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ABSTRACT 

KELLI WELLBORN 

A THEORETICAL RELATIONSHIP BETWEEN MATHEMATICS AND 

MECHANICS 

MAY2013 

Classical mathematics began during the Egyptian and Babylonian time and solved 

problems analytically with no proof of theories being performed. In the late eighteenth 

century, theoretical problems began emerging into traditional mathematics where the 

theoretical approach to classical problems began to be explored. Traditional mathematics 

included group, field and ring theory and can be applied to other subjects such as 

molecular symmetry in chemistry. Traditional mathematics expanded and provided 

discovery of the newest field of study, idempotent mathematics. Idempotent mathematics 

emerged in the nineteenth century stemming from the definition of an idempotent 

element and an algebraic structure known as a semiring. Idempotent and traditional 

mathematics have been said to have a correspondence to each other just like quantum 

mechanics and classical mechanics do through Neil Bohr's correspondence principle. 

Using Erwin Schrodinger's particle in a box experiment, the beginning steps were taken 

to find the theoretical relationship between the two subjects. 
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CHAPTER I 

INTRODUCTION 

Historians can date the beginning of mathematics back to around 3000 BC with 

the Egyptians and Babylonians, referred to as the era of classical mathematics. Classical 

mathematicians focused on finding the roots of polynomial equations and how to notate 

the equations and roots as well as other subjects such as geometry and number theory 

(Kleiner, 2007). Both the Egyptians and Babylonians used types of images to symbolize a 

number in numeric problems. The Egyptians used symbols known as hieroglyphics, 

shown in Figure I below, while the Babylonians used wedges. The Babylonian number 

system contained two types of wedges, a vertical wedge, T, representing ones and a 

corner wedge, < , representing tens (Lewinter & Widulski, 2002; O'Connor & 

Robertson). 

I I 10,000 

10 () 100,000 " 

100 � 1,000,000 

1,000 I 

Figure I: Egyptian Hieroglyphics courtesy of O'Connor & Robertson 
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After the Babylonian and Egyptian era, Greek mathematicians began to emerge 

usmg the astronomical and mathematical ideas from the Egyptians and Babylonians. 

Greek mathematics focused mainly on geometry and founded many of the geometric 

properties and proofs taught today. Greek mathematicians used geometric means to solve 

proofs by starting with known properties of geometry and using deductive reasoning to 

end with what they were trying to prove (Lewinter & Widulski, 2002; "Mathematical 

proof," n.d.). The Greek mathematicians had strong skills toward geometry, while the 

Islamic mathematicians focused on algebra. 

Islamic mathematicians possessed very strong skills in algebra and due to these 

skills, the creation of "a systematic study of methods for solving quadratic equations'' 

emerged ("Algebra," 2013). The term algebra comes from an Islamic book written by the 

Euclid of algebra, Al-Khwarizmi (Kleiner, 2007, p.3). This book included many solutions 

to quadratic and cubic polynomial equations as well as some geometric proofs alongside 

the solutions. The need to create a general definition came about from the geometric 

proofs handed down and contributed to the transition of classical mathematics to a new 

era known as traditional mathematics. 

Traditional mathematics includes theories such as group, field and ring theory 

referred to as abstract algebra. In the eighteenth century, group theory emerged, which is 

the study of groups. A group is defined to be a set with a binary operation that is 

associative and contains an identity element and each element has an inverse (Nicholson, 

2007). 
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Groups later evolved due to the addition of properties and restrictions such as 

those present in fields and rings. Field and ring theory coexisted together around the same 

time period. 

A field is defined to be a set of elements that contains two binary operations, 

addition and multiplication, is a commutative group under multiplication and addition 

and multiplication is distributive over addition. A ring is defined to be an additive 

commutative group, and multiplication is distributive over addition, commutative, 

associative and contains an identity element (Clark, 1984). Due to the evolution of 

traditional mathematics, group theory can be applied to subjects such as molecular 

symmetry of compounds. 

Molecular symmetry contains five symmetry elements: identity (E), n-fold axis of 

symmetry (Cn), reflection plane ( a), the inversion center (i) and the improper rotation axis 

(S11). Molecular symmetry allows for the determination of chirality, which is the 

capability to superimpose on its mirror image or not. Based on the knowledge of the 

appearance of an improper rotation, one can say that a molecule is achiral (Atkins & de 

Paula, 2006). Traditional mathematics contains several subcategories such as semirings, 

which led to the discovery of a newer field in mathematics known as idempotent 

mathematics. 

Idempotent mathematics emerged due to the work of two Russian 

mathematicians, Viktor Pavlovich Maslov and Grigory Litvinov. Idempotent refers to a 

property whereby an element of a set is unchanged in value when multiplied or otherwise 
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operated on by itself, shown as a*a = a ("Idempotent", 2012). An area in idempotent 

mathematics that is studied incorporates an algebraic structure referred to as a semiring. 

Semirings contain the property of associativity for addition and multiplication, 

commutative property of addition, an identity element, distributive property, and an 

absorbing element (Glazek, 2002). 

A semiring is known as an idempotent semiring if any element that exists in the 

semiring is unchanged in value when operated on itself under tropical addition, defined 

by a EB a = a (Ellis, 2005). Some of the best-known idempotent semirings include the 

max-plus and min-plus semirings. 

Max-plus semiring is denoted as JR{ u {-oo} with operations EB and ® defined by aEBb: 

= max (a,b) and a(8)b: = a+b. The first notation, aEBb: = max (a,b ), can be translated into 

the tropical addition of a and b is equivalent to the maximum value a or b in algebra 

(Hebisch & Hanns, 1998). The second notation, a(8)b: = a+b, can be translated into the 

tropical multiplication of a and b is equivalent to the addition of a and b in algebra. 

Another type of idempotent semiring is known as a min-plus semiring. The min-plus 

semiring is IR{ u { oo} equipped with aEBb: = min (a,b) and a(8)b: = a+b (Golan, 2005). 

Min-plus can be applied to a type of problem known as the shortest path problem, which 

determines the quickest amount of time or shortest amount of distance it takes to get from 

one point to another through multiple points. The shortest path problem uses matrix 

multiplication and addition under the conditions of the min-plus semiring to determine 

the shortest path. 
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The discovery of idempotent mathematics came about when Maslov studied 

idempotent semirings and used semirings to transform a non-linear function in 

differential equations to a linear function under idempotent semirings (Litvinov, 2007). 

One example from Maslov and Litvinov involved the derivation of a special case of the 

Hamilton-Jacobi equation from the heat equation under the properties of an idempotent 

semiring. The transformation of a non-linear function to a linear function is referred to as 

Maslov' s dequantization also known as the idempotent correspondence principle 

(Litvinov, 2007). Using the idempotent correspondence principle, Maslov and Litvinov 

showed an idea where the relationship between quantum mechanics and classical 

mechanics is analogous to the relationship between traditional mathematics and 

idempotent mathematics. 

