128 THEN POKE - 16368,0: RETUR N

9455 GOTO 9415
9460 RETURN
9500 REM ** GRAPHICS FOR
9502 REM ** WHEELBARROW
9505 HGR : HCOLOR= 3: SCALE= 2: ROT= R
9510 DRAW 19 AT X,Y
9515 DRAW 20 AT X2,Y2
9520 DRAW 21 AT X3,Y3
9525 VTAB 21: HTAB 11: INVERSE : PRINT "CHOOSE WHICH CLASS" : NORMAL

9530 VTAB 23: HTAB 5: PRINT " \(1=1 \mathrm{ST} \quad 2=2 \mathrm{ND} \quad 3=3\) RD ";

\section*{9550 RETURN}

9700 REM ** CHECKS FOR ANSWER
9701 REM ****** VALIDITY *****
9705 IF ASC (ANS\$) > 48 THEN IF ASC (ANS\$) < 52 THEN ANS \(=\) ASC (ANS \()\) - 48: RETURN

9710 POKE 705,1: VTAB 23: HTAB 4: PRINT "ENTER THE "; : INVE RSE : PRINT "NUMBER"; NORMAL : PRINT " OF YOUR CHOICE "

9715 FOR I \(=1\) TO 2000: NEXT
9750 RETURN

\section*{QUIZ PROGRAM - 10 QUESTIONS}
```

9 REM ** SUBPROGRAM **
10 REM ** BRANCH TO QUIZ **
15 REM
20 SP = 255
25 DIM T$(40)
31 PRINT CHR$ (4);"BLOAD NEWTAB,A2048"
32 POKE 232,0: POKE 233,8: POKE 708,0: POKE 707,0
33 HOME : VTAB 12: HTAB 3: PRINT "PLEASE ENTER YOUR NAME ";
: INPUT NAME\$
34z=768
35 RESTORE :L = 0
40 FOR C = 779 TO 789: POKE C,0
41 NEXT :C = 778
1000 REM ** INTRODUCTORY PAGE **
10O5 HOME :V = 10:H = 9:T\$ = "LET'S SEE HOW WELL YOU": GOSU
B 5000
1010 V = 13:TS = "UNDERSTAND THE CONCEPTS": GOSUB 5000
1015 V = 15:H = 14:T\$ = "OF LEVERAGE": GOSUB 5000: GOSUB 900
0
1100 REM *** QUESTION I **
1102 RESTORE
1105 HOME :V = 6:H=2:T\$ = "IF A LEVER HAS A FORCE ARM OF
5": GOSUB 5000

```
```

1110 V = 8:T\$ = "CENTIMETERS AND A RESISTANCE ARM OF 10": GO
SUB 5000
1115 V = 10:T\$ = "CENTIMETERS, WHAT IS THE MECHANICAL": GOSU
B 5000
l120 V = l2:T\$ = "ADVANTAGE?": GOSUB 5000
1125 INVERSE
1130 V = 15:H = 9:T\$ = "l. l/2": GOSUB 5000
1135 V = 17:T\$ = "2. 2": GOSUB 5000
ll40 V = 19:T\$ = "3. 50": GOSUB 5000
1157 GOSUB 7500
l158 IF PEEK (709) = l THEN POKE 709,0: GOTO ll57
1160 GOSUB 7700
1200 REM ** QUESTION 2 **
1205 HOME :V = 8:H = 2:TS = "THE FULCRUM (OR AXIS) IN A LEV
ER": GOSUB 5000
1210 V = 10:T\$ = "SYSTEM IS THE POINT": GOSUB 5000
1215 INVERSE
1220 V = 13:H = 9:T\$ = "l. OF FORCE APPLICATION": GOSUB 5000
1225 V = 15:T\$ = "2. OF RESISTANCE": GOSUB 5000
12.30 V = 17:T\$ = "3. ABOUT WHICH THE LEVER": GOSUB 5000
1235 V = 18:H = 12:TS = "MOVES.": GOSUB 5000
1252 GOSUB 7500
1253 IF PEEK (709) = 1 THEN POKE 709,0: GOTO l252?'
1255 GOSUB 7700
1260 TEXT

```
```

 1300 REM ** QUESTION 3 **
 1305 HOME :V = 8:H = 2:T$ = "IN WHICH CLASS OF LEVER DO THE
 FORCE": GOSUB 5000
 1310 V = 10:TS = "AND RESISTANCE MOVE IN OPPOSITE": GOSUB 50
 00
 1315 V = 12:T$ = "DIRECTIONS": GOSUB 5000
 1320 GOSUB 7900
 1332 GOSUB 7500
 1333 IF PEEK (709) = 1 THEN POKE 709,0: GOTO 1332
 1335 GOSUB 7700
 1400 REM ** QUESTION 4 **
 1405 HOME :V = 9:H = 2:T$ = "MOST EXAMPLES OF HUMAN LEVERS
 ARE:": GOSUB 5000
 1410 GOSUB 7900
 1416 GOSUB 7500
 1417 IF PEEK (709) = 1 THEN POKE 709,0: GOTO 1416
 1420 GOSUB 7700
 1500 REM ** QUESTION 5 **
 1502 HOME
 1505 V = 6:H = 2:T$ = "THE EXACT POINT OF RESISTANCE OF A":
 GOSUB 5000
 1510 V = 8:T$ = "MOVING BODY SEGMENT IS:": GOSUB 5000?'
 1512 INVERSE
 1515 V = 11:H = 9:TS = "1. THE CENTER OF GRAVITY OF THE": GO
SUB 5000

