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PREFACE 

Lattice theory is a new branch of mathematics. Its 

concepts and methods have fundamental applications in var­

ious areas of mathematics (e.g. diverse disciplines of 

abstract algebra, mathematical logic, affine geometry, set 

and measure theory, and topology). 

Most of the pioneer work was done by G. Birkhoff 

[5], who most deserves the title of ''Father of Lattice 

Theory'' and who has played a central role in most of its 

developments since the early thirties. His first papers 

in 1933-35 began a development which took lattice theory 

from a relatively obscure beginning and started it on a 

historical path which has led it to become a major branch 

of mathematics today. 

The main purpose of this thesis is to examine the 

lattice of the set of subgroups of groups and to determine 

whether certain lattices are distributive, modular, com­

plemented, or Boolean. 
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CHAPTER I 

SOME PRELIMINARY CONCEPTS 

The reader is assumed to be familiar with basic 

concepts of set theory and groups. However, we now give a 

brief summary of various concepts. 

Sets. Given a set A and an object p, either pis 

an element of A (notation: p EA) or pis not an element 

of A (notation: p ¢ A). If every p that is an element of 

a set Bis also an element of a set A, then Bis called a 

subset of A (notation: B c A). If B c A and Ac B, then 

A= B. 

Let A and B be given sets. The set of elements 

which belong to both A and Bis called the intersection of 

A and B. It will be denoted by An B. Also, the set of 

all elements which belong to A alone or to B alone or to 

both A and Bis called the union of A and B. It will be 

denoted by AU B. The operations"(\" and "v" satisfy the 

following properties: 

A V B = B U A, A() B = B n A 

A u (B u C) = (A u B) u C' A n (B () C) == (A(\ B) n C 

A (\ (B V C) = (A n B) U (A (\ C), 

A U (B r\ C) = (A U B) f"\ (A U C) 
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These are the cowmutative, associative, and distributive 

laws, respectively. 

The set containing no elements is called the null 

set, and is denoted by 0. It follows that 0 c A'for every 

set A. 

The following laws of de Morgan are often useful: 
~ ~ ~ ; ~ ; 

(A U B) = A{\ B, (An B) = AU B. 

By A we mean the complement of A, i.e. the set of all 

elements in I (Universal set) which are not elements of A. 

The Cartesian Product. Suppose A and Bare two 

sets. The Cartesian Product of A and B, denoted by AX B, 

is {(a,b): a~ A and b EB}. If two sets are the same, 

then the Cartesian Product is AX A. 

Relations. A subset R of AX A is called a 

relation on the set A. A relation is called reflexive if 

(a, a) E R for all a ~ A; symmetric if (a, b) E- R implies 

(b,a) E R; transitive if (a,b) E Rand (b,c) E R imply 

(a, c) E R; and antisymmetric if (a, b) E R and (b, a) G R 

imply a= b. 

Functions. A function f is a subset of AX B that 

satisfies the condition (a,b) G f, (a,c) ~ f implies b = c. 

It means that if a is a first element of an ordered pair in 

f, then the corresponding second element is uniquely deter­

mined and is denoted by f(a). It is convenient to employ 
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the notation "f: A+ B". If the set of second elements 

occurring in the ordered pairs off is exactly B, we say 

f is an onto function. A function f is called one to one 

(1:1) if it satisfies: (a,b) E f and (c,b) ~ f implies 

a = C. 
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A function f: AX A+ A is called a binary oper­

ation on A. We write ((a,b),c) E f, for a, b, c in A. In 

general, it is more convenient to denote a binary operation 

by one of the symbols ;',, EB ' . So that a* b = c. 

Groups. A group is a pair (G, ·k) consisting of a 

nonempty set G and a binary operation* defined on G, such 

that the following properties are satisfied. 

1. Associativity. If a, b, and care in G, then 

(a* b) * c =a* (b * c). 

2. Identity. There exists a unique element, e, 

in G (called the identity element) such that for all a E- G, 

a* e = e *a= a. 

3. Inverse. For every a in G there exists a 

unique element a- 1 in G, called the inverse of a, such that 

a- 1 *a= a* a- 1 = e. A group (G,*) is called abelian if 

for every a and bin G, a* b = b * a. 