Due to the evolution of classical mathematics to idempotent mathematics, 

development in different number systems and proofs supports the explanation of why 

algebraic laws hold true. Idempotent mathematics is a growing field of study and can be 

applied to theoretical computer science and mechanics through analogous principles. In 

the near future, the hope for a connection between mechanics and mathematics will be 

more prominent using experiments such as the Schrodinger equation and the Markov 

chain under the conditions of the max-plus and min-plus semirings. 
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CHAPTER II 

A BRIEF HISTORY 

Traditional mathematics also referred to as modern mathematics, surfaced in the 

nineteenth century as a transition from classical mathematics. During the classical period, 

mathematicians studied number theory, geometry, properties of various number systems, 

and the solution of polynomial equations (Kleiner, 2007). The Egyptians (3000 BC to 

300 BC) became some of the first known mathematicians and represented numbers with 

symbols known as hieroglyphics. 

The Egyptians created an interesting way to multiply numbers using the dyadic 

method, meaning doubling. The Egyptians would start with two columns. The left 

column would begin with the integer one, and that number would be doubled until any 

combination of the doubled numbers in the left column could be summed together to the 

smaller of the two numbers being multiplied. The right column begins with the larger 

number being multiplied. This number would be doubled the same amount of iterations 

as the left column. To get the product, pick the numbers in the right column that 

correspond to the numbers in the left column that added up to the smaller number being 

multiplied. The sum of the corresponding numbers in the right column represents the 

product of the two numbers; an illustrated example follows below in figure 2 (Lewinter & 

Widulski, 2002). 
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20 * 32 

1 32 
2 64 
4* 128* 
8 256 
16* 512* 
16 + 4 = 20 

20 * 3 2 = 12 8 + 512 = 640 

Figure 2: Egyptian's dyadic method example 

The Babylonians (1800 BC to 1600 BC) expressed numbers with vertical and 

horizontal wedges. The Babylonians did not use the decimal system being used today; 

instead they used a sexagesimal scale, which has a base 60 instead of base 10 (Lewinter 

& Widulski, 2002). Borrowed from the Babylonians, this scale would be later introduced 

into Greek astronomical and mathematical calculations in the sixteenth century. 

Using ideas from the Egyptians and Babylonians, the Greeks applied themselves 

in the subjects of astronomy and geometry. Greek mathematicians demonstrated strong 

skills in geometric algebra. Thales, a Greek philosopher, emphasized the importance of 

proving mathematical truths and used geometry to do so. Diophantus of Alexandria, a 

Greek mathematician, introduced some solutions of equations in integers or rational 

numbers along with partial algebraic notation (Kleiner, 2007). Partial algebraic notation 

denoted unknowns, negations, equalities, squares, cubes and other mathematical objects 

as symbols (Kleiner, 2007). One of the most famous geometric contributions included 

Euclid's work Elements, which contained "geometric propositions that, if translated into 

algebraic language, yield algebraic results: laws of algebra as well as solutions to 

quadratic equations" (Kleiner, 2007, p.2). 
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Shifting from a geometric focus, Islamic mathematicians focused mainly on 

algebraic problems and equations. Al-Khwarizmi studied algebraic equations and how to 

solve for the variables through canceling out numbers and variables from each side of the 

equation. Thanks to the contributions of Al-Khwarizmi's book, al-jabr w al-muqabalah, 

mathematicians had different types of solutions to quadratic equations as well as 

geometric justifications (Kleiner, 2007). Due to these well-known mathematical 

contributions, the transition from classical mathematics to traditional mathematics had 

begun to emerge. 

In the sixteenth and seventeenth century, two mathematicians, Fran9ois Viete and 

Rene Descartes, introduced the use of symbols in mathematical notation. Viete 

distinguished the difference between arbitrary parameters, represented by consonants 

(b,c,d,f ... ), and variables, represented by vowels (a, e, i, o, u). Although Viete introduced 

symbols in equations, the equations contained partly symbolic characters and required 

that the algebraic expressions be written in the same degree; this created complications 

(Kleiner, 2007). Even with certain drawbacks, Viete's contributions accompanied the 

development in analytical geometry and calculus. The complications of Viete 's work 

became the center of study for French mathematician Descartes. 

Using fully symbolic notation and explaining the basic elements of analytic 

geometry, Descartes improved Viete's work. Instead of using consonants and vowels, 

Descartes used letters at the beginning of the alphabet as parameters (a, b,c, ... ) and letters

at the end of the alphabet as variables (x, y, z, ... ).
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These two mathematicians "shifted the focus of attention from the solvability of 

numerical equations to theoretical studies of equations with literal coefficients" (Kleiner, 

2007, p.10). 

After Descartes, polynomial equations continued being studied more in depth 

along with the Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra 

states, "every polynomial equation having complex coefficients and degree (greater than 

or equal to one) has at least one complex root" (Weisstein, Fundamental Theorem of 

Algebra). The solutions to polynomial equations aided in the transition to the study of 

properties of number systems. 

In I 830, an English mathematician, George Peacock, published Treatise of 

Algebra; this book distinguished between arithmetical algebra and symbolic algebra. 

Arithmetical algebra refers to operations of addition, subtraction, multiplication and 

division on symbols that stood only for positive numbers; symbolic algebra refers to 

operations with symbols that obey the laws of arithmetical algebra and does not reference 

a specific number or object (Peacock, 1830). Shortly after Peacock, traditional 

mathematics started to emerge more in depth and extended into number theory and 

abstract algebra. 

Traditional mathematics began to arise starting with group theory and extended 

further to field and ring theory. Traditional mathematics consists of subcategories within 

each theory such as subgroups, semigroups, subfields and semirings.
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The transition to traditional mathematics came into existence largely due to 

mathematicians not being able to solve classical problems, thus began the study of 

abstract and axiomatic systems (Kleiner, 2007). 

Around 1830, a French mathematician Evariste Galois, used the word "group" for 

the first time and became known as one of the founders of group theory. Several 

mathematicians started the concept of groups before Galois, however, the definitions 

were not used in a general sense. Continuing research in groups, Galois unintentionally 

began to uncover field theory while solving polynomial equations. Shadowing Galois's 

ideas, Richard Dedekind and Leopold Kronecker both studied and introduced different 

definitions for a field and continued to study beyond groups and fields (Kleiner, 2007). 

Dedekind began to research ring theory and introduced some fundamental properties of 

rings later to be used for the first abstract definition of a ring. Soon after the introduction 

of rings, Dedekind started to research a specific type of ring, known as a semiring. 

Dedekind introduced a non-trivial example of semirings in 1894 in connection 

with the algebra of ideals of a commutative ring; semirings became an independent study 

for many algebraists such as Harry Schultz Vandiver in 1934 (Golan, 2005). Vandiver 

introduced the notation of a semiring and its acceptance as a fundamental algebraic 

structure, and in 1960, Samuel Eilenberg used semirings to research the theory of 

automata language in computer science. In 1993, Alexander Barvinok used the theory of 

semirings to apply to the theory of optimization and convex polytopes in the space of 

R�in (Golan, 2005). 

10 



Semirings began to be applied to a new field of mathematics called idempotent 

mathematics, recently discovered due to mathematicians Viktor Pavlovich Maslov and 

Grigory Litvinov (Golan, 2005; Litvinov & Maslov, 2003). 