```
```

 1520 V = l2:H = 12:T$ = "SEGMENT.": GOSUB 5000
 1525 V = 14:H = 9:T$ = "2. THE JOINT ABOUT WHICH THE": GOSUB
 5 0 0 0
 1530 V = 15:H = 12:TS = "MOVEMENT IS OCCURING": GOSUB 5000
 l535 V = 17:H = 9:T$ = "3. THE CENTER OF GRAVITY OF THE": GO
 SUB 5000
1540 V = 18:H = 12:T\$ = "NON-MOVING BONE.": GOSUB 5000
1550 GOSUB 7500
1554 IF PEEK (709) = 1 THEN POKE 709,0: GOTO 1550
1555 GOSUB 7700
1600 REM ** QUESTION 6 ***
1602 HOME
1605 V = 4:H = 2:TS = "WHEN A MUSCLE MOVES A BONE,": GOSUB 5
000
1610 V = 6:T\$ = "THE AXIS IS THE": GOSUB 5000
1616 INVERSE
1620 V = 9:H = 9:T\$ = "l. JOINT FORMED BY THE MOVING": GOSUB
5 0 0 0
1625 V = 10:H = 12:T\$ = "BONE AND ANOTHER BONE.": GOSUB 5000
1630 V = 12:H = 9:T\$ = "2. MUSCLE ATTACHMENT ON THE": GOSUB
5000?'
1635 V = 13:H = 12:T\$ = "MOVING BONE.": GOSUB 5000
1640 V = 15:H = 9:T\$ = "3. MUSCLE ATTACHMENT ON THE": GOSUB
5 0 0 0
1645 V = 16:H = 12:TS = "STATIONARY BONE.": GOSUB 5000

```
```

 l550 VTAB V + 3: HTAB 9
 1565 NORMAL
 1670 GOSUB 7500
 1675 IF PEEK (709) = 1 THEN POKE 709,0: GOTO 1670
 1580 GOSUB 7700
 1690 TEXT
 1700 REM ** QUESTION 7 **
 1701 REM
 1705 TEXT : HOME :V = 4:H = 2:T$ = "IF A 10 KILOGRAM WEIGHT
 IS 2 CM FROM": GOSUB 5000
 1710 V = 6:T$ = "THE AXIS, HOW FAR MUST A 5 KILOGRAM": GOSUB
 5000
 1715 V = 8:T$ = "WEIGHT BE PLACED FROM THE AXIS FOR": GOSUB
 5 0 0 0
 1720 V = 10:T$ = "BALANCE?": GOSUB 5000
 1725 V = 13:H = 9: INVERSE :T$ = "1. 2 CM"
 1726 GOSUB 5000
 1730 V = 15:T$ = "2.4 CM"
 1731 GOSUB 5000
 1735 V = 17:T$ = "3. 5 CM": GOSUB 5000?'
 1740 GOSUB 7500
 1745 IF PEEK (709) = 1 THEN POKE 709,0: GOTO 1740
 1748 GOSUB 7700
 1800 REM ** QUESTION 8 **
 1801 REM

```
```

 1805 HOME :V = 8:H = 2:T$ = "IN WHAT CLASS LEVER WILL THE":
 GOSUB 5000
 1810 V = 10:T$ = "RESISTANCE ARM ALWAYS BE SHORTER THAN": GO
 SUB 5000
 1812 V = 12:T$ = "THE FORCE ARM?": GOSUB 5000
 1815 GOSUB 7900
 1820 GOSUB 7500
 1825 IF PEEK (709) = 1 THEN POKE 709,0: GOTO 1820
 1830 GOSUB 7700
 1900 REM ** QUESTION 9 **
 1901 REM
 1905 HOME :V = 9:H = 2:T$ = "A DOOR IS ALSO A LEVER. WHAT
 ": GOSUB 5000
 1908 V = 11:T\$ = "CLASS IS IT?": GOSUB 5000
1 9 1 0 ~ G O S U B ~ 7 9 0 0
1915 GOSUB 7500
1920 IF PEEK (709) = 1 THEN POKE 709,0: GOTO 1915
1925 GOSUB 7700
2000 REM ** QUESTION 10 **?'
2001 REM
2005 HOME :V = 9:H = 2:T\$ = "MOST SPORTS IMPLEMENTS ARE LEV
ERS.": GOSUB 5000
2010 V = 11:T\$ = "WHAT CLASS ARE THEY USUALLY?": GOSUB 5000
2015 GOSUB 7900
2020 GOSUB 7500

```
```

 2025 IF PEEK (709) = l THEN POKE 709,0: GOTO 2020
 2030 GOSUB 7700
 3 0 0 0 ~ D A T A ~ 1 , 3 , 1 , 3 , 1 , 1 , 2 , 2 , 2 , 3
 3505 HOME
 3508 GOSUB 9100
 3509 POKE Z,SCR
3510 VTAB 7: HTAB 8: PRINT "YOU MISSED ";: INVERSE : PRINT
10 - SCR;: NORMAL : PRINT " OFlO QUESTIONS."
3515 VTAB 10: HTAB 9: PRINT "NOW WOULD YOU LIKE TO:"
3520 VTAB 13: HTAB 9: PRINT "l. TAKE THE QUIZ OVER"
3530 VTAB 16: HTAB 9: PRINT "2. REVIEW DEFINITIONS"
3540 VTAB 19: HTAB 9: PRINT "3. QUIT"
3545 V = 19
3550 GOSUB 7500
3552 GOSUB 9900
3555 ON ANS GOTO 3560,3570,3580
3560 HOME : GOTO 32
3570 HOME : VTAB 12: HTAB 14: PRINT "PLEASE WAIT": PRINT
HR\$ (4);"RUN RELOCATE"
3580 HOME
4 9 9 9 ~ E N D
5000 REM **** THIS SUBROUTINE PRINTS
5001 REM **** LINES ONE AT A TIME
5002 REM
5005 SPEED= 255

