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ABSTRACT 

LISA G. WINTER 

THE INVERSE PROBLEM TO THE VORONOI DIAGRAM 

MAY2007 

The primary purpose of this thesis is to address the problem of solving the 

Inverse Problem for the Voronoi Diagram where the Inverse Problem is: Given a 

diagram that is in fact a Voronoi Diagram find the set of points X = {x1, x2, XJ, 

••• , x0 } in R 2 that will generate the diagram .. In formulating a solution to the 

Inverse Problem it was necessary that we consider the problem of characterizing 

Voronoi Diagrams. In developing an algorithm for determining the generating set 

we considered questions of the form: Is the solution to the Inverse Problem 

unique? I( the solution to the Inverse Problem is not unique, then what properties 

characterize the Voronoi Diagram? In addition we will develop solutions to a set 

of problems related to Voronoi Diagrams. These problems are related to: Given a 

finite set of points X = {xi, x2, x3, ••• , Xn} in R 2 fmd the domain of points Nk such 

that for every x s Nk, Xk is the nearest point to x, that is, llx - xkll £ llx - Xjll for 

every j ~ k. 

'• 
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CHAPTER I 

PROBLEM STATEMENT 

Introduction to Combinatorial Geometry 

Imagine the situation, you are driving an automobile and it is nearly out of 

gas, but you know the location of three gas stations. Assuming that traffic is not a 

problem and knowing that the accuracy of your fuel gauge is doubtful you fear 

that the amount of fuel remaining is very low thereby compelling you to seek the 

nearest station. Thus given the location for each of three stations and your 

location there is a nearest station. In Figure 1 for the given position of x this 

would be Station A. If your location at the time of decision were different the 

nearest station might still be Station A, but then again it might be one of the 

remaining stations. Hence, with _regards to Station A there exists a region 

satisfying the condition that Station A is the nearest station for any point in that 

region. The same can be said for the remaining stations. If the three regions were 

plotted as a map the boundaries defined by each region defines what is referred to 

as a Voronoi Diagram. In this example the Voronoi Diagram is defined by the 

three rays radiating from the vertex. Clearly any point on a ray different from the 

vertex has two stations as it nearpoints 1• The vertex has all three stations as it 

1 Definition. A point x in the set X is the nearpoint of p if and only if for any y in the set X, then 
llx - PII ~ IIY- PII, 
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nearpoints and any point strictly in the interior of a region has a unique nearpoint. 

In Figure 1.1 the nearpoint to x is Station A. 

Station A• 

Nearest ~ 

You X 

d(X,A) < d(X,R) aud d(X,A) < d(X,C) 

Figure 1.1. Partitioning of the Euclidean Plane, R2
, using the 

nearpoint property relative to the given three stations. 

The mathematics ofVoronoi Diagrams is an extensive subset ofa much 

broader branch of mathematics known as combinatorial geometry. Included in 

this subject are concepts related to convexity2; which includes the well known 

Helly's Theorem, which states: Given n+ 1 convex sets in R" such that the 

intersection of any n sets in nonempty, then the intersection of all of the set is 

nonempty. 

2 Definition: A set A is said to be convex if and only if for any two points x, y E A and any 0 in [O, 1 ], 

e x + c 1 - e )y e A. 
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Combinatorial geometry also includes problems concerned with the 

approximation of a convex set by polygons, packing of a region with a fixed 

convex region, methods of cell decomposition using Dirichlet-Voronoi cells, the 

Minkowski-Hlawka Theorem, the Stone-Tukey Theorem, and Szemeredi­

Borsuk's Problem to mention a few. In addition, there are numerous problems 

regarding nearpoint determination. With regards to these problems we should note 

that convexity plays an important role as is seen in Theorem 1.1. Convexity also 

plays an extensive role throughout the entire branch of mathematics knows as 

combinatorial geometry as well as being a major subject in of-itself. An excellent 

example of the use of convexity is given in the following theorem. 

Theorem 1.1. Given a closed, convex set A. in R 2 and a point x not contained 

in A then there exists a unique nearpoint. 

Proof. Existence: It suffices to note that A - x, which is the set of points 

defined by { a - x : a EA}, is closed. Hence the set { Ila - xii : a EA} is bounded 

from below and is closed. Hence A - x has a greatest lower bound, thus for any 

a* EA such that II a* -x II~ II a-x II for all a~A, a* is a nearpoint. 

Case 1: Suppose A has nonempty interior, i.e., the measure of A is not zero. 

Let a 1 be any point in int(A), a1 is not a nearpoint since for any circular 

neighborhood of a1 there is a point nearer x. 

Case 2: Suppose A has empty interior, i.e., the measure of A is zero. Let a 1 

be any point in A. Since A is convex and has measure zero then A must be a line. 

3 



Hence a 1 is the nearpoint of x if and only if a 1 is the intersecting point of the line 

through x and · perpendicular to A. 

Uniquesness: Assume non-uniqueness, that is, there exist at least two 

nearpoints. Denote them by rands, both in A. Now II X - r II = II X - s 11- Further, 

the line segment joining X to r and X to s form two sides of an equilateral triangle. 

Since A is convex then the point ( r + s) I 2 is in A. Further the II X - ( r + s) I 

2 II < II X - r II- Hence r cannot be a nearpoint. □ 

Although convexity plays a major role in geometry of Voronoi Diagrams, it is 

not limited in its application to the study. It should be noted that it also plays a 

major role in optimization theory, mathematical programming, and all flavors of 

geometry. 

Applications of mathematical programming include linear programming, 

game theory and nonlinear programming with linear programming providing a 

method for modeling many activities related to scheduling. Of the scheduling 

problems there is the problem of scheduling airline flights and other 

transportation problems all being a special class of allocation problems. In fact 

there is a sizable segment of mathematics related to the Transportation Problem. It 

should be noted that the Transportation model is not restricted to problems of 

transportation since it is effectively an allocation problem. It has been used to 

optimize the production of men's pants for a major clothing manufacturer in the 

mid-1970s. Related to the Transportation Problem is an even weightier problem, 
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one that is closely coupled to the problem of NP (non-polynomial) completeness, 

namely the Traveling Salesman Problem. This problem has numerous applications 

some of which include robotic motion in the manufacturing of electronic boards. 

Nonlinear programming is a mathematical program in which the objective 

function and/or the associated constraints are nonlinear. Such mathematical 

systems are used to model many applications. But finding the solution can be 

difficult hence they make use of numerical methods such as the gradient 
,-

projection technique or Powell's Method for determining the solution. One class 

of nonlinear programs, namely the quadratic programming model, was used by 

the economist Harry Markowitz3 to model the portfolio management problem 

which is now referred to as the Markowitz Portfolio Model. Finding the solution 

to this class of programs is straight forward by means of the Lagrangian method. 

It should be noted that the real problem in implementing this models is that of 

determining the parameters used to define the program. 

With regards to linear programming the general form is given by 

n 

min Lc;X; 
i=l 

subject to: 
n 

Laiixi ~ bj 
i=I 

j = I, ... ,m 

3 Shared the 1990 Nobel Prize with Merton M. Miller and William F. Sharpe. 
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and the solution to this problem can be had, at least for small dimensional 

systems, by use of combinatorial geometry. From 1950 to approximately 1985 the 

standard method for solving a linear program is Dantzig's Simplex Method 

developed by Wood and Dantzig (1949), but this is beyond the scope of this 

thesis. Klee has shown thatthe Simplex Method is not the best method for some 

linear programs by demonstrating that for some cases it is not computational 

efficient. In the mid 1980s an alternate, more efficient method based on using the 

Interior Point Method was developed by Karmarkar (1984 ). 

Since the optimal solution to a linear program will contain a vertex of the n­

dimensional polygon described by the constraintsetthen, as indicated earlier, the 

linear program can be viewed as a problem in combinatorial geometry. Hence if 

the constraint set is defined by m inequalities then a combinatoric scheme would 

[m + nl require that one solve n . This is almost always true since the set of 

inequalities generally requires that each variable be non-negative. 