Idempotent mathematics became a field of traditional mathematics that bases its 

foundation on using idempotent semirings and semifields to solve applied problems in 

computer science and discrete mathematics. Idempotent mathematics derived from the 

definition of an idempotent element in abstract algebra. An idempotent element can be 

defined as "a mathematical quantity which when applied to itself under a given binary 

operation equals itself' (Idempotent, 2012). Idempotent mathematics replaces simple 

algebraic operations such as multiplication and addition with basic operations such as 

minimum and maximum. 

From the Egyptians to current mathematicians, mathematics has evolved from 

arithmetic to theoretical algebra and currently expands into other subjects such as 

mechanics, computational chemistry and computational biology. The history of 

mathemati�s looks that of a continuous sinusoidal wave with oscillating eras and infinite 

research and discovery. 
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CHAPTER III 

EVOLUTION OF TRADITIONAL MATHEMATICS 

Group Theory 

Due to French mathematician Joseph Louis Lagrange, the evolution of traditional 

mathematics started with the introduction of group theory in 1770. Lagrange expanded on 

the known methods of Viete and Descartes for solving cubic and quadratic equations. 

Lagrange attempted to do an analysis on equations with degree n to polynomial 

equations. Although Lagrange's work did not resolve the problem at the time, this 

became the first time that the solutions of polynomial equations and the permutations of 

groups coexisted with each other (Kleiner 2007; Kleiner 1986). Even though Lagrange 

did not coin the term "group" or define a group, the work on polynomial equations started 

the "group" concept. 

Johann Carl Friedrich Gauss became the next mathematician to use the concept of a 

group in 1801. Explicit examples of groups can be seen in geometry and analysis; 

however, Galois would come along in latter years to be known as the founder of group 

theory (Kleiner, 2007). 

Mathematicians observed Galois' work and one notable mathematician, Arthur

Cayley, provided the first abstract definition of a group: 
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"A set of symbols, 1, a, /3, . . .  , all of them different, and such that the 

product of any two of them (no matter in what order), or the product of 

any one of them into itself, belongs to the set, is said to be a group ... These 

symbols are not in general convertible [commutative], but are associative 

and it follows that the entire group is multiplied by any one of the symbols, 

either as further or nearer factor ... , the effect is simply to reproduce the 

group" (Kleiner, 1986, p.208). 

The definition of a group has evolved throughout the years and currently exists as 

the definition shown below: 

A group is a nonempty set G with a binary operation that satisfies the 

following properties: 

1. G is closed under the binary operation;

2. The operation is associative;

3. There is an identity element in G;

4. Every element of G has an inverse in G.

(Nicholson, 2007, p.73).

An example of a group would be the set of integers denoted by I, which 

represents discrete numbers from negative infinity to positive infinity. Under the 

binary operation of addition, every integer operated on another integer yields an 

element that exists in I. The element 0 serves as an identity element. For an 

13 



element a, -a is the inverse. In following years, the development of other 

properties helped with the exploration of field and ring theory. 

Ring Theory 

Ring theory developed from two broad categories, non-commutative and 

commutative rings, which developed from different sources in mathematics. Israel 

Kleiner describes the formation of commutative rings and non-commutative rings in 

figure 3 below (2007, p.42). 

Integers in 

algebraic 

number 

fields 

Algebraic Number 

Theory 

Integers in 
algebraic 
function 
fields 

Algebraic 

Geometry 

Polynomials 
in several 

variables 

Invariant 

theory 

Complex numbers; 

quaternions 

Theory of 
hypercomplex 

number systems 

Non-commutative ring 
Commutative ring 

theory 
theory 

�� 
Abstract Ring Theory 

Figure 3: The development of Ring Theory 
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William Rowan Hamilton introduced a non-commutative ring from a single example 

of quaternions in 1843. Quaternion numbers take the form of w +xi+ yj + zk, where w,

x, y and z represent real numbers and i, j and k represent imaginary units and satisfy the 

condition/=/ =I<= ijk = -1 (Weisstein, Quaternion). These numbers obey all 

algebraic laws of associativity and distributivity excluding the commutative property of 

multiplication, shown below. 

ijk = -1

i(ijk) = i (-1) 
-1 (jk) = -i
Jk = i

ijk = -1

J(ijk) = j (-1) 
-1 (ik) = -j
ik = J

ijk = -1

k(ijk) = k (-1) 
-1 (ij) = -k
ij = k

Jk = i 
(ik)(ij) =
-l(kj) =
kj = -i

ik = J 
(jk)(ij) = J 
-l(ki) = j
ki = -J

ij = k 
(jk)(ik) = k 
-l(ji) = k
Ji= -k

Quaternions belong to a number system known as the hypercomplex number system. 

One example of hypercomplex number systems at work can be seen in a subject known 

as matrix algebra. Matrix algebra involves the addition and multiplication of matrices. 

Matrix addition follows all algebraic laws, however, matrix multiplication follows all of 

the algebraic laws except for the commutative property of multiplication (Bronson & 

Costa, 2009). 
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The hypercomplex number system contributed to the introduction of a definition for a 

non-commutative ring, to later be applied to the abstract definition of a ring. 

Looking at figure 3 on page 14, the definition of a commutative ring began with 

integers in algebraic number fields, integers in algebraic function fields and polynomials 

in several variables. Integers in algebraic number fields extended into algebraic number 

theory, and later contributed to the definition of a commutative ring. 

Integers in algebraic function fields and polynomials in several variables extended 

to the study of algebraic curves known as algebraic geometry. In algebraic geometry, 

algebra symbolizes the ring of polynomials and the geometry symbolizes the set of zeros 

of polynomials called an algebraic variety (Rowland, Algebraic Geometry). Polynomials 

of several variables contributed to both algebraic geometry as well as invariant theory. 

Invariant theory deals with the explicit definition of polynomial functions that do not 

change under transformations (Invariant, n.d). These contributions above, laid the 

framework for the definition of commutative rings. 

When the first abstract definition for a ring came about, the existence of an abstract 

definition for a group had existed for about two decades and the definition of a field 

started to emerge. Israeli mathematician, Abraham Fraenkel, introduced the first abstract 

definition using the ideas of Kurt Hensel (Kleiner, 2007). Fraenkel defined a ring as a 

system R "on which two abstract operations are postulated: addition and multiplication. 

The first operation is assumed to satisfy the axioms of a group, and the second one is 

assumed to be associative and distributive with respect to the addition. 
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Further, R is assumed to contain at least one identity element relative to the second 

operation" (Corry, 2000, p.5-27). Fraenkel's definition contains all properties that the 

modern definition does with the exception of two axioms, which do not appear in the 

modern definition. 

After several years of research in ring theory, the modem abstract definition of a ring 

follows: 

A rmg 1s a set R with two binary operations, addition ( +) and 

multiplication (*) that has the following properties: 

1. Addition is associative and commutative.

2. There exist additive and multiplicative identity elements in R.

3. There exists an additive inverse for each element.

4. Multiplication is associative

5. Multiplication is distributive over addition

a* (b + c) = a*b + a*c 

(a+ b)*c = a*c + b*c 

(Nicholson, 2007, p. 157) 

The definition of a ring came about due to the placement of restrictions 

such as the commutative property of addition and the property of distributivity on 

the definition of a group. Using the example from group theory, the set of integers 

satisfies the requirements for a ring. 
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Rings can be placed in subcategories such as subrings, polynomial rings, quotient 

rings and semirings. The expansion of semirings will be described in chapter four along 

with its contributions to a new field of study, idempotent mathematics. 