Subgroups. A collection of elements Hin G is said 

to be a subgroup of G if H forms a group relative to the 



binary operation defined in G. For example, the set of 

even integers forms a subgroup of the set of integers with 

respect to addition. 

Cyclic Group. A group G is called cyclic if, for 

some a € G, every x € G is of the form am, where m E Z 
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(Z = the set of all integers). The element a is then called 

a generator of G. For example, the additive group Z is 

cyclic with generator a= 1 since, for every m E Z, 
m a =ma= m. 

Homomorphisms. Let (G,*) and (G' ,o) be two groups, 

not necessarily distinct. A mapping, M, is a set of 

ordered pairs (x, y) , such that when (x, y), (x, z) E M, y = z. 

A homomorphism from (G,*) into (G',o) is a mapping f: 

G + G' such that f(a * b) = f(a) o f(b), for arbitrary 

a, b E G. 

If, in addition, f is on2-to-one and onto, then 

£ is said to be an isomorphism. 

Cosets. Let G be a finite group with the group 

operation o, H be a subgroup of G, and a be an arbitrary 

element of G. We define as the right coset Ha of Hin G, 

the subset of G 

Ha= {ho a: h EH} 

and as the left coset aH of Hin G, the subset of G 

aH = { a o h : h E H} 



Normal Subgroup. A subgroup Hof a group G is 

called a normal subgroup if for all a in G, a- 1 Ha = H. 
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The following theorems will be helpful in our work; 

they can be found in Barnes [3] and will be stated without 

proofs. 

1. A nonempty set Hin G is a subgroup of G if 

when a, bare in H, then ab- 1 is also in H. 

2. If G is a finite group of order n and His a 

subgroup of order r, then r divides ri. 

3. Every subgroup of a cyclic group is cyclic. 

4. If Hand Kare normal subgroups of the finite 

group G, then HK= KH is a normal subgroup. 

5. The intersection of any two normal subgroups 

of a group G is also a nor~al s11bgroup of G. 



CHAPTER II 

LATTICES 

Partial Ordering. A binary relation on a set S 

is called a partial ordering of S when it is reflexive, 

antisymmetric, and transitive; such relations are commonly 

indicated by using the special relation symbol .:s_. The 

hypotheses for a partial ordering may be written as follows: 

P1. X < X for all X f. s 

P2. X < y and y < "">r .~ imply X -- y 

P3. X < y and y < z imply X < z. 

Example 1. The relation "is a divisor of", ·written 

m/n, is a partial ordering of the set cf positive integers. 

Exarnole 2. For any set U, the relation "is a sub­

set 0£1 1
, written Sc T, is another partial ordering of the 

power set f(U) of all subsets of U. 

Definition 1. A partially ordered set, or poset, 

is a pair [S,~], where< is a partial ordering of S. 

The converse of any partial ordering~ is again a 

partial ordering, called the dual of< and denoted~- Thus, 

x > y if y < x. Also, posets having only a few elements 

can be visualized in terms of their diagrams. These 
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diagrams can be drawn by using small circles to .signify·. 

elements and drawing a rising line from each element::-to 

7 

each next larger element. Thus, Figure 1 shows:the.:po~er., 

set of all subsets of A = { 1, 2, 3} parti~,11y ordered '.:·by< .. , :,. 

the inclusion relation; Figure 2 diagrams.the poset -

c { 2, 3, s, 7, 14, 1s, 21} , I J • 

A= {l, 2, 3} 

{ 1, 2} 
·'{i~ 3} 

{ l} 

0 

Figure 1 

2 

Figure 2 
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Duality Principle. From the fact that the converse 

of any partial ordering of a set Sis itself a partial 

ordering, it follows that we can replace the relation< in 

any theorem about posets by the relation~ without affecting 

its truth. This is called the duality principle of the 

theory of posets. 

In the poset [j)({l, 2, 3}),C] of Figure 1, the 

elements 0 and A= {l, 2, 3} are universal bounds, in the 

sense that 0 ~ x < A for any element x belonging to f'(A) 

(the power set of A). This concept can be defined in any 

poset P = [S, ~]; the elements O and I of Sare universal 

bounds of P (in detail, 0 is called the least element and 

I the greatest element of P) when O < x and x < I for any 

element :x E S. 

Lemma 1. A given poset [S, ~] can have at most 

one least element and at most one greatest element. 