The geometric nature of a linear program is illustrated by use of the linear 

program given in equation (2). 

max 4x1 +7x2 

subject . to: 

2x1 + X 2 ~ 4 

4x1 +6x2 ~ 12 

X1 ~0 

X2 ~0 

6 
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where the shaded region in Figure 1.2 is the graphical representation of the 

problem's constraint set. In addition, the figure indicates three possible objective 

functions. The max-solution is a line parallel to the line 4x1 + 7x2 = 0 and 

containing the intersection point of the two lines defining the upper part of the 

feasible region. 

It is well known thatoptimal solutions to any linear program contain at least 

one vertex of the constraint set, the polygon. 

Optimal Objective 
_.--------- Function 

Figure 1.2. A graphical representation in the plane of a linear 
program as given by equation (2). The feasible region is 
shaded. 

Another significant problem is the Stone-Tukey theorem, frequently referred 

to as the Ham Sandwich Theorem because of the analogy used to illustrate the 
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theorem, namely the ham sandwich. The theorem guarantees the existence of a 

hyperplane that bisects in measure n disjoints sets, see Figure 1.3. The theorem 

does not provide a method for finding the solution. Clearly the theorem does not 

provide uniqueness since there are many situations in which the solution is not 

unique as would be the case with two concentric circular regions. 

Harder Problem 

Figure 1.3. An illustration of the Stone-Tukey theorem in R2
• The 

light grey set is horseshoed around the dark grey set. Finding the 
hyperplane that cuts the two sets in half is easily done in the Easy 
Problem. Although it is more difficult to find the hyperplane in the 
Harder Problem the Stone-Tukey Theorem guarantees the existence of 
such a cut. 
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Even Harder Problem 

Figure 1. 4. Again the Stone-Tukey applies, but finding the bisector in 
measure is even more difficult. 

Beyer and Zardecki (2004) state that the earliest known paper apropos the 

Ham Sandwich Theorem, specifically for the case R3
, was given by Steinhaus 

(1938). The theorem indicates that it is possible to bisect three solids with a plane. 

Steinhaus is credited with posing the problem while Stefan Banach is credited as 

being the first to solve the problem. He did this by reducing the theorem to the 

Borsuk-Ulam Theorem: Any continuous function from S 11 to E 11 maps some pair 

of antipodal points to the same point. Although it is referred to as the Ham 

Sandwich Theorem, initially it was informally posed in the following terms: "Can 

we place a piece of ham under a meat cutter so that meat, bone and fat are cut in 

halves?" 

The theorem is given by: 

Theorem 1.2. (Stone-Tukey) Given n regions with positive measure in Rn 

there exists a single hyperplane that bisects each region. 
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We now consider the problem of finding near points, a much studied problem 

that plays a significant role in both mathematics and computer science. The 

simplest form of such a problem is the following: 

Given n points X = {x1, x2, x3, .•• , x0 } in R0 and a point x• find the point in X 

nearest x *. Clearly, the simplest algorithm for finding the nearest point is O(n)4. 

The simplest algorithm would be: 

1. Input the set of points X. 

* 2. Input x. 

3. Compute the distance d1 = llx* - xill-

4. Store the index, the point xi, and store the distance as ds. 

5. In a loop of length n - 1, i = 2 to n, perform the following: 

a. Compute di= llx* - Xi 11-

b. If di< ds then replace the stored values with the current index, 

current distance di and the current point, Xi, 

Clearly this algorithm will find the nearest point in n comparisons, hence, it is 

said to be O(n )5. 

4 O(n) is a symbol used to measure the amount of work needed to complete a task. In this case the 
amount of work is linear inn. Thus, if the amount of data is doubled then the amount of work is 
doubled. 

5 Definition: Suppose f(x) and g(x) are two function defined on some subset of the reals, then f(x) is 
said to be O(g(x)) as x approaches infinity if and only if there exists x0 and there exist M > 0 such that 

lf(x)I ~ M jg(x)I for x > xo. 
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This problem is much more difficult if the set Xis not finite, but then the 

problem would not be in the realm of combinatorial geometry. 

Example: IfX = {x: x = (1, 1 + (1/n)), n = 1, 2, 3, ... } and x• = (1, 0) then 

there does not exist a nearpoint .in X relative to x*. Furthermore, the above 

algorithm would never cease execution. But using a limit concept one could find 

the greatest lower bound of 1 for the distance between x * and x. 

Further investigation leads to the following: For the given X any point in the 

half plane H = {x: x = (x, y), y > 1 } has at least one nearpoint and for every x 

not in H there is no nearest point, but there is a greatest lower bound for the 

distance metric and a limit point (1, 1). This is easily seen in Figure 1.5 to be the 

value II x - (1,1) II- Further, uniqueness might not exist depending upon the value 

ofx. 

A similar problem is that of finding, if it exists, the nearest point of X where X 

is a region . in R2 and x * is the fixed point. Clearly if x * E X then x * is the nearest 

point, else we must apply some methodology to obtain the nearest point. In 

addition we can again question uniqueness and existence. 

11 



2.5 -r------------------

2-+-------------------

1.5 +------------------

1 

• 
• 

i 

0.5 +------------------

0 +-------r--------lJ--__;_ ___ __ 
0.0 0.5 1.0 1 .5 

Figure 1.5. Plot ofX and its limit point x* = (I, I). 
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2.5 ~----------------

1.5 --------------T-------

1 

! x_ 
• .:> 
• 
I 

0.5 -+-----------------

0-+-------,--------.--------. 
0.0 0.5 1.0 1.5 

Figure 1. 6. The line L1 that contains those points having 
x1 and x2 as their nearpoints and the line L2 that contains 
those points having X2 and x3 as their near points. In 
general the lines Lk for Xk and Xk+1. 

Before closing our litany of related problems we should note, as indicated in 

Figure 1.7, that the structural foundation of a dragonfly's wing is defined by a 

Voronoi Diagram. 
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Figure 1. 7. A Voronoi Diagram defines the structure of a Dragonfly's wing. 

Figure 1. 8. The veins of a peanut hull. 

Although we do not know if the veins of a peanut hull define a Voronoi 

Diagram, but the following figure seems to imply such a geometric structure. 

With this we now consider the problems addressed by this thesis. 
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Statement of Problem 

In the previous section we have sought to find the nearpoint of a given point 

relative to a given set. A variation of this problem, the low-on-gas problem, is 

that of finding the collection of points nearest a specified point in a given, finite 

set of points. As indicated earlier the resulting diagram as defined by the 

boundaries of each region is called a Voronoi Diagram. 

In solving the nearpoint problem as diagrammed in Figure 1.1 we considered 

a domain argument, that is, what domain, region V(xJ in R 2, of points has the 

property that every point in V(xJ has x; as its nearpoint. We could extend this 

question to include: given the domain V(xJ in R 2, find the sub-domain Vu(xJ 

such that every point in V u(xJ has a unique nearpoint x;. In our example every 

point on a line that is the perpendicular bisector of the line segment joining the 

two adjacent points in X does not have the property of uniqueness. See Figure 1.5. 

Hence Vu(xJ is the half plane above the line y = 1 less the points in the line Lk. 

Having considered the problem of finding a nearpoint and the domain of 

points having a particular nearpoint, unique or otherwise, we now consider the 

problems this thesis is to address. 

Problem 1: Given a finite set of points X = {xi, x2, x3, ... , Xn} in R 2 find the 

domain of points Nk such that for every x E Nk, Xk is the nearest point to x, that is, 

15 



The solution to this problem results in a Voronoi Diagram, a topic that has 

been extensively studied in mathematics and computer science. 

Problem 2: Have Voronoi Diagrams been characterized? If not, how can they 

be characterized? 

Problem 3: Given a diagram that is in fact a Voronoi Diagram can we define 

the set of points X = {x1, x2, X3, ... , x0 } in R 2 that will generate the given 

diagram? 

Problem 4: lfthere is a solution to Problem 3 is the solution unique? 

Problem 5: If the solution to problem 4 ·is not unique what properties must the 

Voronoi Diagram possess? 

Problem 6: How might the generating set for a Voronoi Diagram be 

determined? 