Field Theory 

In the nineteenth century, two mathematicians, Galois and Niels Henrik Abel, 

introduced field theory, which began to surface shortly after the founding of group 

theory. During the development of the abstract definition of a field, Dedekind introduced 

a more conceptually oriented definition of a field being an "infinite system of real or 

complex numbers so closed in itself and perfect that addition, subtraction, multiplication, 

and division of any two of these numbers again yields a number of the system" (Kleiner, 

2007, p. 66). After Dedekind introduced the above definition, Leopold Kronecker 

presented a more algorithmic definition than Dedekind's. Kronecker defines a field as 

"the domain of rationality (R', R", R"', ... ) contains ... every one of those quantities 

which are rational functions of the quantities R', R", R' ", ... with integer coefficents" 

(Kleiner, 2007, p.67). After Dedekind and Kronecker, a German mathematician, Heinrich 

Martin Weber introduced the first abstract definition of a field that consists of two types 

of composition, the first of which may be called addition, the second multiplication with 

the following restrictions: 
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1. We assume that both types of composition are commutative.

2. Addition shall generally satisfy the conditions, which define a

group.

3. Multiplication is such that

a(-b) = -(ab)

a(b + c) = ab + ac

ab = ac imp/es b =c, unless a = 0

Given b and c, ab=c determines a, unless b =O.

(Kleiner, 2007, p. 72)

After centuries of research and development, below shows the modem 

definition used: 

A field is a set F with two binary operations, addition ( +) and 

multiplication (*), such that if a, b and c are elements of F then the 

following properties follow: 

I. Satisfies all conditions of a group under both operations.

2. Contains the commutative property of addition and

multiplication.

3. Multiplication is distributive over addition

a* (b + c) = a* b + a* c

(a+ b)*c = a*c + b*c

(Clark, 1984; Nicodemi, 2007)
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Taking the example used for group theory, the set of integers does not 

satisfy the properties of a field because the inverse element does not exist under 

multiplication. However, the set of real numbers, denoted by IR{, satisfies the 

conditions for a field. 

Field and ring theory began to emerge due to the addition of properties on 

the definition of a group. Groups have been applied to many subjects such as 

mechanics and molecular symmetry used in chemistry. An application of 

traditional mathematics can be shown in chapter 5 using molecular symmetry as 

an example. 
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CHAPTER IV 

IDEMPOTENT MATHEMATICS 

To understand the field of idempotent mathematics, the origins of idempotent 

mathematics and semiring needs to be explored. The word idempotent originated in 1870 

due to American mathematician Benjamin Peirce who first introduced the term 

idempotent in his work Linear Associative Algebra. Idempotent elements can be seen in a 

mathematical subject referred to as matrix mathematics. Idempotence can be defined as 

an element of a set that is unchanged in value when multiplied or otherwise operated on 

by itself shown as a*a = a (Idempotent, 2012). An example of this operation in matrix 

mathematics is as follows. 

[� 

Let matrix A be [� �J 

Show that A *A = A 

1 * 1 + 1 * OJ = [1 + 0
0*1+0*0 o+o 

1 + OJ == [1
0 + 0 0 

The idempotent concept can be used in a field of study in traditional mathematics 

known as semirings. 
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A semiring is a set S with two binary operations, addition ( +) and multiplication 

(*), such that if a, b and c are elements of S then the following properties follow: 

1. Addition is associative and commutative

2. Multiplication is associative

3. There exists an identity element in S with respect to addition

and multiplication

4. Multiplication is distributive over addition

5. There exists an absorbing element O such that

a*O = O = O*a

(Litvinov & Masolv, 2003; Golan, 2005).

A semiring is called commutative if it possesses the commutative property of 

multiplication, a*b = b*a. A semiring is called an idempotent semiring if it possesses the 

idempotent property, a ® a = a for all a that exists in the semiring (Litvinov & Maslov, 

2003 ). Some simple examples of semirings include the set of natural numbers, integers, 

and real numbers. 

The best-known example of an idempotent semiring is the max-plus semiring and 

min-plus semiring also known as tropical algebra. The max-plus and min-plus semirings 

are defined on page four in chapter one. A max-plus semiring must satisfy all of the 

properties of a semiring explained above, however, a couple of the properties need more 

clarification. 

The identity element under tropical addition for JR{ u {-00} is -00 since -oo EB a = a = a

(±) -oo for all a. The identity property is denoted as O EB a = a = a EE> 0. (Livinov & 
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Maslov, 2003). The identity element under tropical multiplication for IR{ u {-oo} is 0 since 

0 (8) a = a = a ® 0 for all a. The identity property is denoted as 1 (8) a = a = a (8) 1 

(Litvinov& Maslov, 2003, p.3). The properties now become the following when 

describing the properties for a max-plus semiring: 

1. ( a(±) b) (±) c = a (±) (b (±) c)

2. 0 (±) a = a = a (±) 0

3. a (±)b = b® a

4. (a®b) (8)c = a@ (b@c)

5. 1 (8)a = a = a@l

6. O®a = 0 = a(8)O

7. a® (b ®c) = (a®b) (±) (a@c)

8. ( a (±) b) (8)c = ( a@c) (±) (b®c)

(Farlow, 2009)

In the example used for min-plus semiring in chapter five, tropical multiplication and 

addition of square matrices can be used to determine the shortest amount of time or 

distance it takes to get from one point to another. Tropical addition of matrices is denoted 

as A= X EB Y where A = [ aij], X = [ Xij] and Y = [Yij] where i and j goes from one to m.

When performing tropical addition, the minimum of the elements in X and Y become the 

new element in A. Looking at a four by four matrix, A = X EB Y would look like the 

following: 
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r

l a12 
a21 a22 
a31 a32 
a41 a42 

a13 
a23 
a33 
a43 

a14

] [

X11 
a24 _ Xz1 
a34 - X31 
a44 X41 

[

min (x1v y11) 
min (x2v Y21) 
min (x31, y31) 
min (x4i, Y41) 

X12 X13 
Xzz Xz3 
X32 X33 
X42 X43

X14

] 

[Y11 
Xz4 

Et) 
Y21 

X34 Y31 
X44 Y41 

Y12 
Y22 
Y32 

Y42 

Y13 

Y23

Y33 

Y43 

min (X12, Y12) min (x13,y13) 
min (x22, Y22) min (X23, Y23) 
min (x32, Y32) min (X33, y33) 
min (X42, Y42) min (X43, y43) 

Y14

] 
Y24 
Y34 

Y44 

min (x14, Y14)

] 
min (X24, Y24) 
min (X34, y34) 
min (X44, y44)

The notation for the tropical addition of matrices can be written as aij = min(xij, Yij) 

where i and j go from one to m for each element of A. Tropical multiplication of matrices 

is denoted as A = X ® Y where A = [aij], X = [xij] and Y = [yij] where i and} goes from 

one to m. When performing tropical matrix multiplication, tropical addition is performed 

at the same time. A simple matrix multiplication will be observed first and tropical 

multiplication will be applied to see how different the two operations can be. 