```
```

 5010 HTAB H
 5015 FOR I = l TO LEN (T$)
 5017 VTAB V
 5020 PRINT MID$ (TS,I,l);
 5030 NEXT I
5050 RETURN
5100 REM RESPONSE TO INCORRECT
5 1 0 1 ~ R E M ~ A N S W E R
5105 HOME :V = 8:H = 14:T\$ = "NO, REMEMBER": GOSUB 5000
5110 V = 11:H = 4:TS = "THE MECHANICAL ADVANTAGE IS = TO": G
OSUB 5000
5l15 V = 14:H = 8:T\$ = "THE FORCE ARM DIVIDED BY": GOSUB 500
0
5120 V = 17:H = l1:TS = "THE RESISTANCE ARM": GOSUB 5000: GO
SUB 9000
5125 HOME :V = 11:H = 18:T\$ = "FA 5 l": GOSUB 5000
5130 V = 12:H = 12:T\$ = "MA = ---- = ---- = -": GOSUB 5000?'
5135 V = 13:H = 18:T\$ = "RA 10 2": GOSUB 5000: GOSUB
9000
5150 RETURN
5200 REM RESPONSE TO INCORRECT
5 2 0 1 ~ R E M ~ A N S W E R
5205 HOME :V = 8:H = 3:T\$ = "NO, MOST DISTAL MUSCLE ATTACHM
ENTS": GOSUB 5000
5210 V = 11:H = 10:TS = "ARE VERY CLOSE TO THE": GOSUB 5000

```
\(5215 \mathrm{~V}=14: \mathrm{H}=11: \mathrm{T} \$=\) "BONE JOINT (AXIS).": GOSUB 5000: GO SUB 9000

5220 HOME : V \(=8: H=5: T \$="\) SO THE FORCE ARM IS QUITE SHOR T": GOSUB 5000
\(5225 \mathrm{~V}=11: \mathrm{H}=16: \mathrm{T} \$=\) "COMPARED": GOSUB 5000
\(5230 \mathrm{~V}=14: \mathrm{H}=9: \mathrm{T} \$=\) "TO THE RESISTANCE ARM.": GOSUB 5000: GOSUB 9000

5235 GOSUB 8300
5240 TEXT
5250 RETURN
5300 REM RESPONSE TO INCORRECT
5301 REM ANSWER
5305 HOME : V = 7:H = 3:TS = "NO, THE FULCRUM IS THE STATION ARY": GOSUB 5000
\(5310 \mathrm{~V}=10: \mathrm{H}=7: \mathrm{T} \$=\) "POINT ABOUT WHICH A LEVER": GOSUB 50 00?'
\(5315 \mathrm{~V}=13: \mathrm{H}=10: \mathrm{T} \$=\) "CAN ROTATE. LOOK AT": GOSUB 5000
\(5320 \mathrm{~V}=15: \mathrm{H}=9: \mathrm{T} \$=\) "THE FOLLOWING DIAGRAM:": GOSUB 5000: GOSUB 9000
\(5325 \mathrm{X}=13: \mathrm{M}=139: \mathrm{N}=79: \mathrm{HGR}: \mathrm{HCOLOR}=3\)
5327 SCALE \(=1:\) ROT \(=0\)
5330 DRAW 5 AT M,N - 5: GOSUB 8100
5335 RETURN
5400 REM RESPONSE TO INCORRECT
5401 REM ANSWER
```

 5405 HOME :V = 6:H = 4:T$ = "A FIRST CLASS LEVER IS THE ONL
 Y": GOSUB 5000
 5410 V = 9:H = 8:T$ = "KIND WHICH REQUIRES THAT": GOSUB 5000
 5415 V = 12:T$ = "THE FORCE BE OPPOSITE TO": GOSUB 5000
 5420 V = 15:H = 7:T$ = "THE DIRECTION OF MOVEMENT": GOSUB 50
 0
 5425 V = 18:H = 11:T$ = "OF THE RESISTANCE.": GOSUB 5000
 5430 GOSUB 9000
 5435 X = 13:M = 139:N = 79
 5437 GOSUB 8400
 5440 TEXT
 5450 RETURN
 5500 REM ** QUESTION 5
 5505 HOME :V = 9:H = 3:T$ = "NO, THE POINT OF RESISTANCE OF
 ANY": GOSUB 5000?'
 5510 V = 12:H = 13:T$ = "OBJECT IS IT'S": GOSUB 5000
 5515 V = 15:H = 11:TS = "CENTER OF GRAVITY.": GOSUB 5000
 5517 GOSUB 9000
 5520 GOSUB 8500
 5525 TEXT
 5550 RETURN
 5500 REM ** QUESTION }
 5503 M = 139:N = 79
 5604 HOME :V = 10:H = 3:T$ = "REMEMBER, AN AXIS IS A POINT
 ABOUT": GOSUB 5000
    ```
```