Outline of Thesis 

Chapter 1 introduces the problems and ancillary material. Chapter 2 provides 

a survey of related material, namely, a review of basic concepts on Voronoi 

Diagrams. Chapter 2 will also provide a review of some results related to Voronoi 

Diagrams in R 2.with references to the extension of the work to Rn_ It should be 

noted that .considerable work related to Voronoi Diagrams has been done in R 2• 

In addition numerous investigations of computer algorithms for generating 

Voronoi Diagrams can be found in O'Rourke [1998], DeBerg, van Kreveld, 
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Overmars & Schwarzkopf [2000], and Preparata& Shamos [1985]. Lastly we 

should point out.that some work has been extended to the study ofVoronoi 

Diagram in R n. Other directions include varied extensions of Voronoi Diagrams 

in R 2 and R 3 using weighted measure. This approach has some applications in 

biology, particularly in determining the size-distance and size-area relationships 

as measures of plant interactions. Given these remarks the work done in this thesis 

is restricted to R 2
• In particular we will address material related to Problems 1 

and 2. 

Chapter 3 addresses Problem 3, 4, 5 and 6. These problems are related to what 

we will refer to as the Inverse Voronoi Diagram Problem. 

Chapter 4 provides a summary of the results followed by a set of open 

problems. 
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CHAPTER II 

REVIEW OF VORONOI DIAGRAMS IN R 2 

Background · 

This chapter begin with a review of the salient features of Voronoi Diagrams as 

found in Okabe, Boots and Sugihara text, Spatial Tessellations: Concepts and 

Application ofVoronoi Diagrams, and O'Rourke's text on Computational 

Geometry in C. Since these references provide proofs we will present only those 

which provide an insight to the methods used in proving various properties 

regarding Ordinary6 Voronoi Diagrams. In addition, several concepts concerning 

nearpoints will be reviewed. 

Note: For most.of the thesis we will consider II XII to be the L2 norm on the 

plane R 2. 

Although defined in an earlier footnote, [1], we begin with the formal 

definitions of nearpoint. 

Definition 2.1. LetX= {X1, ... , Xn} where n > 1. Let Y be a point in R 2 then 

the point X1 is said to be a nearpoint ofY if and .only if IIY -Xiii~ IIY-AJII for all j > 

1. 

6 The term Ordinary has been used since this chapter will provide an example of a Voronoi Diagram 
using a metric other than the L2 metric. 
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Although the following theorem will be stated and proved again it was felt that 

a geometric argumentwould provide significant insight to warrant Theorem 2.1 and 

the geometric proof. 

Theorem 2.1. Let X = {X1, ... , Xn} where n > 1 and let p and q be two point in 

R2 such that X 1 is a nearpoint of p and q then X1 is a nearpoint for any x E [p, q]. 

Proof. Let Rc(pJ,x1 denote the set of points in y ER 2 such that II y - p II ~ 

II p - X1 11- Similarly Rc(qJ,x1 denotes the set of points in y E R 2 such that II y - q II 

~ II q -X1 11- Thus is follows that for every j > 1, the point Xj is not an element of 

Rc(pJ,x1 U Rc(qJ.Xr 

Now x e [p, q] .thus x = 0p + (1- 0)q where O ~ 0 ~ 1. Without loss of 

generality we will assume that x is in the region Rc(qJ,Xr Further, suppose there is a 

point Xj in the generator set X such that Xj is the nearpoint of x then 11 x - Xj 11 ~ 

II x - X1 11- Thus Xj is in RcrxJ,x1 which is in Rc(pJ,x1 U Rc(qJ,x1 by Figure 2.1. Thus 

Xj is in the set Rc(pJ,x1 U Rc(qJ,x1 which contradicts the fact that Xj is not in Rc(pJ,x1 

U Rc(qJ,x1 for all j > 1. □ 
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Figure 2.1. The grey area is defined by RcrxJ.x
1 

U Rc(qJ,x
1 

Definition 2.2. Let X = {X1, ... , Xn} where n > 1, then the set of points in R 2 

such thatXj is the nearpoint is denoted by V(Xj), i.e. 

V ( X j) = { Y E R2 : 11 Y - xi II< II Y - Xj II \f j 7= i} 

Definition 2.3. Let X = {X1, ... , Xn} where n > 1, the set of points in R 2 such 

that Xj is the nearpoint region and is denoted by V(Xj). The boundaries of V(Xj) for 

allj define the Voronoi Diagram and the set Xis referred to as the generating points 

of the Voronoi Diagram. 

Related to the concept of the Voronoi Diagram is the Delaunay triangulation. 

Definition 2. 4. The Delaunay triangulation is obtained from the Voronoi cells 

by connectingp, q inXby an edge if and only if the cells V(p) and V(q) are 

adjacent. 

Below is an example of a Voronoi Diagram and its associate Delaunay 

triangulation is given in Figures 2.2 and 2.3 respectively. 
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Figure 2.2. Plot of the Voronoi Diagram associated with the 
point set X = {Xi, ... , X6}. For any point in the region 
associated with X 1 the pointX1 is the nearpoint. 

Generate(! by: cs.comell 2006 

Figure 2.3. The plot of the Delaunay triangulation associated with the 
Voronoi Diagram given in Figure 2.2. 

Although defined in .the footnote [2] we formally define convexity. 

Definition 2. 5. A set Xis said to be convex if and only if for any two · points in 

the set the line segment joining the points in contained in X. 
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An equivalent statement requires that for any two points p and q in X and for 

every 0 E [O, 1] the point 0 p + (1 - 0) q eX. 

Lemma 2.1. Let A and B be convex sets then A n B is convex. 

Proof. Let p and q be two points in A n B. Let x = 0 p + (1 - 0) q where 0 is in 

the interval [O, 1]. Since A is convexx EA~ Similarly x EB. Thus x e A n B. □ 

Lemma 2.2. Let {Aa: a E 31, 31 is a countable index set} then n aAa is 

convex. 

Proof. Immediate by reason of Lemma 2.1. 

Lemma 2.3. LetAbe a set of convex sets. The intersection of all the elements 

of A is convex. 

The set . A is not limited to countability. 

The next theorem is a restatement of Theorem 2.1 in terms of convexity with a 

different pr~>0f, one that is based on the convexity of the intersection of half-planes. 

Theorem 2. 2. Let V( Xi) be a the region generated by Xi of a Voronoi 

Diagram then V( Xi) is convex. 

Proof: For each pair of points Xi and Xj in X the set of nearpoints to Xi, which 

we have denoted by V( Xi), is contained in the closed half plane H(L(X i, Xj ), Xi) 

where the boundary of H(L(Xi, Xj ), Xi) is a line perpendicular to the line segment 
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LSeg(Xj , Xi) joining the poiritAJ and Xi and passing through the midpoint of the 

line segment. This must be true for any point AJ. Hence the set of points having Xi 

as its nearpoint is defined by nH(L(Xi, AJ), Xi). Since each half plane is convex 

the set of points having Xi is as its nearpoint is convex. □ 

Theorem 2.3. V( Xi) is unbounded if and only if Xi is an extremal point of the 

convex hull of X. 

Proof: (Okabe, A., Boots, B., & Sugihara, K.) Under the non-collinearity 

assumption, assume that some generators are in the interior of CH(X). We shall 

show that a Voronoi polygon whose generator is an interior point of CH(X) is finite. 

First, consider an interior generator point, Pi [Pi in Figure 2.4]. For X; we can 

construct a triangle such that its vertices are generators on the boundary of CH(X), 

say ~h ~ 2, Xi3 e X, and it contains Xi in its interior [Figure 2.4]. We next 

construct the triangle by the intersection of the halfplanes H(X;, Xu), H(X;, X;2) and 

H(X;, X;3) [the dashed lines in Figure 2.4]. Since X; is an interior pointof 

11XuX;iXi3, this triangle is finite and 

H(Xi, Xil) nH(Xi, .xi2) nH(Xi, Xi3) :)(1=1,j~lH(~, ~) = V(~). 

The Voronoi polygon V(XJ is thus finite. 

Conversely, assume that the Voronoi polygon V(XJ is bounded by Voronoi 

edges e(X;, Xj),j eJ;, where J; is the set of indices ofVoronoi polygons adjacent to 

V(XJ (Figure 2.4 ). It is then obvious that X; is in the interior of CH( {Xj, j e J;}) ( 
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the dashed lines in Figure 2.4). Since CH({Xj,jEJ;}) c CH(X), X; is not on the 

boundary of CH(X). 