The definition of matrix multiplication follows for an element of A (Bronson & 

Costa, 2009): 

aiJ = (xil X Y1J) + (xi2 X Y2J + ··· + (xin X YnJ = I XinYnJ
n=l 

In tropical matrix multiplication, instead of the summation, it becomes the 

minimum value of the sums of elements in X and Y and is denoted as (Farlow, 2009): 

The definition of the identity matrix in min-plus semirings needs to be addressed. 
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The identity of a matrix in algebra is a square matrix with the integer one in the 

diagonal and the integer zero in all other places where the column number and row 

number are not equal. Transforming an identity matrix into min-plus semirings occurs by 

replacing the diagonal with zero and all other values with infinity; the additive and 

multiplicative identities of the min-plus semirings. 

If a problem consists of a matrix with more than ten columns or rows, the 

arithmetic can be quite lengthy and errors can occur, however, the computer science 

industry has constructed a couple of algorithms that can be used such as the Floyd­

Warshall algorithm. For the purpose of this paper, the math will be done by hand to better 

show how to apply tropical algebra toward matrices. Using max-plus and min-plus 

semirings, this concept can be applied to the dequantization of non-linear equations to 

linear equations. 

The Russian mathematician, Maslov, used semirings as a type of way to linearize 

a non-linear equation staying in the world of non-negative real numbers and notated it as 

IR?.+. He defines a particular map, denoted as <Dh, which represents the mapping of IR{+ to 

the max-plus semiring, JR?. u {-oo }. He also does a change in variables where u maps tow

and equals the product of a positive parameter (h) and the natural log of u, denoted as

u � w = hlnu (Litvinov & Maslov, 1998). Maslov's research aided in the evolution of a

theory known as the idempotent correspondence principle, which later leads to the

subject of idempotent mathematics. 
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The idempotent correspondence principle is the existence of a "correspondence 

between important, interesting, and useful constructions and results of the traditional 

mathematics over fields and analogous constructions and results over idempotent 

semirings" (Litvinov, 2003, p.2). Maslov refers to this as the Maslov dequantization, 

which can be seen with the dequantization of the Hamilton-Jacobi equation starting from 

a simple heat equation shown below. 

au h a
2u 

Heat Equation: 
at= 2 x axz 

(1)

Where x E JR?., t > 0, and his a positive parameter 

Apply a change in variable: u � w = -hlnu 

Because h is a parameter, the derivative of h with respect 

to t is zero, equation (2) becomes 
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Because h is a parameter, the derivative of h with 

respect to any variable is zero, equation ( 4) 

becomes the fallowing 

Now plugging (3) and (5) in (1), the fallowing 

is derived 

---X- -- X ---X-- + --X -( 
e-ft aw

)
_ h ( e-ft a2w

) (
e-� (aw)

2) 

h at 2 h ax 2 h2 ax 

- ---x- - ---x-- + --x -
h [( e-ft aw

)
-

( 
e-ft a2w

) (
e-� (aw)

2) ] 
e -ft h at 2 ax 2 2h ax 

According to Maslov, equation (6) is non-linear with w I and w2 as solutions with 

W1 Wz 

the following properties w1 Ef)w2 = hln(eT + eT) and w1 ®w2 = w1 + w2 (Litvinov, 

2007). During the conference in 2003, Litvinov defined that in equation (6), h goes to 

zero. The new equation follows: 

27 
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) -- = -x - + -x - (6) at 2 ox2 2 ox 



(- �;) = (½x (::n 
0= (�;)+ Gx(::n 

Equation 6 above has been transformed into a linear equation and uses the 

solutions of w 1 and w2 under the max-plus semiring properties of tropical addition and 

multiplication. 
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CHAPTER V 

APPLICATIONS 

Application of Traditional Mathematics 

The study of groups can be applied to molecular symmetry of molecules in 

chemistry. Molecular symmetry is used to study the patterns in structures and classify 

molecules under a certain symmetric label. Using molecular symmetry, one can predict 

the chirality of the molecule. Chirality refers to if a molecule can be superimposed on its 

mirror image; chiral means that a molecule cannot be superimposed on its mirror image 

and achiral means that it can (Atkins & de Paula, 2006) Figure 4 shows what it means for 

the compound to be chiral or achiral. 

Mirror 

Chiral 

Figure 4: Chiral and Achiral pictorial representations 
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The type of symmetry present determines chirality; an achiral molecule has an 

improper rotation, which contains two successive transformations (Schonland, 1965). The 

symmetric elements will be described below along with how to apply molecular 

symmetry to group theory. 

Using a water molecule as an example, the following will show how group theory 

applies to chemistry. Five elements of symmetry exist in the molecular symmetry: 

identity (E), n-fold axis of symmetry (Cn), reflection plane ( cr), the inversion center (i) 

and the improper rotation axis (Sn), The identity element, denoted by E, can be explained 

when the molecule does not experience any transformation. The n-fold axis of symmetry 

leaves the molecule in an indistinguishable orientation after a rotation about the axis of 

360
°
/n. Water has a 2-fold axis, denoted as C2 because when rotating water 180°, the 

molecule looks to be the same, even though the hydrogen has switched positions 

(Schonland, 1965). 

Cz 

C2 

H H 

Figure 5: N-fold Configuration for Water 
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The C2 rotation can be written into a matrix by showing the change in x, y and z 

coordinates. The origin of each coordinate system exists in the center of each atom. The 

column of the matrix represents the coordinates of the respective atoms as the following, 

Xt, Y1, Zt, x2, Y2, z2, XJ, YJ and Z3. The rows of the matrix represent the new position of the 

coordinates with respect to each atom of water and are in the same order as the 

representation of the column. The matrix below shows the transformation C2 being 

performed, where subscript Xt, Y1, z1 refers 

oxygen and x3, y3, z3 refers to hydrogen two. 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 C2 
.) 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 

to hydrogen one, x2, Y2, z2 refers to the 

0 0 0 0 0 0 -1 0 0 

0 0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 0 0 1 

0 0 0 -1 0 0 0 0 0 

0 0 0 0 -1 0 0 0 0 

0 0 0 0 0 1 0 0 0 

-1 0 0 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

The matrix above shows that hydrogen one and two switch positions and the x 

and y coordinates of all three atoms become negative while the z stays positive due to the 

rotation about the major z axis. Some molecules contain more than one axis of rotation; if 

that occurs the highest order axis can be referred to as the principal axis. The use of the 

principal axis will be referred to for the following symmetric element. 

The reflection plane leaves the molecule in an indistinguishable orientation

following a mirror reflection; there can be horizontal, vertical and dihedral reflection

planes. 
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The vertical plane ( crv) is parallel to the principal axis, the horizontal plane ( crh) is 

perpendicular to the principal axis and the dihedral plane ( <Jct) is a vertical mirror plane 

that bisects the angle between two C2 axes. The vertical and dihedral planes are often 

confused with each other because they are both vertical, however there exists an easy 

way to distinguish the difference. The vertical planes go through the comers of the 

horizontal plane while the dihedral planes go through the midpoints of the sides of the 

horizontal plane (Atkins & de Paula, 2006). The diagrams are shown below in figure 6 

for better clarification of how they correspond to the principal axis. 