Proof. Let O and Q·A- both be universal lower bounds 

of [S, ~], then O < O* (since O is a universal lower bound), 

and O* < O (since O* is also a universal lower bound). 

Hence, by P 2 , antisymmetric property, 0 = Q;'.-. The proof 

for I is similar. 

Posets need not have any universal bounds. Thus, 

under the usual relation of inequality, the real numbers 

form a poset [R, ~] which has no universal bounds. 



Greatest Lower and Least Upper Bounds. Given a 

subset Sofa poset P, define a~ P to be a lower bound of 

S when a< x for all x ES, and define a to be an upper 

bound of S when a> x for all x ~ S. Define b ~ P to be 

the greatest lower bound of S when (i) bis a lower bound 

of S and (ii) b ~ b,', for any other lower bound b,', of S. 

In this event, we write b = glb S. Dually, define c E P 

to be the least upper bound of S when (i) c > x for all 

x ES and (ii) c < c* for any other upper bound c* of S. 

We write c = lub S. 

Lemma 2. A subset Sofa poset P can have at most 

one glb and at most one lub. 

Proof. If b1 and b 2 are both glbs of S, then 

b 1 ~ b 2 , because b1 is a lower bound and b2 is a greatest 

lower bound, and b 2 ~ b 1 because b 2 is a lower bound and 

b1 = glb S, that is, b 1 ~ b2 and b2 ~ b1. Hence, by 

P 2 (antisymmetric property) we conclude that b1 = b2, The 

proof that lub Sis unique is similar to the above. 

Definition 2. A lattice is a poset in which any 

two elements a and b have a glb called the meet, a~ b, 

and a lub called the join, av b. 

Example 3. The set {a, b, c, d, e, f} is not a 

lattice with respect to the partial order pictured in 

Figure 3, because {a, b} has no join (lub). 
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Example 4. The set {x, y, z, k, g} is a lattice 

with respect to the partial order pictured in Figure 4, 

because any two elements belonging to the set have a join 

and a meet, i.e.: 

x,,k=x,xvk=k 

Z A y = X, Z V y = g 

y A k = x, y v k = g. 

d 

b 

Figure 3 

z 

X 

Figure 4 
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Theorem 1. For any elements a, b, c of a lattice 
11 

(L' ::) : 

1. a A a= a and av a= a (idempotence) 

2. a " b = b " a and a v b -- b \J a (cornmutativi ty) 

3 . a I\ (b " c) = ( a l\ b) f\ c and 

a \J (b v c) = (a '✓ b) v c (associativity) 

4. a A (a Vb)= a and av (a~ b) = a (absorption) 

Proof. By the duality principle, which inter­

changes /\ and\/ , it suffices to prove one of the two 

identities in each of 1 - 4; we shall prove the first. 

1. By P1, (reflexivity), a< a, while trivially, 

d £ L, d < a and d ~ a imply d 2 a, hence a= a~ a. 

2. a Ab= glb{a, b} = glb{b, a}= b ~ a. 

3. Set d1 =a~ (b ~ c) and d 2 = glb(a, b, c). 

Then d1 ~ a, d1 ~ b, d1 < c. 

hand, d2 ~(b ~ c), d 2 ~ a. 

Hence d1 ~ d 2 • On the other 

Hence d 2 < d 1 • It follows from 

the antisymmetric property of< that d 1 = d 2 • By similar 

argument, we could complete the proof of the associativity 

of" [9, p. 7]. 

4. Clearly a< a and a< av b. Hence by defini­

tion of glb, a~ a A (a·~ b). But a A (av b) < a therefore 

a I\ (av b) = a. Similarly, av (a" b) = a. 

Theorem 2. A lattice is a set L of elements which 

satisfies the four properties in Theorem 1. 



12·. 
Proof. We already know, by Theorem 2, that. any .. 

lattice satisfies the above properties. Conversely, as.sume· 

that (L, ",V) is a structure satisfying 1 - 4 of Theorem 1:c: 

Define a< b by a/\ b = a. Notice that if a< b, then 

b = b V (b A a) = b V (a I\ b) = b V a-= a v b. Now we· sha:11 

show that (L,~) is a poset. 

1. Let a EL. a A a= a++ a< a, by using prop-

erty 1 in Theorem 2 so< is reflexive. 