When generators are collinear, all generators are on CH(X) which degenerates 

into a line segment, and all Voronoi polygons are infinite. □ 

.. ,- ~ - .... -
\ 

' ' \ 

P:12 

pi 

, 
+, ,, ,, 

, 

Figure 2.4. Illustration of the proof of Theorem 2.3. 

Definition 2. 6. A Voronoi Diagram is said to be degree n everywhere if and 

only if every vertex has n edges. 

Example. The Voronoi Diagram given in the Figure 2.2 ,is of order 3 

everywhere. 

Lemma 2.4. Given n > 3 let Vbe a Voronoi Diagram generated by the generator 

set {X1, X2, ... , X0 }, then Vis a Voronoi Diagram of degree n if and only if the 

points of the generator set are co-:circular. 

Proof. If the points of the generator set are co-circular then vertical bisections 

of any pair of points of the set must pass through the center of the circle defined by 
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where Il/J,x1,x2 denotes the line that is the perpendicular bisector of the line segment 

joining X1 and Xj, where j > 1 and Xe denotes the circle's center. Now X1, X2, and 

X3 defines the circle C1 and X1, X2, and X4 defines the circle C2. Since the four 

points are on the same circle then C1 = C2, thus there ts only one vertex for the 

Voronoi Diagram hence the vertex must be of degree four. 

If the points are not co-circular, thenX1, X2, andX3 define one circle C1 and the 

points X1, X2, and X4 . define another one circle C2• Since C1 7 C2 then the center of 

the circles C1 and C2 are distinct points. These two points define the vertices 

associated with the Voronoi Diagram and each is of degree three. □ 

Theorem 2.4. A Voronoi Diagram is degree three everywhere if and only ifno 

four points are contained within a circle. 

Proof. It suffices to note that proof is immediate by application of Lemma 2.3. 

Theorem 2.5. For n ~ 3, the number of vertices in the Voronoi diagram of a set 

of n point sites in the plane is at most 2n - 5 and the number of edges is at most 

3n-6. 

Proof. If the sites are all collinear then there are n - 1 parallel lines defining 

the Voronoi Diagram. Hence, the theorem follows immediately. If the points are 

not collinear we can make use of Euler's formula, which states that for any 

c~nnected planar embedded graph with mv nodes, me arcs, and m1 faces the 

following relation holds: 



Attach an extra vertex, V 00 , "at infinity" to the graph defined by the Voronoi 

Diagram by connecting all half-infinite edges to this vertex. We now have a 

connected planar graph to which we can apply Euler's formula. We obtain the 

following relation between nv, the number of vertices of the augmented graph, ne, 

the number of edges and n, the number of regions: 

(nv + 1) - ne + n = 2 

nv - ne + n = 1 

Moreover, every edge in the augmented graph has exactly two vertices, so if we 

sum the degrees of all vertices we gettwice the number of edges. Because every 

vertex, including, V 00 , has degree at least three we get 

2ne ~ 3(nv + 1). 

Hence the theorem follows. □ 

Theorem 2. 6. The average number of edges per polygon in a Voronoi polygon 

is less than or equal to six. 

Proof. Since every Voronoi edge is shared by exactly two Voronoi polygonal 

regions, then the average number of edges is given by 2ne/ n. Since ne ~ 3n - 6 

then the average number ofVoronoi edges per 'polygon' is less than or equal to 

(2(3n-6))/n =(6-12/n)<6. □ 

Figure 2.5 indicates the bounded growth of the average number of edges as n 

increases. 
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Figure 2.5. A plot of the average number of edges per polygon in a 
Voronoi Diagram verses n. 

Theorem 2. 7. The maximum number of bounded polygons in a Voronoi 

Diagram is n - 3. 

Proof. It suffices to note that every generator set.for a Voronoi Diagram must 

have at least three points in the convex hull of the generator set. □ 

Voronoi Diagrams in R 2 
- Special Cases 

Here we will look at the possible Voronoi Diagrams for various values of n, n 

being the number of points in the generator set. Further we will assume that the 

norm of x ER 
2

, II x II, is the L2 norm. 

Case 0 

For n = 1 the Voronoi Diagram is null in that the entire plane is the region 

associated with the generator point. 
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Case 1 

For n = 2 all situations are topologically equivalent, thus for this case there are 

two regions <.Kl, <R.2- such that the boundary of~, a ~1 , is identical with the 

boundary for <R.i. ,a <J?.2.. Also, Int(~) n Int(<R.2-) = 0. [Note. Int(S) denotes the 

interior of the set S, a subset of R 2.] 

In the following theorem we let .Pbe a finite set of points in R2
, then 

(Ju.= {PE R2
: IIP-Pkll ~ IIP-P;II, i= 1,2, ... n,P; E P} 

Theorem 2.8. Let~; be the Voronoi region associated with P; for i = l, 2, then 

the boundary for ~ 1, <J?.2. is the perpendicular bisector to the line segment P1P2 • 

Proof: Let P1 = (x1, y1) and P2 = (x2, Y2) for ~1, we have that VP E (}{i 

II P-P1 II ~ II P-P2 II- Thus ll(x, y)- (xi, Yt)lf ~ ll(x, y)- (x2, Y2)ll2 or 

ll(x - x1, Y - Yi)ll2 ~ ll(x - x2, Y -y2)f 

Using the definition of the Euclidean Norm we have 

2 2 2 2 2 2 2 2 2 2 x - 2xx1 + x1 + y - YY1 + Y1 ::; x - 2xx2 + X2 + y - YY2 + Y2 

2 2 2 2 2 2 2 - 2xx1 + Xt - YY1 + Y1 ~ - xx2 + x2 - YY2 + Y2 

2 2 2 2 2 2 2xx2 - 2xx1 + YY2 - YYt ~ x2 - x1 + Y2 - Yt 
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Therefore we knowthatwe have a bisector. 

The slope of the line through P1, P2 is Y2 
- Yi while the slope of the line we just 

X2 - X1 

derived is - x 2 
- Xi , the negative reciprocal. Since the point 

Y2 - Y1 

( (x2 ~ Xi J,(Y2 ~ Yt)) lies on the line given in (3.1) then the boundary is the 

perpendicular bisector to the line segment P.P2 • □ 

Example: P 1 = (0, 0) and P2 = (1, 1 ). The equation for ~1 boundary line is 

::; _ (1-0) x+(~)(~)+(~) 
y (1 .-0) 1.-0 . 2 2 

y::; -x + 1 

where ~1 = {(x, y) I y::; -x +1} and .~= {(x, y) I y ~ -x + l}. Figure 2.6 

provides the Voronoi Diagram for the points (0,0) and (1, 1). 
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Case2 

Figure 2. 6. Plot of the Voronoi Regions defined by the points 
(0, 0) and (1, 1). 

For n = 3 the points can either be collinear or non-collinear. 

The Points are Collinear. 

Here we can make use of the property presented in Case 1, namely that each 

boundary must be perpendicular to the same line L containing the three points. 

Figure 2. 7. Plot of the Voronoi Regions 
defined by three collinear points. 
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We should note that ~1 is the intersection of two half planes, each containing 

P1. Since the points are collinear the boundaries of the two half planes are parallel. 

Hence the region is defined by the boundary nearest the point since the associated 

half plane is contained strictly within the remaining half plane. A similar argument 

is made for the remaining regions, ~ and <R..;,. 

Non-Collinear 

Here the three points define a triangle. Without loss of generality it is assumed 

that the three points are situated in such a manner that two of the points have the 

same abscissa, specifically zero. In this situation we obtain three regions, ~1, ~' 

and CR.;;. The boundaries are defined by the three rays R1,2, R2,3, and R1,3 which 

meet at the vertex V. 

(0, 1) 

(0,0) 

(-d, 0) 

(O.b> 

Figure 2.8. Three noncolinear generating points of a 
Voronoi Diagram. Thus the generating set is {(0, 1 ), 
{O,b), (-d ,O)} 
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From Figure 2.8 we see that 

and since each of the triangles containing a 1 and a2 are right triangles then 

0 < a 1 < 1C and O < a 2 < 1! • Hence, 0 < a 1 + a 2 < 1C which yields 
2 2 

1r > 1r - al- a2 > 0, thus 1r>/3>0. Hence, 

and 

Hence. the following theorem. 