Principal Axis Principal Axis Principal Axis 

t

····_. I·'_.::•· '
I ... J�' 4,. 

(jd 

Figure 6: The three types of mirror planes 

water has two vertical reflection planes classifying water as C2v because it has a 

2-fold rotation as well as vertical reflection planes. The two planes go through the

principal axis of rotation, one resides in the yz plane ( crv) and the other in the xz plane 

( cr' v), figure 7 summarizes the reflection planes.
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C: 

Figure 7: The mirror planes of Water 

When going from the original orientation to crv , the x values become negative and 

the hydrogen stays in the same position. The matrix below shows the operation crv

starting with the identity element. 

) 

When going from the identity to cr' v , the y values become negative and the 

hydrogen changes position. The matrix becomes the following from the identity going to

cr' V• 

33 



The inversion center denoted by i, occurs when there exists a center O and the 

point (x, y, z) becomes (-x, -y, -z). A diagram below shows what happens to two points A 

and B under inversion. 

A molecule has an 

A 8' 

' 
/ 

/ 
\ 

/ 
' 

/ 
' 

/ 

/ 
' 

A' 

Figure 8: Pictorial Representation of an 
inversion center 

mvers10n center if the 

operation produces an indistinguishable result (Atkins & de Paula, 2006). Using water as 

an example, it does not have an inversion center because when changing the position 

from H I to H 1 ', it does not produce an indistinguishable molecule. 

Figure 9: Water's inversion center 

34 

' 
B 



Although water does not have an inversion center, there are other molecules that 

do such as Benzene. Benzene, shown in figure 10 below, goes through an inversion 

process in which the molecule looks indistinguishable. 

i 
) 

Figure I 0: Benzene's inversion center 

The last element of symmetry, the n-fold improper rotation axis denoted as S
n , 

consists of two successive transformation of two elements explained above whose 

combined operations produce an indistinguishable molecule. The transformation consists 

of a rotation of Cn and then a reflection crh (Schonland, 1965). Water does not contain the 

01, reflection plane for the operation to take place, however, benzene does contain a Sn 

operation with the rotation of C6 and a horizontal reflection plane. 

4" 

Figure 11: Benzene's improper rotation 
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Although water does not contain all of the elements of symmetry, group theory 

can still be applied to the molecule. To determine if the water molecule is a group, 

multiplication of the elements of molecular symmetry must be done to do so. To do 

multiplication, a table will be set up and filled in appropriately while doing the 

multiplication; the unfilled table in figure 12 follows. 

* E C2 (JV <J' V 

E 

C2 

(JV 

<J'v 

Figure 12: Cayley Table 

The first multiplication that needs to be completed is the identity with the other 

elements. Whenever the identity is multiplied by the element, the result is the element. 

Next will be the multiplication of C2 with C2, crv, and a' v• 

0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 0 0 

0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

0 0 0 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 

C2 * C2 = 0 0 0 0 -1 0 0 0 0 * 0 0 0 0 -1 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 

-1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

36 



1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 

= 0 0 0 0 1 0 0 0 0 =E 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

C2 * Ov = 0 0 0 0 -1 0 0 0 0 * 0 0 0 0 -1 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 

-1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

-1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 0 0 -1 0 0 0 0 0 

= 0 0 0 0 1 0 0 0 0
I = (]' V 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 -1 0 0 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

0 0 0 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 

C2 * a' v = 0 0 0 0 -1 0 0 0 0 * 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 

-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 

0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
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0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 0 0 1 

0 0 0 1 0 0 0 0 0 

= 0 0 0 0 -1 0 0 0 0 = av 

0 0 0 0 0 1 0 0 0 

1 0 0 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

For C2, there is an identity element, an inverse and is closed under multiplication. 

So far, C2 and E both satisfy the properties of a group. Next, to show that crv satisfies the 

properties of a group. 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 

0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 

av * C2 = 0 0 0 0 -1 0 0 0 0 * 0 0 0 0 -1 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 

1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

-1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 0 0 -1 0 0 0 0 0 

= 0 0 0 0 1 0 0 0 0 = a' v 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 -1 0 0 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

av * av = 0 0 0 0 -1 0 0 0 0 * 0 0 0 0 -1 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
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1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 

= 0 0 0 0 1 0 0 0 0 = E 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 O"y * a' 
V 

= 0 0 0 0 -1 0 0 0 0 * 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 -1 0 0 
0 0 0 0 0 0 0 -1 0 
0 0 0 0 0 0 0 0 1 
0 0 0 -1 0 0 0 0 0 

= 0 0 0 0 -1 0 0 0 0 = C2
0 0 0 0 0 1 0 0 0 

-1 0 0 0 0 0 0 0 0 
0 -1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 

For <Jv, there is an identity element, an inverse and is closed under multiplication. 

o far, <Jv, C2 and E all satisfy the properties of a group. Next, to show that cr' v satisfies

the properties of a group. 

-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 

a' v * C2 = 0 0 0 0 1 0 0 0 0 * 0 0 0 0 -1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 
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0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 0 0 1 

0 0 0 1 0 0 0 0 0 

= 0 0 0 0 -1 0 0 0 0 = av 
0 0 0 0 0 1 0 0 0 

1 0 0 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

(J
I 

V * av = 0 0 0 0 1 0 0 0 0 * 0 0 0 0 -1 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 -1 0 0 

0 0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 0 0 1 

0 0 0 -1 0 0 0 0 0 

= 0 0 0 0 -1 0 0 0 0 = C2 
0 0 0 0 0 1 0 0 0 

-1 0 0 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

-1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 

a' v * a' v = 0 0 0 0 1 0 0 0 0 * 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 

= 0 0 0 0 1 0 0 0 0 = E

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 
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For cr' v, there is an identity element, an inverse and is closed under multiplication. 

Therefore, cr' v, crv, C2 and E all satisfy the properties of a group. The Cayley table that 

goes with the operation, *, is shown in figure 13 below. 

* E C2 <J
y 

<J' V 

E E C2 CTv (j' V 

C2 C2 E cr'v O'y 

<fv O'v cr' V E C2 

O''v <J' V O"v C2 E 

Figure 13: Complete Cayley Table 

When determining if a molecule is a group, it must be closed under the operation 

being performed, contain an identity, be associative and contain an inverse. Looking at 

the table above, closure is satisfied because all the products are members of the group. 

For an identity to be satisfied, there must be an element E that when multiplied by a 

different element yields that element. To prove associativity, three elements are used and 

put into the form a*(b*c) = (a*b)*c, when performing all twenty-four combinations of 

three from 4 elements, associativity is satisfied. To determine if an inverse is present, 

every column or row must contain an identity element E. Looking at the table above, 

each column or row possesses an identity element therefore the inverse is satisfied. Water 

satisfies all properties of a group and can be considered a group under multiplication. 
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Idempotent Mathematics Application 

An application of idempotent mathematics can be seen m the shortest path 

problems. The shortest path problem uses the properties of the min-plus semiring to 

perform matrix algebra and matrix multiplication to find the shortest distance from point 

A to point H. 