2. Let a,b e L. a< b ++a~ b = a, 

b <a++ b ~a= b. By using property 2 in Theorem 1, we 

conclude a= a" b = b ~a= b, so< is antisymmetric. 

3. Let a,b,c € L. a< b ++an b = a, 

b < c ++ b /\ c = b , a " c = ( a " b) " c = a /\ (b I\ c) = 

a " b = a. So, < - is trans i ti •re, and (L,~) is a poset. 

Now we need to show if x,y f L, then x /\ y is the 

glb and X " y is the lub of {x, y}. In other words we need 

to show X " y < - X and X f\ y ~ y, and if z < X and z < y -
then z ~ x" y. (x /\ y) :\ X = X A (y /\ x) = X A (x A y) = 

(x /\ x) " y = X " y' so X " y < x. (x " y) " y = 

X " (y "y) = X " y' so X , .. y ~ y. Hence, X /\ y is a lower 

bound of {x, y}. 

To show that X I\ y is the glb {x, y}, assume z < X -

and z < y for some z E L. Now, z A (x A y) = (z (\ x) " y = 
-

z " y = z, so z < X " - y, and x /\ y is glb {x, y}. In a 

similar way we could show that xv y is the lub {x, y}. 
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Sublattices. A nonempty subset Sofa lattice L, 

S c L, is called a sub lattice if a, b E S implies a " b t:. S 

and av bf S. In the lattice which is pictured in Figure 4 

(Example 4), the subset S = {k} is a sublattice, i.e., 

k ~ k = k and kV k = k. Also S' = {x, y} is a sublattice, 

i.e., x ~ y = x and xv y = y. 

Example 5. The set L = {A, B, C, D, E} is a lattice 

with respect to the partial order pictured in Figure 5. 

But the set {A, B, C, E} is not a sublattice because 

B /, C = D, which is an element in L, but not in {A, B, C, E}. 

However, {A, B, C, E} is a partially ordered set and a 

lattice. 

C 

E 

Figure 5 

Definition 3. A lattice Lis called distributive 

if the operations I\ and v satisfy the distributive law 

a v (b ,., c) = (a v b) " (a v c) . 



Theorem 3. In a distributive lattice the law 

a A (b V c) =(a~ b) v (a Ac) is also valid. 

Proof. (a " b) v (a " c) 

= [ ( a t, b ) v a] '°' [ ( a " b) v c ] 

= a " [ (a A b) v c] 

= a A [(av c) ~ (b v c)] 

= [ a " ( a V C) ] " (b V C) 

= a " (b v c) 

Definition 4. A complement of an element a in a 

lattice L with universal bounds 0, I is an element x EL 

such that a~ x = 0 and av x = I. 

14 

Lemma 3. In any distributive lattice the set of all 

complemented elements is a sublattice. 

Proof. Let a, a' and b, b' be complementary pairs, 

then (a,, b) ,., (a' vb')= (a,, b ,'\ a') V (a;\ b "b') = 

0 v O = 0. (a f\ b) v (a' v b') = (a v a' v b') /\ 

(b v a ' ·J b ' ) = I " I = I . Hence , a I\ b and a ' V b ' are 

complementary. A similar arguement shows that av b, 

a'~ b' are complementary. 

Definition 5. A complemented lattice is a lattice 

with universal bounds O and I in which every element a has 

at least one complement x with a Ax= 0, and av x = I. 



15 
Definition 6. A Boolean lattice is a lattice which 

is both complemented and distributive. 

Definition 7. A lattice Lis called modular if it 

satisfies the following: if a< c, then av (b Ac)= 

(a Vb)~ c. 

Theorem 4. Every distributive lattice is a modular 

lattice. 

Proof. Suppose x, y and z are in the distributive 

lattice L, such that x < z. Then, by the definition of 

distributive lattice, xv (y ~ z) = (xv y) h (xv z), but 

x < z + x ~ z = x anci x V z = z. Thus, x V (y A z) ·= 

(xv y) ~ z. So Lis modular. 



CHAPTER III 

THE LATTICE OF SUBGROUPS OF FINITE GROUPS 

Suppose G is a group with respect to the binary 

operation ;', Let L(G) denote the set of all subgroups 

S, T, ... of G; define S < T to mean Sc T. Clearly L(G) 

is a poset. Moreover, the intersection Sn T of any two 

subgroups Sand T of G is itself a subgroup of G which con­

tains every subgroup contained in both Sand T. Therefore, 

Sn T = glb {S, T} = S ~Tin the poset L(G). The set 

{s1t1s2t2 ... sktk: s 1 , ••• , skf- Sand t1, ... , tkE: T, 

k E Set of all positive integers} is a subgroup of G which 

is contained in every subgroup of G containing both Sand T. 