Theorem 2.9. For any vertex of degree 3 in a Voronoi Diagram the sum of any 

two adjacent angles defined by the rays having that vertex as their origin is greater 

than 7t. 

Note: If the Voronoi Diagram has a single vertex of degree four thenit is 

possible that the sum of the angles of any two adjacent regions will sum to 7t. But, 

we can generalize Theorem 2.9 to the following: 

Theorem 2.10. Given a Voronoi Diagram with a vertex of degree n then the 

sum of any n -1 adjacent angles defined by the rays is greater than 7t. 
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V oronoi Diagrams in Computer Science 

This section is concerned with the efficiency of an algorithm that generates a 

Voronoi Diagram and its dual, the Delaunay triangulation. 

Definition 2. 7. The Delaunay triangulation of a Voronoi Diagram is the graph 

obtained by connecting by an arc those points in the generating set X of the Voronoi 

Diagram having the property thattheir associated regions have a common 

boundary. 

Much of the material in this section can be found in a paper on Voronoi 

Diagrams by Franz Aurenhammer and Rolf Klein. They discussed several ways of 

computing the Voronoi Diagram and its dual, the Delaunay tessellation. For 

simplicity, we assume that no four points of X are cocircular and that no three of 

them are collinear then the dual of the Voronoi diagram V(.X) is a triangulation of 

X. Hence three points of X give rise to a Delaunay triangle if and only if their 

circumcircle does not contain a point of X in its interior. Thus all algorithms in their 

paper can be made to run without the general position assumption. 

We first note that the data structures suited for working with planar graphs like 

the Voronoi diagram are the doubly connected edge list (DCEL) and the quad edge 

structure (QES). In either structure, a record is associated with each edge e that 

stores the following information: the names of the two endpoints of e; references to 

the edges clockwise or counterclockwise next toe about its endpoints; finally, the 
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names of the faces to the left and to the right of e. The space requirement of both 

structures is O(n). 

Either structure allows efficient traversal of the edges adjacent to a given vertex, 

and the edges bounding a face. The quad edge structure offers the additional 

advantage of describing, at the same time, a planar graph and it dual, so that it can 

be used for constructing both the Voronoi diagram and the Delaunay triangulation. 

From the DCEL of V(X) we can derive the set of triangles constituting the 

Delaunay triangulation in linear time, O(n ). However, how this is done is beyond 

the scope of this paper. Conversely, from the set of all Delaunay triangles the 

DCEL of theVoronoi diagram can be constructed in time, O(n). Therefore, each 

algorithm for computing one of the two structures can be used for computing the 

other one, within O(n) extra time. 

Aurenhammer and Klein indicated that it is convenient to store structures 

describing the finite V oronoi diagram in such a manner that the convex hull of the 

point sites can be easily reported by traversing the bounding curve. In doing this 

they made use of the factthat the average number of edges to a region is less than 

SlX. 

Before constructing the Voronoi diagram they established a lower bound for the 

computational complexity. 

Suppose that then real numbers, denoted by x1, ... , Xn are given. From the 

Voronoi diagram ofthe point set X = {Pi= (x;, x?) 11 ~ i ~ n} one can derive, in 
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linear time, the vertices of the convex hull of X in counterclockwise order. From 

the leftmost point in X on, this vertex sequence contains all points Pi, sorted by 

increasing values of Xi, see Figure 2.9. 

-4 
X.::-; x,.. 

1 - 2 - 3 4 

Figure 2. 9. Sorting X via the abscissa of each point P; 
can be done in linear time. 

This argument due to Shamos shows that constructing the convex hull and, a 

fortiori, computing the Voronoi diagram, is at lest as difficult as sorting n real 

numbers, which requires 0 (n log n) time in the algebraic computation tree model. 

However, a point of argument is lost in this reduction. After sorting n points by 

their x-values, their convex hull can be computed in linear time, whereas sorting 

does not help in constructing the Voronoi diagram. 

Definition 2.8. A function/is said to be asymptotically bounded by g if 

3 NI> 0, :3 xo : 1/(x)I ~ Aflg(x)IVx > a;o, 
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We denote this by f(n) e O(g(n)). 

Theorem 2.11 .. Ittakes Q (n log n) to construct the Voronoi diagram of n points 

{P1, . .. , Pn} whose x-coordinates are strictly increasing. 

The proof of this theorem can be found in Aurenhammer and Klein's notes and 

is omitted. 

Voronoi Diagrams in R O
• 

Although the chapter's title is Voronoi Diagrams R 2 some of what we have 

developed can be extended to a higher dimensional space such as R 3
• In R 3 we 

would use the plane that passes through the midpoint of the line connecting two 

points from the generating set X and perpendicular to the line. This is readily seen 

in Figure 2.10. 

Pl 

Figure 2.10. The vertices of the tetrahedron define the 
generator set of the Voronoi Diagram which is defined 
by the 'green' planes. Note that the region for each pi is 
convex. 
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An immediate extension is that of convexity of each region of a Voronoi 

Diagram in R 2
• This property can be extended to R 3 and even to R O since each 

region is the intersection of convex half-spaces. Furthermore, in R 2 the vertices of 

the Voronoi Diagram are simply the intersection of two lines. Thus the finite 

regions consist of edges and vertices, whereas, in R 3 the finite regions consist of 

faces, edges and vertices. Clearly, Euler's theorem is applicable since the regions 

are polytopes. 

Since our first theorem relates to the measure of an angle we recall that solid 

angles are measured in steradians. In R 2 an angle is measured in radians with 21r 

being the period. Thus a point at (1,0) can slide along a circle of radius 1 and return 

to the initial position after traveling through a distance of 21r units where 21r is the 

circumference of the unit circle. Similarly, for R 3 a unit sphere is used and the 

'angle' is measured in steradians with the 'complete' sweep being 41r. 

Earlier we noted that if at a vertex of degree 3 of a Voronoi Diagram in R 2 we sum 

any two adjacent angles defined by the 'rays' extending from this vertex the sum is 

greater than 1r. Here we can extend this to the following conjecture. 

Conjecture 2.1. Given a Voronoi Diagram in R 3 and a vertex of degree four, 

then the sum of the steradians of any two adjacent regions is greater than 21r. 

First we consider will the following Lemma. 

Lemma 2. 5. Any four non-coplanar points in R 3 are contained in a unique 

sphere. 
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Proof. Let x 1, x2, X3, and X4 be the four points. Let Xe denote the center of the 

sphere. This requires that II X1 -Xe II = II X2 - Xe II = II X3 -Xe II = II X4 - Xe II which 

yield the system 

IIP1-Pe II= IIP2-Pe II 

IIP1-Pe II= IIP1-Pe II 

IIP1-Pe II= IIP4-Pe II 

which is equivalent to the following: 

which is equivalent to the following three by three system. 

Since the four points are non-coplanar the three by three matrix is nonsingular and 

has a unique solution. □ 

Hence we can now prove the following theorem. 

Theorem 2.12. Given a Voronoi Diagram, V, inR 3 generated by four non­

coplanar points then the six perpendicular bisecting planes of V must intersect at a 

single point. 
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Proof. Since the four points are non-coplanar the resulting convex hull is a 

tetrahedron with six edges, four faces, and each face being a triangle. Further, for 

each of the six perpendicular bisectors we have the following: 

IIP1-Pc II= IIP2-Pc II= IIPJ-Pc II= IIP4-Pc II 

which yields four systems. Let S1 be the first system, namely, 

IIP1-Pc II= IIP2-Pc II 

II Pl - Pc II = II P3 - Pc II 

IIP1-Pc II= IIP4-Pc II• 

In this p 1 .. is contained in every equation. This system can be written as 

Reorganizing the terms we have 

which is 
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Since the three vectors, PrP 1 for j = 2, 3, 4, are the edges of the tetrahedron they 

are linearly independent. Hence the associate matrix, namely 

[

x2 -x1 Y2 ~ Y, 

x3-x1 Y3 -y1 

x4 -x1 Y4 -y1 

is nonsingular yielding a unique solution. This solution is the center of the sphere 

containing the points of the tetrahedron. Solving the remaining three systems, say 

S2, S3 and S4, we find a unique solution. In each case the solution must be the center 

of a sphere contain the vertices of the tetrahedron. Since by the previous lemma any 

four non-coplanar points in 3-Space are contained in a unique sphere then the four 

solution sets are equal. □ 

Defintion 2.10. Let V be a Voronoi Diagram generated by m points in R 3. A 

vertex of V is said to have degree n if there are at most n of the m generating points 

needed to generate each associated region locally. 