 5605 V = 13:H = 9:TS = "WHICH A LEVER ROTATES.": GOSUB 5000:
 GOSUB 9000
 5607 HOME
5508 V = 7:H = 4:T\$ = "IF THE LEVER IS A BONE THEN THE": GOS
UB 5000
5610 V = 10:H = 9:T\$ = "AXIS IS THE JOINT FORMED BY": GOSUB
5 0 0 0
5615 V = 13:H = 12:T\$ = "THAT BONE AND THE ADJACENT": GOSUB
5 0 0 0
5520 V = 16:H = 12:T\$ = "NONMOVING BONE.": GOSUB 5000: GOSUB
9000
5550 GOSUB 8200
5660 RETURN
5700 REM ** INCORRECT ANSWER **?'
5701 REM ** QUESTION 7
5704 HOME : VTAB ll: HTAB l3
5705 V = ll: PRINT "NO, FOR ";: INVERSE : PRINT "BALANCE": N
ORMAL
5709 H = 13
5710 V = 14:T\$ = "R X RA = F X FA": GOSUB 5000: GOSUB 9000
5715 HOME :V = 8:T\$ = "WE KNOW THE FOLLOWING:":H = 9: GOSUB
5 0 0 0
5720 V = 11:H = 5:T\$ = "R = 10": GOSUB 5000
5722 V = 13:T\$ = "RA = 2": GOSUB 5000
5725 V = 15:T\$ = "F = 5": GOSUB 5000

```
\[
5727 \mathrm{~V}=17: \mathrm{T} \$=\text { "FA = ?": GOSUB } 5000
\]

5730 GOSUB 9000
\(5735 \mathrm{~V}=12: \mathrm{H}=20: \mathrm{T} \$=22 \mathrm{x} 10=5 \mathrm{x}\) ?": GOSUB 5000
5737 V = 15:T\$ = "20 = 5 x ?": GOSUB 5000
5740 VTAB 18: PRINT "? = ";: FLASH : PRINT "4": NORMAL
5745 GOSUB 9000
5750 HGR : HCOLOR= 3: SCALE= 1: ROT= 0
5751 DRAW 3 AT 16б,71: DRAW 1 AT 103,58: DRAW 4 AT 154,64:
DRAN 5 AT 122,66
5755 DRAW 10 AT 99,108: DRAW 9 AT 108,108: DRAW 9 AT 156,91
: DRAW 8 AT 144,91: DRAW 2 AT 87,65
5750 ROT \(=32:\) DRAW 6 AT 184,50
5765 ROT= 16: DRAW 7 AT 184,86: DRAW 7 AT 122,86: DRAW 7 AT
122,105: DRAW 7 AT 89,106
5768 ROT \(=0\)
5770 FOR \(X=121\) TO 179 STEP 2
5775 DRAW 7 AT \(\mathrm{X}, 92\)
5780 NEXT
5785 FOR \(\mathrm{X}=89\) TO 117 STEP 2
5788 DRAW 7 AT X,Ill: NEXT
5790 VTAB 21: HTAB 13: INVERSE : PRINT "LEVER BALANCES": NO RMAL

5792 VTAB 22: HTAB 12: PRINT "R X RA \(=\mathrm{F}\) X FA"
5793 VTAB 23: HTAB 11: PRINT "10 X \(2=5\) X 4"
5797 GOSUB 9000
```

 5798 TEXT
 5799 RETURN
 5800 REM ** INCORRECT ANSWER **
 5801 REM ** QUESTION 8 **
 5805 HOME :V = 8:H = 5:TS = "WRONG! IF THE RESISTANCE ARM I
 S": GOSUB 5000
 5810 VTAB 11: HTAB 3: INVERSE : PRINT "ALWAYS";: NORMAL : P
 RINT " SHORTER THAN THE FORCE ARM"
 5815 V = 14:H = l:T$ = "THEN THE AXIS MUST BE ON ONE END AND
 ...": GOSUB 5000
 5818 GOSUB 9000
 5820 HOME :V = 8:H = 7:TS = "THE FORCE ON THE OTHER END.":
 GOSUB 5000
5825 V = 11:H = 2:T\$ = "SO THE RESISTANCE MUST BE BETWEEN"
5826 GOSUB 5000
5830 V = 14:H = 10:T\$ = "THE FORCE AND THE AXIS.": GOSUB 500
0
5832 V = 17:T\$ = "REMEMBER, THIS DEFINES A 2ND CLASS LEVER":
H=1: GOSUB 5000
5835 GOSUB 9000
5850 RETURN
5900 REM ** WRONG ANSWER **
5905 REM ** QUESTION 9 **
5910 HOME :V = 8:H = 1:T\$ = "MOST DOORS ARE SECOND CLASS LE
VERS."

```
```

5911 GOSUB 5000
5915 V = ll:H = 7:T\$ = "THE AXIS IS AT THE HINGES;": GOSUB 5
0 0 0
5920 V = 14:H = 2:T\$ = "THE RESISTANCE IS THE DOOR'S CENTER"
: GOSUB 5000
5925 V = 17:H = 1:T\$ = "OF GRAVITY AND THE FORCE IS AT THE K
NOB": GOSUB 5000
5930 GOSUB 9000
5935 HGR : HCOLOR= 3: ROT= 0: SCALE= 3
5936 DRAW 24 AT 100,128
5937 SCALE= 1: DRAW 19 AT l13,82?'
5938 DRAW 8 AT 110,80
5939 DRAW l0 AT l33,81
5940 DRAW 5 AT 169,66
5941 DRAW l AT 148,57
5942 VTAB 23: HTAB 11: INVERSE : PRINT "SECOND CLASS LEVER"
: NORMAL
5943 GOSUB 9000
5 9 4 4 ~ T E X T
5950 RETURN
6000 REM *** SETS LABEL WINDOW ***
6 0 0 1 ~ R E M
6005 vTAB 2l: HTAB 1
5010 CALL - 958
6050 RETURN

```
```