Hence this set is the lub of Sand Tin the poset L(G) and 

may be written as S v T = lub {S, T}. This proves that 

the poset L(G) is a lattice [4. p. 258]. 

Example 6. As a first example we will consider 

the group of symmetries of the square. The elements of 

this group Gare taken to be certain rigid motions of the 

square, that is, displacements throughout which the shape 

of the square is unaltered. Permitted motions are the 

following: the identity motion e in which the square 

remains fixed; clockwise rotations r 1 , r 2 , and r3 about 
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the center, through angles of 90, 180, and 270 degrees, 

respectively; reflections hand v about horizontal and 

vertical lines through the center; reflections d 1 and d 2 

about the diagonal lines. 

Two such motions can be "multiplied11 by performing 

them in succession. If x and y are motions, then x * y is 

to be interpreted as the motion that achieves the same 

result as y followed by x. For example, h ;': r 1 is.·that 

element of G which has the same net effect as r 1 followed 

by h, we see that h * r 1 produces the same result as the 

single motion d 2 ; hence h ~•( r 1 = d 2 . The complete multi­

plication table for (G,*) appears below. 

,~ e r1 r:,, r3 h V d1 d2 

e (:'_ r1 j~ 2- r3 h V ch d2 

r1 r1 r2 Y3 e d1 d? V h 

r2 r2 r" e r1 V h d 2 d1 

Y3 r3 e r1 r2 d2 d1 h V 

h h d2 V d1 e r2 r, 
0 r1 

V V c11 h d2 r2 e r1 r3 

d1 d1 h d2 V r1 r3 e r2 

d 2 d2 V d1 h r3 r1 r2 e 

Table 1 

Let L(G) denote the set of all subgroups of G. 

L(G) = {{e}, {e, r 2 }, {e, h}, {e, v}, {e, di}, {e, d2}, 

17 



Clearly L(G) is,~ lattice. 

pictured in Figure 6. 

N = {e, r 2 , h, 

A= 

A diagram for this lattice is 

G 

_Figure 6 

Consi'der the elements B = {e, v}, C = {e, r 2 }, a·nd 

F = {e, d 2 } of L(G). CA (F VB)= C ~ G = C, but 

(C /\ F) V (C ,'\ B) = E v E =. E,, so L(G) is not a distribu­

tive lattice. Consider again=the elements B, D, and N of 

L(G). We notice that L(G) is not a modular lattice, since 

while B < N, B v (DAN)= B v E = B, but (B VD) AN= 

G /\. N = N, which means that B V (D A N) # (B v D) /\ N. 

Also, we notice that C ~ L(G) doesn't have a complement, 

so L(G) is not a complemented lattice. Notice that B has 
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19 
a complement D, since BAD= E = {e}, and B v D = G; 

M has a complement A, since MA A= E = {e}, and M ✓ A= G. 

Moreover, L(G) is not a Boolean lattice since it is neither 

complemented nor distributive. 

Consider now, the set of all normal subgroups of 

G, the group of symmetries of the square. We shall denote 

it by M(G). Using the concept of normality of groups we 

find that M(G) = {{e}, {e, r2}, {e, r1, r2, r3}, {e, r 2 , 

v, h}, {e, r2, d1, d 2}, G}. [M(G)," , v] is a lattice, in 

fact it is a sublattice of L(G). This lattice is diagramed 

in Figure 7. 

N = {e, r 2 , h, v} 

E = {e} 

Figure 7 



The lattice M(G) is not distributive, since if we 

consider the elements M, N, and K of M(G), we could find 

out that the distributive law is not satisfied, i.e., 

20 

M V (K I\ N) = M V C = M, but (M V K) l'- (M V N) = G ,, G = G. 

Easy verification shows that [M(G), I\ , v ] is a modular 

lattice. In fact, we will prove later in this chapter that 

the set of all normal subgroups of any group forms a mod­

ular lattice. Also, the set of all normal subgroups does 

not form a complemented lattice, since C ~ M(G), has no 

complement; it is not a Boolean lattice since it is neither 

distributive nor complemented. 