Two regions in R 3 are adjacent if they share a common 2-D face. 

Initially it was conjectured that the sum of the steradians of any three regions is 

greater than 2,r. 
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What is even more difficult is the claim that those regions associaJed with the 

generating points contained in the boundary of convex hull of Xis infinite is not as 

readily seen since the process of defining the convex hull in R 3 is quite difficult. 

But we will claim the following conjecture. 

Conjecture 2.2. LetX= {X1, ••• X0 } be a finite set of points inR 3, then each 

Voronoi region associated with a point Xk, an element of the convex hull of X is 

unbounded. 

This conjecture is true but the proof is omitted. 

Voronoi Diagrams in R 2 using the L 00 Norm. 

In all of the previous work we have made use of the L2 Norm - the standard 

distance as defined in Euclidean space. It is based on Pythagoras' Theorem related 

to his theorem relating the length of the legs to the hypotenuse of a right triangle. 

The purpose of this section is to show that the previous results are norm dependent. 

Hence, for simplicity the L 00 has been selected and all the results are done in R 2. 

Definition 2.11. For any point x in R 2 the L 00 norm is given by 

llxll oo = max {lx1I, lx2I}. 

To show why type of norm is significant it suffices to provide a counterexample 

to one ofthe major theorems concerning Voronoi Diagrams using the L2 Norm, 

namely that every nearpoint region is convex. 

41 



Example 1. Let X1 = ( - 2, 0) and x 2 = ( 2, 0). Figure 2.11 is the nearpoint 

region for X1. Note that any shaded area defines the nearpoint region for the point 

(- 2,0). Further, any point in the darker regions has as its nearpoint both X1 andx2. 

This is seen in the following argument: Since for any point in the unbounded, 

darker region containing P the second coordinate is larger than the first with 

respect to either points X1 and X2. Hence IIP -X1 II oo = II P - X2II oo since both equal 

the ordinate of P because the two generating points are on the x-axis. Further, we 

should indicate that the Voronoi Diagram of two regions, one associated with point 

X1 the other with X2 result in region having infinite measure. 

Figure 2.11. The shaded area, both light and dark, is 
the nearpoint area for ( - 2,0). Clearly it is nonconvex. 
Further the dark area has both generating points as 
nearpoints. 
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Figure 2.12. Note that the point Xis not in the shaded 
area. 

Should the points not· lie on a horizontal or vertical line then the V oronoi 

Diagram will take the form indicated in Figure 2.13. 

Figure 2.13. Convexity is not present for either point. 
The dark area and its boundary are the nearpoints 
associated with x 1, and the white area and its boundary 
are the nearpoints associated with x2• 
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In closing we conjecture: If two generating points lie on a line having slope+ 1 or-

1 the resulting region will be convex with the boundary being the line that is the 

perpendicular bisector of the line segment joining the two points. 
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CHAPTER III 

INVERSE VORONOI DIAGRAM PROBLEM 

Ray Based Characteristics of Voronoi Diagrams in R 2
• 

The concepts in this chapter resulted from the following problem: In the 

previous chapter we were given n points in R 2 which were used to generate a 

Voronoi Diagram. The idea here is to solve the inverse problem, that is, given a 

Voronoi Diagram find the generating points. Initially the problem was stated in the 

following question: Given a diagram that appeared to be a Voronoi Diagram can 

one find a set· of generating points? But if we are to find the set of generating points 

by using the perpendicular bisector algorithm then the diagram must in fact be a 

Voronoi Diagram. Hence the problem required that we must somehow characterize 

Voronoi Diagrams since we can consider only those diagrams involving Voronoi 

Diagrams. If the diagram that 'looks' like a Voronoi Diagram but is in fact not a 

Voronoi Diagram then there would not exist a Voronoi type generating set, i.e, a set 

of points that will generate a Voronoi Diagram identical to the given diagram. Thus 

our problem is defined by the two following problems: 1. How can Voronoi 

Diagrams be characterized? 2. Suppose we are given a Voronoi Diagram but we 

are not given its generators is there an algorithm that allows us to determine the 

generators? 
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In addition we will also address the question of uniqueness with regards to the 

set of generating points of a Voronoi Diagram. Thus can we characterize the type of 

Voronoi Diagrams that have a unique generating set? 

Consider the two diagrams·given in Figure 3.1. The left diagram is a Voronoi 

Diagram since a set of three points was selected to generate the rays used to 

partition the plane. Diagram B was generated by drawing three rays such that the 

sum of two angles associated with the regions R2 and R3 sums to less than 1t. 

Diagram A Diagram B 

Figure 3.1. Diagram A is a 3-region Voronoi Diagram and Diagram Bis a 
partition of the plane that is not a Voronoi Diagram for any three non-collinear 
p'oints in the plane. 

Let's begin with the question: For a given Voronoi Diagram is the set of 

generating points unique? .The answer to this question is no as seen by the following 

example: 

Example: Given { (-2, 0), (2, 0), (0, 2)} the Voronoi Diagram is defined by the 

following rays: 
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and 

where a> 0. 

{(x,y): (x,y) = (0,0.1851) + a(-1,0.8149)} , 
{(-2,0)(0,2)} 

{ (x, y) : (x, y) = (0, 0.1851) + a (1, 0.8149)} , 
· {(2,0)(0,2)} 

{(x,y): (x,y) = (0,0.1851) + a(0,-1)} 
{(-2,0)(2,0)} 

Now consider the set {(-3,0),(3,0),(0,3)}. For this set of points the Voronoi 

Diagram is defined by the same set of rays. In fact there is an infinite number of 

generating sets. The Voronoi Diagram for this example is given in the Figure 3 .2. 

I 

! -- ····· . .. 1. 
l i 
I i 
\ I 

i i 
. - ...... . .... , ... - ..... . .... . ...... 0. -·····•••+···· ·· ·• ··+•-(0,3) · 

········ ····:• ········ ··· .. .. ·k. 

i " 
H+O+~ ~ ~~-+-+11 

i I ! (3,0~D 

Figure 3.2. Three point Voronoi Diagram [solid] generated 
by the set {(-3,0),(3,0),(0,3)}. 
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Thus we have two sets of generating points for the same Voronoi Diagram. 

Hence, does every Voronoi Diagram have an infinite number of generating points? 

The answer to this question is found by noting that the set 

{(-a,O),(a,O),(O,a): a ER+}, 

where R+ is the set of positive real numbers, will in fact generate the same Voronoi 

Diagram given in Figure 3 .2. 

Not all Voronoi Diagrams have infinitely many generating point sets as 

illustrated by the following example~ 

Example. Given { (-1, 0), (1, 0), (0, 3), (-½,½)}the Voronoi Diagram is defined by 

the following rays: 

J1: {(x,y): (x,y) = (0,-0.52) + a(O,-l)h(-1,0)(l,O)}, 

/2 : { (x, y) : (x, y) = (0.69, 1.56) + a(2.31, 0. 77)}{(0,3){l,0)}, 

/3: {(x,y): (x,y) = (-2.69,2.23) + a(-1.31,O.44)}{(0,3)(-l,0)} 

where a> 0, and the three line segments: 

Jl, /2 : { (x, y) : (x, y) = ,8(0.00,-0.52) + (1 - ,8)(0.69.1.56)}, 

12, 13 : { (x, y) : (x, y) = ,8(0.69, 1.56) + (1 - ,8)(-2.69, 2.23)}, 

13,Jl: {(x,y): (x,y) = ,B(-2.69,2.23) + (1- ,B)(O,-O.52)}, 

where /3> 0. Also IJ = (0, -0.52), 12 = (0.69, 1.56), and 13 = (-2.69, 2.23). 
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The reason for the uniqueness follows from the property that the intersection of 

the three lines perpendicular to the resulting triangle, which is one of the generating 

points, is unique. 