 6 1 0 0 ~ R E M ~ * * ~ W R O N G ~ A N S W E R ~ * * ~
 6101 REM ** QUESTION 10 **
 6105 HOME :V = 3:T$ = "NO, ACTUALLY MOST SPORTS IMPLEMENTS"
 :H = 2: GOSUB 5000
 6110 V = 11:TS = "(BATS, RACKETS, CLUBS, ETC.)":H = 6: GOSUB
 5 0 0 0
 6115 V = 14:T\$ = "ARE 3RD CLASS LEVERS":H = 10: GOSUB 5000
6120 GOSUB 9000
5125 HOME :V = 4:T\$ = "ALTHOUGH SOMEWHAT MORE COMPLICATED":
H = 3: GOSUB 5000?'
6130 V = 7:T\$ = "THAN OUR PREVIOUS EXAMPLES":H = 7: GOSUB 50
0 0
6135 V = 10:T\$ = "THE LEVER PARTS ARE LISTED BELOW":H = 4: G
OSUB 5000
\zetal40 V = 13:H = l:TS = "l. AXIS IS AT THE MAJOR JOINT OF MOT
ION": GOSUB 5000
5142 V = 15:T\$ = "2. RESISTANCE IS THE OBJECT BEING STRUCK":
H=1: GOSUB 5000
6144 V = 19:T\$ = "3. FORCE IS AT THE POINT WHERE THE HANDS":
GOSUB 5000
6145 V = 21:T\$ = "GRIP THE HANDLE":H = 4: GOSUB 5000
6148 GOSUB 9000
6150 RETURN
5300 REM ** PRODUCES SOUND WHEN
6 3 0 1 ~ R E M ~ * * ~ C L A S S ~ C H A N G E S

```
```

 602 REM
 6310 S = - 16336
 6 3 1 5 \text { SOUND = PEEK (S) - PEEK (S) + PEEK (S) - PEEK (S) +}
 PEEK (S) - PEEK (S)
 5330 RETURN
 7500 REM CHECKS FOR RESPONSE VALIDITY
 7502 NORMAL
 7503 VTAB V + 3: HTAB 9: POKE - l6368,0: GET ANS$
 7505 IF ASC (ANS$) - 48 < 0 THEN GOTO 75l0?'
 7506 IF ASC (ANS$) - 48 > 3 THEN GOTO 7510
 7507 ANS = ASC (ANS\$) - 48: RETURN
7510 VTAB 23: HTAB l: PRINT "ENTER THE ";: INVERSE : PRINT
"NUMBER ";: PRINT "OF YOUR CHOICE."
7 5 1 1 ~ N O R M A L
7515 POKE 709,1
7520 RETURN
7600 REM **CHOOSE POSITIVE
7601 REM ** REINFORCEMENT **
7602 POKE C,I
7605 N = INT (RND (6) * 5) + l
7510 FOR I = 1 TO 5
7615 IF I = N THEN GOSUB 7650: RETURN
7 6 2 0 ~ N E X T
7625 RETURN
7650 REM ** PRAISE WORDS

```
```

 7555 R$(1) = "RIGHT"
 7656 R$(2) = "GOOD!"
 7657 RS(3) = "YES, YOU'RE RIGHT"
 7658 R$(4) = "EXCELLENT"
 7659 RS(5) = "YEP"
 7665 HOME :H = (40 - LEN (RS(N))) / 2
7570 VTAB 12: HTAB H: PRINT R\$(N)
7675 T = 2000: GOSUB 8000?'
7577 SCR = SCR + 1
7580 RETURN
7700 REM ** READ CORRECT ANSWER
701 REM ** FROM DATA STATEMENT
7702 REM ** AND COMPARES WITH
7703 REM ** INPUT
7704 POKE Z,ANS:Z = Z + l:C = C + l
7705 READ M
7708 L = L + l: REM QUESTION COUNTER
7710 IF ANS = M THEN GOSUB 7600: RETURN
7712 ON L GOSUB 5100,5300,5400,5200,5500,5600,5700,5800,590
0,6100
715 RETURN
7800 REM ** BLANKS ANS SPACE **
7805 FOR J = V + 3 TO V + 9
7810 FOR I = 9 TO 20
7 8 1 5 ~ v T A B ~ J : ~ H T A B ~ I : ~ P R I N T ~ " ~ " '

```
```

 7 8 1 8 ~ N E X T ~ I ~
 7 8 2 0 ~ N E X T ~ J ~
 7825 RETURN
 7900 REM ** COMMON FOILS ***
 7902 INVERSE
 7905 VTAB V + 3: HTAB 9
 7910 PRINT "l. lST CLASS"?'
 7915 VTAB V + 5: HTAB 9: PRINT "2. 2ND CLASS"
 7920 VTAB V + 7: HTAB 9: PRINT "3. 3RD CLASS"
 7925 V = V + 7
7 9 2 8 ~ N O R M A L
7 9 3 0 ~ R E T U R N
8000 REM **** DELAYS PRINTING
8005 FOR I = 1 TO T: NEXT
8050 RETURN
8100 REM ** MOVING LEVER **
8105 R = 55
8108 ROT= R
8110 SCALE= 3
8117 GOSUB 5000
8118 V = 21:H = 7:T\$ = "LEVER ROTATES AROUND AXIS": INVERSE
: GOSUB 5000: NORMAL
8119 V = 23:H = 5:TS = "M = MOVE LEVER C = CONTINUE": G
OSUB 5000
8120 ROT= R: DRAW X AT M,N

```
```