Example 7. Consider Z12 , the group of integers 

module 12 with respect to the binary operation addition. 

This group is generated by 1, 5, 7, or 11. So Z12 is a 

cyclic group. By Theorem 2 at the end of Chapter I, ·we 

notice that all subgroups are cyclic, so they are abelian, 

hence, normal subgroups. L(G) = {{O}, {O, 6}, {0, 4, 8}, 

{O, 3, 6, 9}, {O, 2, 4, 6, 8, 10}, G = Z12}, The diagram 

for this lattice is shown in Figure 8. 

If we consider any three elements of L(G), we could 

easily show that they satisfy the distributive laws. For 

example C, D, and F belong to L(G). C ~ (D VF)= C ~ G = C 

and (C ~ D) v (C ~ F) =Ev C = C. L(G) is a distributive 

lattice. In fact, we will prove that the set of all sub­

groups of a cyclic group forms a distributive lattice. 



F = {O, 2, 4; 6, 8, 10} 
D = {O, 3, 6, 9} 

c = {O, 4, 8} B = {O, 6} 

{O} 

Figure 8 

By The.orem 4 ,;-1e conclude that L(G) is a modular 

lattice. Also, L (G) is not a complemented lattice since::: 

the element B = {0, 6} ha~,no complement in L(G); it is 

not a Boolean l.3:ttice becaµ~e- it is_not c()_mplemented. 

Example 8. ·con~ider the group G = 

with the follo~ing operation table: 
'. . '· 

b d 0 a C 

a a b C d 
. ' 

b b a d C 

C C d a b 

d d C b a 

Table 2 

' {a, b, c, d} 
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This group is abelian. The set of all subgroups is 

L(G) = {{a}, {a, b}, {a, c}, {a, d}, G}. A diagram for 

the lattice L(G) is pictured in Figure 9. 

D = {a, b, c, d} 

A= {a, d} C = {a, b} 

B = {a, c} 

E = {a} 

Figure 9 

Now, cor1sider the elements A, B, and C of L(G). 

We notice that the distributive law does not hold since, 

A A (B V C) =AA D = A_but, (A AB) V (A AC) =EVE= E. 

L(G) is a modular lattice since for any three elements A, 

B, and D such that A~ D ➔ AV (B ~ D) = (AV B) AD. 

L(G) is a complemented lattice. Also, it is not a Boolean 

lattice since it is not distributive. 
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Theorem 5. •. If H and'·K., are, norina·l; subgroups::of the 

group G, Then'.-: H v/. K :;; HK. 

Proof-~ Re,call that H V ~· .. : ',{~.1k 1 ~ 12.\2 hSkt: 

ht£: H and .,ktE .. Kf. Clearly HK c H V K. Let x e. H V K. 
". ~.~,, (" . ·.~ \ 

By using mathematical induction we will show that X f HK. 
!\' .'-~' ~- ' ; r,' -,, ,,... /. "•,· !\ ',_.., : r:. 

Suppose x ~ :41k1h2k2 ... h k for s6me positive integer n. 
.. . . - ···•:·n I?- .... ··• ::: ,,:,-;• , .. · ..... > 

For n = 1, :x = h1k1 which is an element of HK. Assume that 
\ \'l 

;;· 

all the pr6ducts ot· length n are in HK, we need to show 
' i ' ,, .. -, ~ ., • , - : 

that all th~~products_?i length n + 1 are in HK too. 
' ... : "' \· 

positive integ~r n. Since all the products of length n 

are in HK~ we could write x = hkh + 1k + 1 . 
. . , . .... .. , ·. ) n '.:- '. . , !1 

Then x = hk (k- 1 h' k). k~ + 1 , since. H is a normal subgroup, 
' • ,, ·~ J J ;,· ,. .1 -

and x = hh' kl~n + 1 ~ h"k' which is an element of HK. 
, C .' ) : •, 

Sox~ HK and ~he p~oof is complete. 
I (, 

Theorem 6. The set of all normal subgroups of a 
'''\ 

group G forms ·a modular lattice. 