Figure 3.3. The Voronoi Diagram for the above four point 
case example has a unique generating point associated with 
the finite region. 

It.will be seen.that a Voronoi Diagram will either have an infinite number of 

generating sets or there is only one unique set. Further, if the number of generating 

sets is infinite then the measure of all possible points is either zero or infinity. 

Hence, we can state the following: There is a unique generating set if and only if the 

Voronoi Diagram contains more than one vertex. 

In addition, we note that it is well known that if there is only one vertex of a 

Voronoi Diagram for three or more non-collinear points then they must lie on a 
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circle. If the generating set has four or more points, non-cocircular7 then the 

generating set· is unique since non-cocircularity implies that the Voronoi Diagram 

contains at least two vertices. 

Theorem 3.1. If a Voronoi diagram has at most one vertex then there exists an 

infinite number of generator sets. 

Proof. Case 1. There are no vertices. Let G = {X1, •• : X0 } be a generating set 

for the diagram. In this case the Voronoi Diagram must be generated by a set of 

collinear generating points resulting in a diagram that consists of a set of parallel 

lines, each passing through the midpoint of the line segment joining each 

neighboring pair of generating points. Next, construct any arbitrary line,£, 

perpendicular to the lines defining the diagram and not containing any point from 

G. Now construct a setoflines £1, £2, £ 3, ... , Lri perpendicular to the£ such that 

each £i passes through a generator point~- Now let Xi denote the intersecting 

point of Li and£. This set of points G' = {X'1, ... X'0 } is a generating set of the 

Voronoi Diagram since the lines of the diagram are perpendicular bisectors of 

neighboring points in G'. 

Case 2. There is one vertex. Let G = { X1, ... X0 } be a generating set for the 

diagram. We recall that for any generator set of a single vertex Voronoi Diagram 

every elements in the generator set must be co-circular, that is, all will lie on the 

7 A set of n points in the plane is said to be non-cocircular if and only if they are not contained in a 
common circle. 
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same circle having the vertex as its center. Let Co denote the circle containing G. 

Now draw a ray from the vertex V through each generator point Xi. Next pick a 

point, X'i, on · one of the rays distinct from the generator point. Construct a circle, 

Co·, through the selectedpoint with its center at V. Each remaining ray intersects 

the circle Co· thereby defining a set of points G', namely, {X'1, ••• X'0 }. The set G' 

is a generator set since for each neighboring pair {X'i, X'i+t } of points in G' the 

ray defining the diagram is the perpendicular bisector of the line segment defined 

by {X'i' X'i+l }. □ 

Figure 3.4 .illustrate the one vertex situation given in the above argument. 

Figure 3. 4. A geometric illustration of the argument 
given in the proof of Theorem 3 .1. 
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Theorem 3.2. If a Voronoi diagram has two or more vertices then the generator 

set is unique. 

Note: The following proof of Theorem 3.2 will be restricted to a Voronoi 

diagram with two vertices of degree 3. 

Proof: Let V 1 and V 2 be adjacent vertices of the Voronoi Diagram, Y° of order 

four. Let Pi be the embedded Voronoi Diagram attached to V 1 and Pi be the 

VoronoiDiagram attached to V2. Since V1 is the vertex of Pi, a Voronoi Diagram 

of order. one with a vertex of degree three, and V 2 is the vertex of Pi a similar 

Voronoi Diagram we can find two respective generator sets. 

Since V 1 and V2 are adjacent vertices in Y°, then the joining line segment, v.v; , 
---➔ 

lies on the ray 'R1 in Y°i where 'R1 = vr
2 

and concurrently lies on the ray 'R2 in 

---➔ - ---➔ ---➔ 

Pi where 'R2 = v;v. . Thus v.v; = v.v; n V2V. . Now the join of P1 and P2 is 

the given Voronoi Diagram. 

Now if 0 1 denotes a generator set of Pi and G2 is a generator set of Pi, then 

0 1 u 0 2 is not a generator set of P unless #( G
1 
n G) = 2 where #( G

1 
n G) 

denotes the cardinality of the set G
1 
n G

2
• Generally #(G

1 
n G) is not equal to 

two, hence we select g1 E G1 such that the interior of the region containing g1, say 

R01 , intersects the interior of a region of G2, say Ro2. Let L(V 1, g1) containing V 1 
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and g1• Now there exist a point g2 in the generator set G2 such that g
2 

e Ra
2

• Let 

L(V 2, g2) denote the line through V 2 and g2 _ The lines L(V 1, g1) and L(V 2, g2) are 

not parallel hence they intersect at a point g* in the region Ro1 n Ro2• Since g* is on 

the lines L(V 1, g 1) and L(V 2, g2) then g* is an element of a generator set for Pi and 

Pi. Using this point we reflect it through each ray in Pi and each ray in Pi 

generating the sets c; and c; such that each is a generator set of Pi and Pi 

respectively and #( c; u c;) = 4. Hence c; u c; is a generator set of the original 

Voronoi Diagram P. Since the intersection of the two lines is unique the set 

c; u c; is unique. □ 

The following figures are an illustration of the proof. 

Figure 3.5. The original Voronoi Diagram. 
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Figure 3.6. Using V1 we define the Voronoi 
Diagram •Pi. 

Figure 3. 7. Using V 2 we define the Voronoi 
Diagram Pi. 

-. \~ •✓/1 
~ •· I 

// \ "-,'\ 
/ \ 

Figure 3. 8. Aligning the two Voronoi Diagrams 
Pi and Pi we have the resulting diagram with 

the two intersecting lines. 
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The converse of Theorems 3.1 and 3.2 is given in the following conjectures. 

Conjecture 3.1. (Zimmermann) If a Voronoi diagram has an infinite number of 

generator sets then the Voronoi Diagram has at most one vertex. 

Conjecture 3.2. (Zimmermann) If a Voronoi diagram has a unique generator 

set then the Voronoi Diagram has at least two vertices. 

Inverse Voronoi Diagrams in R2
• 

We now consider the problem: Given the Voronoi Diagram but not given the 

generating points how can we find the generating points? 

In this section we will develop a numerical algorithm for determining the 

generating set( s) of a Voronoi Diagram. We will address this problem with regard 

to the number of vertices contained in the diagram. Hence we will begin with those 

diagrams having no vertices, followed by those having one vertex and finally those 

having two vertices. The situation in which the diagram has more than two vertices 

is beyond the scope of this thesis. 

Case 1. Zero Vertices. 

No vertices implies that the Voronoi Diagram consists of parallel lines and 

results from the co linearity of the generator points, q. Since the rotation and 

translation of such a Voronoi Diagram results in a isometric, topologically 

equivalent diagram we will assume that the generators lie on the x-axis. Hence we 

let 'Vo equal the class of Voronoi Diagrams having no vertices and perpendicular to 

the x-axis. 

55 



Next we note that there are infinitely many generator sets for any Voronoi 

Diagram in the class of Voronoi Diagrams having no vertices. This is seen in the 

following argument: If q = { (x;, 0): X; e R1
, i = 1, ... , n} is a generator set of a 

particular Voronoi Diagram in this class, then q 

= { ( X;, y) : X; E R 1 
, i = 1, ... , n, y e R 1 

} is also a generator set. 

We are now positioned to address the inverse problem as it relates to the class, 

%, ofVoronoi Diagrams. Suppose we are given a Voronoi Diagram in% but not 

its generator set, determine a generator set. 

Since the lines are pairwise parallel and all are perpendicular to the x-axis this 

problem can be stated as follows: Given a set of points on the x-axis, intersections 

of the Voronoi Diagram with the x-axis. Find a set of points 

such that . q = { ( x;, 0) : x; e R1
, i = 1, ... , n} is a generator set of the associated Voronoi 

Diagram. 