 8121 GOSUB 6300
 8125 GET KEYS: POKE 708,0
 8125 IF KEY$ = "C" THEN RETURN
 8127 GOSUB 8900
 8128 IF PEEK (708) = 1 THEN GOTO 8125
 8130 XDRAW X AT M,N?'
 8135 R = R + 4
 8140 IF R > 72 THEN GOTO 8150
 8145 GOTO 8120
 8150 R = R - 8: ROT= R: DRAW X AT M,N
 8152 GOSUB 5300
 8155 GET KEY$
 8158 IF KEY$ = "C" THEN RETURN
 8159 GOSUB 8900: IF PEEK (708) = 1 THEN GOTO 8155
 8150 XDRAW X AT M,N
 8165 R = R - 4: IF R = 56 THEN GOTO 8120
 8170 ROT= R: DRAW X AT M,N
 8175 GOSUB 6300
 8185 GOTO 8155
 8188 SCALE= 1
 8190 RETURN
 2200 REM ** MOVING BONE **
8201 REM ** QUESTION 6 **
8205 HGR : HCOLOR= 3: SCALE= 1: ROT= 0
8205R=0

```
```

 8210 DRAW 15 AT 100,100
 8215 DRAW 17 AT 100,100
 8220 DRAW 5 AT 97,98
 8221 IF L < > 5 THEN RETURN
 8222 GOSUB 8230?'
 8223 R = 54: ROT= 54
 8225 RETURN
 8230 REM ** MOVING BONE **
 8231 REM ** PART II **
 8232 R = 64: ROT= 64
 8234 GOSUB 6000
 8235 HOME :V = 21:H = 5:TS = "M = MOVE BONE C = CONTI
 NUE": GOSUB 5000
 8238 V = 23:H = 14:T$ = "JOINT = AXIS": INVERSE : GOSUB 5000
 : NORMAL
 8239 M = 100:N = 100
 8240 GET KEY$
 8242 IF KEY$ = "C" THEN RETURN
 8245 GOSUB 8900
 8246 IF KEY$ < > "M" THEN GOTO 8236
 8250 XDRAW 17 AT M,N
 8255 IF PEEK (707) = 1 THEN R = R - 8
 8255 IF PEEK (707) = 0 THEN R = R + 8
8258 IF R < O THEN R = 0
8250 ROT= R

```
```

 8265 DRAW 17 AT M,N
 8270 IF R > 72 THEN POKE 707,1
 8275 IF R = 5% THEN POKE 707,0
 8276 ROT= R?'
 8280 GOTO 8240
 8282 GOSUB 9000
 8285 RETURN
 8300 REM ** GRAPHICS FOR Q4
 801 REM
8305 GOSUB 8200
8310 DRAW 18 AT 100,100
8315 SCALE= 2: DRAW 8 AT 114,119: SCALE= 1
8320 DRAW 2 AT 136,98
8325 GOSUB 6000
8330 HOME :V = 21:H = 12:T\$ = "THIRD CLASS LEVER"
8335 INVERSE : GOSUB 5000: NORMAL
8336 V = 23:H = 10:T\$ = "RA IS LONGER THAN FA": GOSUB 5000
8340 GOSUB 9000
8350 RETURN
8400 REM ** GRAPHICS FOR 23 **
8401 REM
8405 HGR
8406 HCOLOR= 3
8407 SCALE= 1: ROT= 0
8410 DRAN 1 AT 105,70

```
```

 8411 DRAW 2 AT 90,67
 8412 DRAW 5 AT 139,71
 8413 DRAW 5 AT 115,71?'
 8420 ROT= 32: DRAW 6 AT 191,51: ROT=0
 8425 SCALE= 3
 8430 DRAW 8 AT 174,67
 8435 DRAW 13 AT 139,79
 8440 GOSUB 6000
 8445 V = 2l:H = 12:TS = "FIRST CLASS LEVER": INVERSE : GOSUB
 5000: NORMAL
 8450 V = 23:H = 1:T$ = "FORCE MOVES DOWN. RESISTANCE MOVES
 UP.": GOSUB 5000
 8455 GOSUB 9000
8460 RETURN
8500 REM ** GRAPHICS FOR Q5 **
801 REM
8505 GOSUB 8200
8512 ROT= 32: DRAW 15 AT 142,89: ROT= 0
8513 DRAN 2 AT 130,98
8514 DRAW 18 AT 100,100
8515 GOSUB 6000
8518 V = 21:H = 12:T\$ = "THIRD CLASS LEVER": INVERSE : GOSUB
5000: NORMAL
2520 V = 23:H=1:T\$ = "R = CENTER OF GRAVITY OF MOVING SEGM
ENT": GOSUB 5000

```
```