Proof. Let L(G) denote the set of all subgroups 

of G; and let H < K mean that H c K. Let H(G) denote the 

set of all normal subgroups of G. We showed at the begin-
; 

ing of this chapter that H " K = H n K = glb {H' K} and 
~ ~ < '• 

H V K = {h1k1h2k2 ... htkt: h E H and kt<: K} = 
t 

l 

lub {H, K}. Using the theorems which are written at the 

end of Chapter I and Theorem 5, we would say that HA K, 
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and H V K = HK are normal subgroups, which proves that M(G) 

is a lattice. Also, M(G) is a sublattice of L(G). 

To show that M(G) is a modular lattice, we need to 

prove that if H, K, and Fare normal subgroups, of G then: 

if H < F then H V (K I\ F) = (H V K) /\ F. We will show first 

that H V (K " F) ~ (H V K) I\ F. H C H \/ K and H ~ F (given) 

implies H c (H V K) /\ F and K /\ F c F and K /'\ F c. K c H V K, 

this implies KI' F ~ (H V K) /\ F. 

So H v (K /\ F) ~ (H V K) /\ F. 

To show that (H V K) A F ~ H V (K /\ F) , take 

x r: (H V K) /\. F. So x E- H V K, and x E. F. This means 

that x = hk and x = f (notice that HY K = HK, since H 

and Kare normal subgroups of G). So hk = f, k = h- 1 f for 

h (:- H, k (; K, and f c F. Since hf: F(H c Fis given), 

h - 1 E F and h - if (:. F. So k '= F and k ~ K f\ F. So 

x = hk EH V (K /\ F) and this completes the proof. 

Theorem 7. The lattice L(G) of all subgroups of 

a cyclic group G forms a distributive lattice. 

Proof. Let G be a cyclic group; let A, B, and C 

be subgroups of G (they are cyclic since G is cyclic). 

L(G) is distributive if A A (B V C) = (A AB) V (A" C). 

We shall show first that (A /\ B) V (A f\ C) c A " (B V C) . 

A A B c:::: A and A r, B c B V C, so A " B c A I\. (B V C), 

A I\ C c A and A I\ C c B V C, so A '" C c A " (B V C) which 



implies that (A A B) V (A I\ C) c:: A " (B V C). 

To show that A "' (B V C) C. (A/\ B) V (A " C), -
suppose X € A " (B V C). It means that X l:- A and X <:: B V C. 

,;. ~ ' . ' 
So X = a, X = be for some a G A, b GB, and .. c € c ... , This-

implies that a= be. Since A,.B, arid C· are cyclic sub-
'\, I ,X 

,. I 

groups, b and c can be represented as power .. ,9f a gen-
. I. ' 

erator d € G. b = dm, c = dn, hence·a:·= dm +: .. n~ · ·rf · 

m' = 1cm {m, m + n} = [m, m +·n], and n' = 1cm {n, m + n} = 
m' I 

[n, m + n], then clearly d ~ A/\. B. and dn f A~ C. If 

h = gcd {m' , n'} = (m' ,n '), then dh ·<: .. (A A B) V (A" C) . 

But from number theory, h - (m' ,n') = ( [m, m + n], 

[n, m + n]) = [(m,n), m + n] = m + n. 

So dm + n E (A /\ B) V (A /\. C) -f--+ a f." (A""- B}· V (A "- ·c). 

So, x f (A/\ B) V (A AC), and the p"!"oof is complete 

[5, p. 96]. 

We will end this chapter by summarizing all the 

work that we have already done in the following table. 

Notice that the+ means the property is always true; 

means it is not necessarily true. 

Although all the examples, which are used, involve 

finite groups, the proofs, do not depend on the finite 

property. So all results are valid for lattices of sub­

groups of any group. 
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Lattice of All All All All 
Subgroups Ndrmai:. Subgroup's Subgroups 

of a Subgroup_s of a of a 

Lattice Group G of a Cyclic Abelian 
... , -~ ,. 

Property Group .G . Group G Group G 
'·'-' ' ' --- ~.,: .. , 

Sublattice + + + + 

Distributive 
., ,, ., 

+ -- ~ --- t. ' ~ [¾ .• --,_,., " ..... . - . -
.. 

'; 

Modular -- + + + 
,. "~ ,., .. 

Complemented 
,. .. ,.--- -- -- --

Boolean -- -- -- --, .. 
' . ' -~ •. 

,. ,, , .... 

Table 3 

, ... ~ r· . ' .. :~ 
···- ....... . . ~ 
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