Figure 14 below shows the amount of time it took a mouse to go from one point 

to the other and back. The problem them is to figure out the shortest amount of time it 

takes to get from point A to point H and from point H to point A. To show how to solve 

this problem, matrix methods will be used. 

Figure 14: Maze 

First, an adjacency matrix must be created that shows the amount of time to get 

from one point to another; if there is no travel to one point, infinity will be used to show 

there is no place holder for that destination. The column represents the starting point 

while the rows identify the path to another destination.
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00 5 00 7 00 00 00 30 

00 4 00 00 00 9 00 

00 2 00 1 7 8 00 00 

X= 
5 00 2 00 4 00 00 00 

00 00 5 3 00 12 00 00 

00 00 5 00 10 00 4 4 
00 7 00 00 00 1 00 2 

00 00 00 00 00 2 1 00 

To find the shortest path time from point i to j, the following definition will be 

used 

X* = I (f) X (±) X2 (±) ... (±)Xn -i [Pan & Reif, n.d., p.501].

To obtain X2
, min-plus matrix multiplication must be performed to complete the 

problem. Under min-plus matrix multiplication, the product of two matrices takes the 

following notation: 

n 

(ail ® b11) (±)(a i2 ® b21) (±) ... (±)(ain ® bnJ) = min (aik + bkj)-
k = 1 

Given the notation above, X2 thru X7 are calculated below: 

7 00 9 00 11 00 14 35 00 11 16 10 16 15 36 16 

00 6 00 5 11 10 31 11 8 38 7 14 9 13 12 14 

4 00 3 10 5 19 11 12 15 5 10 4 10 11 13 13 

00 4 9 3 9 10 00 00 
x

3 
= 

6 11 5 10 7 17 13 14 
x

2 
= 

8 7 5 6 7 13 16 16 9 7 8 6 10 13 16 17' 

00 7 15 6 12 5 5 6 9 12 8 15 10 6 7 7 

9 00 6 00 11 4 3 5 00 8 9 7 13 4 6 5 

00 8 7 00 12 2 6 3 10 9 7 8 12 5 4 6 

13 18 12 17 14 18 17 19 20 14 19 13 19 18 20 19 

19 9 14 8 14 13 15 14 11 16 10 15 12 16 15 17 

7 12 6 11 8 14 14 15 14 8 13 7 13 14 16 16 

13 7 12 6 12 13 15 15 
x

s
= 

9 14 8 13 10 16 16 17 
x

4 
= 

9 10 8 9 10 16 16 17 12 10 11 9 13 16 18 18' 

14 10 11 9 15 8 8 9 12 13 11 12 13 9 10 10 

10 11 9 10 11 7 6 8 13 11 12 10 14 7 9 8 

11 9 10 8 12 5 7 6 11 12 10 11 12 8 7 9 
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16 21 15 20 17 21 20 22 23 17 22 16 22 21 23 22 
18 12 17 11 17 16 18 17 14 19 13 18 15 19 18 20 
10 15 9 14 11 17 17 18 17 11 16 10 16 17 19 19 

x
6 = 16 10 15 9 15 16 18 18 

X
1

=
12 17 11 16 13 19 19 20 

12 13 11 12 13 19 19 20 15 13 14 12 16 19 21 21 
15 13 14 12 16 11 11 12 15 16 14 15 16 12 13 13 
13 14 12 13 14 10 9 11 16 14 15 13 17 10 12 11 
14 12 13 11 15 8 10 9 14 15 13 14 15 11 10 12 

Using X through X 7, x* can be calculated using the definition of min-plus matrix

addition: 

0 5 9 7 11 15 14 16 

2 0 4 5 9 10 9 11 

4 2 0 1 5 8 11 12 

x• = f@X@X2 EBX3 (±)X4(±)X5 Et>X6 (±)X7 5 4 2 0 4 10 13 14 

8 7 5 3 0 12 16 16 

9 7 5 6 10 0 4 4 

9 7 6 7 11 1 0 2 

10 8 7 8 12 2 1 0 

Reading the matrix above, the shortest time between the mouse and the cheese is 

16 seconds going from A to B, B to G and G to H. If the mouse went back to point A 

from point H, the minimum time would be 10 seconds going from H to G, G to Band B 

to A. The use of min-plus semiring is applied to many network problems and the 

calculations are usually done through algorithms. 

A Theoretical Relationship Through Experimentation 

The purpose of this thesis was to find a connection between mechanics and 

mathematics theoretically instead of just having an analogous behavior described by 

Maslov and Litvinov. Figure 15 below shows the idea that Maslov and Litvinov 

described in the 2003 conference in Vienna, Austria. To show the validity of the figure, 
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the connection between traditional mathematics and idempotent mathematics was 

described above to connect the two using idempotent correspondence principle also 

known as Maslov 's dequantization. One example includes the linearization of the heat 

equation yielding the Hamilton-Jacobi equation under the conditions of a max-plus 

semmng. 

When showing the validity of how quantum mechanics and classical mechanics 

are related to each other, an experiment known as the particle in the box experiment was 

conducted to show that Neil Bohr's correspondence principle connects classical and 

quantum mechanics. 

Traditional 
Mathematics 

Fields of 
numbers--

Real and complex 

Quantum 

Mechanics 

ldemootent Corresoondence Princiole 

N. Bohr's Corresoondence Princiole

Idempotent 
Mathematics 

Idempotent Semi­
rings and Semi-fields 

Classical 
Mechanics 

Figure 15: Analogous behavior between mathematics and mechanics. 

The 

experiment used three organic solids, l ,4-diphenyl-1,3-butadiene, l ,6-diphenyl-1,3,5-

hexatriene and I,8-diphenyl-1,3,5,7-octatetraene shown in figure 16 below. The figure 

shows the name, structure, molecular weight and density of each solid, which are later 

used in determining the concentration of dilutions. 
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Chemical 

Name 

1,4-diphenyl-

1,3-butadiene 

1,6-diphenyl-

1,3,5-

hexatriene 

1,8-diphenyl­

l ,3 ,5, 7-

octatetraene 

Structure 

�� 

Q� 

' � 
' 

Molecular Weight 

206.282 grams per 

mole 

232.320 grams per 

mole 

258.357 grams per 

mole 

Density 

1.035 grams 

per milliliter 

1.028 grams 

per milliliter 

1.023 grams 

per milliliter 

Figure 16: Compound names, structures, molecular weights and density used in Particle in box calculations.

Each solid was separately diluted in Cyclohexane to produce samples with

concentrations of approximately 10-
6 Molar. To get 10-

6 Molar, dilutions had to be

performed; tables 1, 2 and 3 below show the dilution.