 8525 GOSUB 9000
 8550 RETURN ?'
 8900 REM CHECKS FOR ANSWER
 8901 REM VALIDITY
 8905 IF KEY$ = "M" THEN RETURN
 8910 HOME :V = 21:H = 12
 8915 TS = "ENTER ONLY 'M' OR 'C'"
 8920 GOSUB 5000
 8922 T = 2000: GOSUB 8000
 8925 POKE 708,1
 8950 RETURN
9000 REM *** WAITS FOR INPUT
9001 REM
9005 VTAB 24: HTAB 8
9010 FLASH
9012 POKE - 16368,0
9015 GET KEY\$
9020 NORMAL
9050 RETURN
9100 REM ** PRINTS BORDER **
9101 REM
9105 INVERSE : FOR I = 2 TO 39: VTAB 2: HTAB I: PRINT " ":
NEXT
9110 FOR I = 2 TO 23: VTAB I: HTAB 39: PRINT " ": NEXT
9115 FOR I = 39 TO 2 STEP - l: VTAB 23: HTAB I: PRINT " ":

```

\section*{NEXT ?'}

9120 FOR I = 23 TO 2 STEP - 1: VTAB I: HTAB 2: PRINT " ": NEXT

9125 NORMAL
9130 RETURN
9900 REM ** FILE KEEPER **
9901 REM
9902 D \(=\) CHRS (4): PRINT D\$
9905 D \(\$=\) CHRS (4): PRINT DS;"OPEN FILE" + NAME\$
9910 PRINT D\$;"WRITE FILE" + NAME\$
9912 PRINT NAMES
\(9913 \mathrm{C}=779\)
9915 FOR Z \(=768\) TO 778
9920 PRINT PEEK (Z);: PRINT PEEK (C)
\(9921 C=C+1\)
9922 NEXT
9925 PRINT D\$;"CLOSE FILE" + NAMES
9930 END
9935 RETURN

Appendix B
USER MANUAL FOR LEVER PROGRAM

\section*{DESCRIPTION}

This program is designed to help students learn and apply the concepts of levers and leverage through a combination of text and graphics. The program should be beneficial to students from high school through university level. Specifically the student will:
* Identify lever parts
* Classify levers
* Define lever terms
* Perform lever calculations
* Classify simple tools in terms of leverage These objectives are on line in the program's introductory module.

There are three subprogram options that can be selected from the introduction program (INTRODUCTION). These subprograms along with respective program content appear below:
1. Definitions - The interactive graphics for this module allow the user to repeatedly position the axis and note the change in lever classification. A bell rings each time classification changes. In subsequent screens, force arm and resistance arm are drawn and comparisons made for each type 84
of lever. Finally, the last screen allows the user to move the axis and note changes (provided in text at bottom of screen) in classification, lengths of resistance arm and force arm, and mechanical advantage. Axis placement is continually emphasized as the determining factor in lever classification. The following terms are defined in subprogram DEFINITIONS.
* Lever components
* Lever Classes
* Force arm
* Resistance arm
* Mechanical advantage
2. Applications - This module provides the user an opportunity to apply the \(F \times F A=R \times R A\) formula to balance an object of known weight with a given force. The student moves the axis and notes resulting changes in force arm and resistance arm. The figures required are formatted for easy multiplication. The first incorrect answer will bring an explanation and a chance to try again. A second incorrect response will tell the student if he made the same error or a different one and will provide a detailed explanation followed by a
graphic showing correct axis placement along with formula substitutions. The user is then asked to classify serveral simple tools (wheelbarrow, scissors). Because of the relatively high probability of guessing the correct answer when there are only three choices, a graphic explanation follows correct and incorrect responses. Module content can be summarized as:
* Balance
* Tool classification
3. Quiz - Ten questions from other modules' content are arranged according to anticipated degree of difficulty. Correct answers are rewarded with randomly selected words of positive reinforcement. Incorrect answers result in a branch to an explanation (usually graphic) followed by the next question. Upon completion, the student is provided a score which is sent to a "RECORDS" file that can be later read by the instructor. The student can branch from this point to the DEFINITIONS module or he can quit.

\section*{Requirements}

The levers program was authored for an APPLE II plus (DOS 3.3) microcomputer with a minimum of 48 K RAM. A single
disk drive, CRT and high resolution graphic capabilities are also required. Color is not necessary.

OPERATION
For microcomputers that have automatic booting (turnkey system) the INTRODUCTION program will begin when the computer is powered on. Follow the steps below:
1. Carefully place the disk in the disk drive and shut the door.
2. Turn on the CRT (television).
3. Turn on the APPLE II plus.
4. If the program does not start automatically, type "PR\#6" (without the quotes).
5. If the program still does not start, see your computer expert.

The program is initiated with a graphic display of the title, author's name, program objectives and options for selections to enter any of the three subprograms (Definitions, Applications, or Quiz). The user may also choose to quit at this time.

The recommended order of subprogram presentation for learning purposes is:
1. Definitions
2. Applications
3. Quiz

The user also has the option of quitting after any program
execution.
Speed of screen presentation is controlled by the student. Unless otherwise stated, each suceeding screen will be called when the user presses any key. This can be done anytime after the curser starts to flash. Earlier responses will be ignored.

\section*{Disk Contents}

There are 8 programs on your LEVER disk. All are locked to prevent accidental deletion or modification. Programs are:
* Levers - provides an introduction to the set of learning modules.
* MOVEDEF -- Changes Apple's normal loading address for Definitions module.
* MOVEAPP - Changes Apple's normal loading address for Applications module.
* MOVEQUIZ - Changes Apple's normal loading address for Quiz module.
* Definitions - Learning Module
* Applications - Learning Module
* QUIZ - Learning Module
* NEWTAB - Binary shape table for learning modules
* BLEVERS - Shape table for introductory program In addition, each time the Quiz program is run, a file