We first order the points in q. Nextwe let x[ denote the unknown point of q 

that lies between each adjacent point Xi and Xi+J• Further x: and x: represents the 

points in such that x: is less than all values in (} while x: is greater than all values in 

q. From this geometry we have 
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11 x: -x2 ll=II x: -x2 II 

II x: -x3 ll=II x: -x3 II 

II x: -x4 ll=II x! -x4 II 

This system can then be written as 

Simplification yields 

w~ich gives the system 

1 1 0 0 0 
xg 

0 
2x

1 

0 1 1 0 0 xg 2x
2 l = 

0 0 1 1 0 2x
3 

0 0 0 1 1 xg 2x
4 4 

Since the matrix has ra~ four with five unknowns we write 

1 1 0 0 
xg 

0 2x
1 

0 1 1 0 xg 
l 

2x
2 = 

0 0 1 1 xg 2x
3 2 

0 0 0 1 xg 2x4 -x! 
3 

The inverse of 
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lS 

Hence a solution is 

xg 
0 

xg 
1 

xg 
2 

xg 
3 

Hence 

Case 2. One Vertex. 

1 

0 

0 

0 

1 
0 

= 
0 

0 

1 1 0 0 

0 1 1 0 

0 0 1 1 

0 0 0 1 

-1 1 -1 

1 -1 1 
0 1 -1 
0 0 1 

-1 1 -1 
1 -1 1 
0 1 -1 
0 0 1 

2x
1 

2x
2 

2x
3 

2x4 -x: 

xi= 2(x1 -x2 +x3 -x4 )+x: 

x: = 2(x2 -x3 +x4 )-x: 
x: = 2(x3 -x4 )+x: 

xg = 2x -xg 
3 4 4 

In this situation we will begin by assuming that the vertex is of degree three. 

Next we translate the Voronoi Diagram so that the vertex lies on the origin. We 

then rotate the diagram so that one of the rays is concurrent with the positive x-axis. 
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We now construct a circle of arbitrary radius with the origin, the vertex, as its 

center. Let 81 denote the angle between the intersection of the circle with the x-axis 

and the intersecting point of the first ray encountered moving in the 

counterclockwise direction. Thus 01 = <x: f31 V ~2- Select the initial guess X1 ·at such 

that the angle is 01/2. Generate by reflection through each ray the points on the 

circle X2, X3, and X4. Next, let x; be the midpoint between X1 and X4. Reflect x; 

through the rays of the Voronoi Diagram generating X~ , X~ and x: . Initially it 

was thought that this method would yield better and better approximations. What 

has been found is that x: and • x; are the same. Hence, the set { x;, X~, X~} is a 

generator set for the Voronoi Diagram. 

~ 
/ "' I \ 

( 
\ 
\ I 
~ / __,,. 

Figure 3.9. The initial Voronoi Diagram with the 
~' s indicating the intersection of the rays with the 
overlaid circle. 
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Figure 3.10. The angle of each region is 
represented by 0k , k = 1, 2, 3; moving in a 
counterclockwise direction. 

Figure 3.11. An initial guess X1 is made then 
reflected through each ray, generating the set 
{ X, , X 

2
, X 

3
, X 

4
} • Next the midpoint between X1 

and X4 is used to the next generating point. 
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~ x1 Initial Guess 

"" X'1 

\ 

Figure 3.12. Usingx; reflection is applied to 

generate the set {x', x· , x· } which is a 
1 2 3 

generator set for the Voronoi Diagram. 

Note, the circle was arbitrary and hence we have that since any circle can be 

used to determine a generator set for the V oronoi Diagram there is an infinite 

number of solutions. We have not proved that the result midpoint is the generator 

of the generating set because it was found that a shorter method could be had. 

Initially, the angel 1J formed by the x-axis and the ray through the 'first' generating 

point could be found by noting that 

1] 

01-11 

02 - ( 01 - 17) 

03 -(02 -(01 -17)) = 17 

01 -02 +03 
⇒ 1]= 

2 
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which can be seen in the following figure and the fact that fourth equation in the 

above is required if the set is to be a generator set. 

Figure 3.13. The relationship between the 
angles as they are reflected through each ray. 

We have discussed the problem for a Voronoi Diagram having a single vertex of 

degree 3. But what if the vertex is of degree n, n greater than three? What has been 

found is given in the following conjectures. 

Conjecture 3.3. (Zimmermann) Given a Voronoi Diagram with one vertex of 

n 

degree n where n is even then L ( -1t+10k = 0 where each 0k is measured in a 
k=I 

counterclockwise direction and each region is indexed in an increasing sequence as 

we move counterclockwise. 

This conjecture implies that one can pick any point in the 'first' region. Draw a 

circle through that point having center V then reflect the point and its resulting 

points through each and every ray of the Voronoi Diagram giving a generating set. 
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Conjecture 3.4. (Zimmermann) Given a Voronoi Diagram with one vertex of 

degree n where n is odd then 77 = _!_ ! (-ll+' 0k where the thetas are measured in a 
2 k=I 

counterclockwise direction. Then any point on the ray making an angle 11 can be 

used as the initiator of the generator set of the given Voronoi Diagram. 

From these two conjectures we can conclude that depending on the structure of 

the Voronoi Diagram the regions defined by the generator sets is either a finite set, 

or and unbounded set of measure zero or an unbounded set ·ofmeasure infinity. The 

proof of the conjectures will not be given in this thesis. 

Case 3. Two Vertices. 

This case can be reduced to the previous case by use of the technique given in 

Theorem 3.2. 

Case 4. Three or more Vertices. 

This case can be reduced to Case 3 by selecting two adjacent vertices of degree · 

3 then surgically removing the embedded Voronoi Diagram defined by the selected 

vertices. Once a generator point is obtained for the selected Voronoi Diagram we 

can then determined the generating set, which will be unique. 
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CHAPTER IV 

CONCLUSION AND OPEN PROBLEMS 

Conclusions 

In closing it should be noted that ·our primary results are directed towards the 

development of a solution for the inverse problem. The ide·a being based on a number 

of applications which are generally posed as: given the several locations what .is the set 

of points having the given location as their nearpoint? Related problems include: Fire 

Observation Towers - Imagine a large forest containing.anumber.of ranger stations 

supplied with fire fighting equipment. Suppose a fire occurs atsome point. There is the 

problem of finding the nearest station. Further, one could ask a related question: what 

region of the forest has a particular station as its nearpoint. It is this question that 

defines the Voronoi Diagrams. 

Given this problem we wanted to solve the following problem: if a forest is 

partitioned into n regions, with the property that in each region a station will be built, 

where should it be located if the resulting locations of all stations are to yield a Voronoi 

Diagram equivalent to the given partitioning? And can any partition be made equivalent 

to some Voronoi Diagram? Our conclusion is: No. Tp.e proof of nonequivalence is 

immediate if the given partition includes a _region that is not convex. Hence, we decided 

to address a simpler problem: Given a Voronoi Diagram, but not the generating points, 

how can we determine the generating points? Coupled to this question is the question 
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of uniqueness. With regards to this property we found that non-uniqueness occurred if 

and only if the Voronoi Diagram has at mostone vertex, that is, the generating set is 

contained in a single circle. 

Other application ofVoronoi Diagrams include: the study of crystallography 

and biology. In the problem of crystallography assume a number of crystal seeds grow 

at a uniform rate. What will be the appearance of the crystal when growth is no longer 

possible? Similarly, this question can be asked with regards to biological growth. What 

if the rate is not uniform? 

Open Problems 

An immediate extension might be had by extending the concept of Voronoi 

Diagram to the surface of a sphere, S 2 or S n. In the case of S 2 for any two points in 

the boundary of the two regions defining the set of points having one of the given 

points as its nearpoint .is the great circle that is perpendicular to the short arc contained 

in the great circle containing the two given points. How would the surface be 

partitioned for three points? How would it be partitioned for n points? Is every region 

convex? 

In the crystallography problem one could address the following: what will the 

crystal look like if the rates vary among the crystal seeds? Actually, the answer to this 

question would assist in tllodeling a number of biological growth problems. Further, it 
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appears that the Voronoi Diagram can be obtained by means of a Diffusion Equation8 

with multiple sources and · isotropic diffusion. 

Lastly, we sho:uld note that Voronoi Diagrams have been studied at length with 

respect to finite set, but what properties would carry over if the generator set is infinite? 

8 Diffusion Equation is given by the partial differential equation: Ut = Cl'tlrr. 
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