Beaker Starting Amount Ending Amount Concentration 

1 0.001 grams C16H14 + 10 mL C6H12 10 mL solution 5 X 10-4 M 

2 1 mL Beaker 1 + 4 mL C6H12 5 mL solution 1 X 10-4 M 

3 1 mL Beaker 2 + 4 mL C6H12 5 mL solution 2 X 10-5 M 

4 1 mL Beaker 3 + 4 mL C6H12 5 mL solution 4 X 10-6 M 

5 1 mL Beaker 4 + 3 mL C6H12 4 mL solution 1 X 10-6 M 

Table I: The dilut10ns of l ,4-d1phenyl-l .3-butad1ene
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Beaker Starting Amount Ending Amount Concentration 
1 0.001 grams C1sH 16 + 10 mL C6H 1 2 10 mL solution 4 X 10"4 M 
2 1 mL Beaker 1 + 4 mL C6H 1 2 5 mL solution 8 X 10·5 M 
3 1 mL Beaker 2 + 4 mL C6H12 5 mL solution 2 X 10·5 M 
4 1 mL Beaker 3 + 4 mL C6H12 5 mL solution 4 X 10

-=-6 M
5 1 mL Beaker 4 + 3 mL C6H12 4 mL solution 1 x 1 o=t> M 

Table 2: The dilutions of l ,6-d1phenyl-l ,3,5-hexatriene 

Beaker Starting Amount Ending Amount Concentration 
1 0.001 grams C20H16+ 10 mL C6H12 10 mL solution 4 X 104 M 
2 1 mL Beaker 1 + 4 mL C6H12 5 mL solution 8 x 10·) M 
3 1 mL Beaker 2 + 4 mL C6H12 5 mL solution 2 X 10·5 M 
4 1 mL Beaker 3 + 4 mL C6H12 5 mL solution 4 X 10"6 M 
5 1 mL Beaker 4 + 3 mL C6H12 4 mL solution 1 X 10"6 M 

Table 3: The dilutions of l ,8-d1phenyl-l ,3,5, 7-octatetraene 

Once the 1 o·6 Molar concentrations were made, the solutions were placed into a 

UV-visible spectrophotometer to measure the absorbance of each sample compound at a 

visible wavelength. The purpose of using the UV-visible spectrophotometer is to find the 

maximum wavelength, known as lambda max denoted Amax, and compare it to the 

theoretical Amax• When the samples were placed into the UV-visible spectrophotometer, 

the experimental Amax for 1,4-diphenyl-1,3-butadiene, 1,6-diphenyl-1,3 ,5-hexatriene and 

l ,8-diphenyl-1,3 ,5 , 7-octatetraene were 295 nm, 310 run and 340 run respectively. These

values were compared to the theoretical maximum wavelengths. 

To get the theoretical maximum wavelengths, the box lengths needed to be

calculated. Using Avogadro, a 3D molecular construction software, the theoretical box

lengths were calculated for 1,4-diphenyl-1,3 -butadiene, 1,6-diphenyl-1,3 ,5-hexatriene

and 1,8-diphenyl-1,3 ,5,7-octatetrane to be 6 .34 Angstroms, 8.793 Angstroms and 11.251

Angstroms respectively. 
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The box lengths represent the distance between the phenyl groups usmg an 

approximated bond length for each carbon to carbon double bond. With the summation of 

bond lengths, the theoretical box lengths can be placed into the combination of the 

Energy Level equation ( a) and the Photon Energy equation (b) obtaining a formula for 

lambda max (c): 

n2 h2 

!1E = -- (a) 
8ml2 

he 

A= �E (b) 

8mcl
2 

A= hn2 (c)

Where m represents the mass of an electron, 9.109 x 10-
31 kilograms, c represents 

the speed of light, 2.998 x 10
8 meters per second, L represents the theoretical box length

in meters, h represents Planck's constant, 6.626 x 10-34 Joules second, and n represents 

the difference in energy state (Atkins and de Paula, 2006). 

Inserting the aforementioned mathematical values into ( c ), the theoretical lambda 

maxes obtained for 1,4-diphenyl-1,3-butadiene, 1,6-diphenyl-1,3,5-hexatriene and 1,8-

diphenyl-1,3,5, 7-octatetraene were 265 nanometers, 283 nanometers and 321 nanometers 

respectively. 

The purpose of finding the maximum wavelength was to show how the wave 

function changes as the quantum number, n, increases or decreases. A quantum number 

"is an integer ... that labels the state of the system" and is "used to calculate the energy 

corresponding to the state" (Atkins and de Paula, 2006, p. 280). Based on this 
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information, quantum mechanics and classical mechanics in terms of probability density 

and energy quantization will become consistent with large quantum numbers. When 

looking at the theoretical and experimental values for Amax, there arose the question of 

error in the experiment or calculations. The experiment was performed again and 

received relatively the same results. When trying to determine why the numbers were off, 

the question arose about which of Schrodinger' s equation was going to be used to try to 

relate the experiment to idempotent analysis. During the process of determining if the 

time independent or time dependent formula was to be used to try to bring it back to the 

Hamilton-Jacobi equation, there was error in deriving the correct formula. Due to the 

complexity of these collected ideas, the original goal was not obtained. In future research, 

the particle in a box experiment and more theoretical research will be used to attempt to 

find the existence of such a connection and to find equations that directly relate 

mathematics to mechanics. 

49 



CHAPTER VI 

CONCLUSION 

Due to centuries of research and discovery, mathematics has evolved from the 

process of solving equations arithmetically to theoretically. The Egyptians and 

Babylonians contributed to the foundation of mathematics through the types of arithmetic 

done such as the doubling method. The development of their ideas during that era aided 

Greek and Islamic mathematicians with the discovery of geometry along with algebra. 

During the creation of geometry and algebra, questions began to arise of why equations 

work the way they do, causing a transition into a new era of mathematics. 

Traditional mathematics started because of the need to know why something 

worked for one solution but not the other. This evolved into theories such as group, ring 

and field theory, known today as abstract algebra. These theories contributed to the 

knowledge of properties for certain number systems as well as the application to fields 

such as chemistry and mechanics. Group theory has more of a sound foundation when it 

comes to applications in chemistry and cryptography, but field theory and ring theory are 

slowly emerging into more subjects other than mathematics that are still being 

researched. The theories explained in chapter three contain subcategories, which add 

more restrictions to the general definition such as semirings. 
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Semirings have been applied to computer science m areas such as automata 

language and algorithms such as the one used for the shortest path problem. The max­

plus and min-plus semirings contribute to the answer of the shortest path problem as well 

as to the linearization of a non-linear equation making it simpler to solve. The idea of the 

max-plus and min-plus semirings helped with the beginning of idempotent mathematics 

due to Masolv and Litvinov. 

According to Litvinov and Maslov, "(t)here is a correspondence between ... the 

field of real (or complex) numbers and similar constructions and results over idempotent 

semirings in the spirit of (Neil) Bohr's correspondence principle in Quantum Mechanics" 

(Litvinov, 2003, p.2). Neil Bohr's correspondence principle "is the notion that quantum 

mechanics must resemble classical behavior for large energies" and contains several rules 

that explain how to represent that behavior (Litvinov, 2007). The idea of the analogous 

behavior between the two subjects will be continued as further research where the 

connections between the subjects will be found through proofs and experiments such as 

the experiments performed by Erwin Schrodinger and Niels Bohr. 

The continuation of this research will hopefully contribute to finding probabilistic 

outcomes of diseases in the medical field. Min-plus semirings have just made a step into 

genetic coding and how it will form based on the DNA from a set of parents. The purpose 

of future research in this field is to apply the shortest path problem to genetics and use the 

Markov chain to determine the probability of retrieving a disease based on genetics and 

medical history. 
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