with a record of student responses and score will be created. The instructor can read this information by running the RECORDS program. Follow the steps outlined below:
1. type "RUN RECORDS"
2. The program will ask for the name of the file you wish to read. All files will contain the word "FILE" followed immediately (without a space) by the student's name as entered prior to taking the quiz (i.e. FILEJUDY). If the user doesn't know the file name, he can press the RETURN key and a listing of disk programs will appear. Choose from only those files that do not have an "*" next to them. If the file name is spelled incorrectly, the program will ask you to enter it again.
3. Student name, question numbers, and student responses will then be displayed along with total number of correct responses. Incorrect answers will be followed by an "*".
4. Eventually these files will need to be deleted. Once they have been read there is usually no reason to keep them. If the instructor wishes to delete each file as it is read he presses "Y" when prompted by "Do you wish to delete file?"
(Y/N).
5. The program will then ask if there are more files to be read. If there are, it will begin the loop again.
6. Upon program completion, all designated files will be deleted.

\section*{REFERENCES}
1. Atkinson, R.C. "Computerized Instruction and the Teaching Process," American Psychologist 23:225-239.
2. Atkinson, R.C. and Wilson, H.A. Computer Assisted Instruction. New York: Aca \(\overline{\text { demic Press, } 1959 .}\)
3. Baker, J.C. "Corporate Involvement in CAI," Educational Instruction 18:12-16, 1978.
4. Bork, A. "Learning Through Graphics," Computers and \(\frac{\text { Communications: }}{\text { edited by R.J. Selidel and M. } \frac{\text { Implations }}{\text { Rub }} \frac{\text { Education }}{\text { in }} \text { New York: }}\) Academic Press, 1975.
5. Caldwell, R.M. "Guidelines for Developing Basic Skills Instructional Materials for Use with Microcomputer Technology," Educational Technology 20:7-12, 1980.
6. Cleary, A., Mays, T. and Packham, D. Educational \(\frac{\text { Technology. New York: John Wiley \& Sons, }}{1976 .}\)
7. Dence, M. "Toward Defining the Role of CAI: A Review," Educational Technology 20: 50-54, 1980.
8. Doerr, C. Microcomputers and the 3 R's, Rochelle Park, New Jersey: Hay \(\mathrm{e}_{\mathrm{en}}\) Bōok Co., 1979.
9. Eisele, J.E. "Lesson Design for Computer Based Instructional Systems," Educational Technology 18:19-21, 1978.
10. Ellis, A.B. The Use and Misuse of Computers in Education. New York:McG \(\overline{r a w-H i l l, ~ 1974 . ~}\)
11. Gagne, R.M., Wager, W., and Rojas, A. "Planning and Authoring Computer-Assisted Instruction Lessons," Educational Technology 21:17-21, 1981.
12. Gerard, R.G. "Shaping the Mind: Computers in Education," Computer-Assisted Instruction: A \(\frac{\text { Book }}{1969}\) of Readings. New York: Academic press,
13. Gleason, G.T. "Microcomputers in Education: The State of the Art," Educational Technology 21:7-18, 1981.
14. Hammond, E. "Computer Graphics as an Aid to Learning," Science 172:903-908, 1971.
15. Hanson, J.B. "Effects of Feedback, Learner Control, and Cognitive Abilities on State Anxiety and Performance in a Computer-Assisted Instruction Task," Journal of Experimental Psychology 56:247-254, 1974.
15. Hinson, M.M. Kinesiology. Dubuque, Iowa. W.C. Brown
17. Jackson, B. "Quality Software," Electronic Learning, 1:33-36, 1981.
18. Kearsley, G.P. "A Model for Debugging Computer Assisted Instruction," Educational Technology, 19: 50-52, 1979.
19. Koch, W.J. "Basic Facts About Using the Computer in Instruction," Education Digest, 38:28-31, 1931.
20. Levien, R.E. The Emerging Technology: Instructional

21. Lewellen, L. "Computers in the Classroom," Journal of Educational Data Processing 8:33-38, 1971.
22. Mçowan, H.L. and Faust, G.W. "Computer-Assisted Instruction in Physical Therapy: A Pilot Program," Physical Therapy 51: lll3-1120, 1971.
23. McLagen, P.A. and Sandborgh, R.E. "CAI's Past: We've Come a Long Way," Training 14: 52, 1980.
24. Magidson, E.M. "Issue Overview: Trends in Computer-

Assisted Instruction," Educational Technology 18:5-8, 1978 .
25. Magidson, E.M. "Student Assessment of PLATO; What Students Like and Dislike," Educational Technology 18:15-19, 1978.
26. Merrill, M.D. "Learner Control in Computer Based Learning," Computers and Education 4:77-95, 1980.
27. Rockart, J.F. and Morton, M.S. Computers and the Learning Process in Higher Education. New York: McGraw- \(\overline{\mathrm{Hi}} 1 \overline{1}, 1975\).
28. Roblyer, M.D. "When is it "Good Courseware"? Problems in Developing Standards for Microcomputer Courseware," Educational Technology 22: 47-54, 1981.
29. Seidel, R.J. and Rubin, M.L. Computers and Communications: Implications for Education. New York: Academic press, 1977.
30. Skyrme, J. "The Evolution of Graphics in CAI," Computers and Education 6:13-24, 1982.
31. Splittgerber. F.L. "Computer-Based Instruction: A Revolution in the Making?," Educational Technology 19:20-25, 1979.
32. Suppes, P. and Macken, E. "The Historical Path from Research and Development to Operational Use of CAI," Educational Technology 18: 9-12, 1978.
33. Suppes, P. and Morningstar, M. "Computer-Assisted Instruction," Science 156:343-350, 1969.
34. Sydow, J. "Computers in Physical Education," \(\frac{\text { Computer }}{\text { New Hampshire: Timeshare }} \frac{\text { Applications }}{\text { 而 }}, \frac{\text { Instruction }}{1978 \text {. }}\)
35. Tsai, S.W. and Pohl, N.F. "Student Achievement in Computer Programming: Lecture vs. ComputerAided Instruction," Journal of Experimental Education 45:56-70, 1978.
36. Visonhalor, J.F. and Bass, R.K. "Summary of Ten Major

Studies on CAI Drill and Practice," Educational Technology, 12:29-32, 1972 .
37. Waite, M. "Computer Graphics Primer. Indianapolis: Howard W. Sams \& Co., 1979.
38. Wells, K. Kinesiology. Philadelphia: Saunders Co., 1976.```

