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INTRODUCTION

The concept of a ring of quotients was apparently first introduced
in 1927 by a German mathematician Heinrich Grell in his paper
'""Bezeihungen zwischen Ideale verschievener Ringe'" [7 ]. In his work

Grell observed that it is possible to associate a ring of quotients with

the set S of non-zero divisors in a ring. The elements of this ring of

quotients are fractions whose denominators belong to S and whose
numerators belong to the commutative ring. Grell's ring of quotients

is now called the classical ring of quotients.l

Grell's concept of a ring of quotients remained virtually unchanged
until 1944 when the Frenchman Claude Chevalley presented his paper,
"On the notion of the Ring of Quotients of a Prime Ideal" [B].
Chevaliey extended Grell's notion to the case where S is the comple-

ment of a prime ideal. (Note that the set of all non-zero divisors and

the set-theoretic complement of a prime ideal are both instances of

multiplicative sets -- sets that are closed under multiplication. )

lAr:v.:orcling, to V. P. Elizarov, the Russian mathematician E.
Steinitz introduced the concept of quotient rings in 1909 in his paper

"The Algebraic Theory of Rings, ' but this paper is not available for
See V. P. Elizarov, "Rings of Quotients," Algebra and

ingpection.

Logic, 8(1969), 219.
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Chevalley confined his applications to Noetherian Rings. A ring of

quotients associated with the complement of a prime ideal P is some-

times called the localization of R at P.

Four years later, the Russian A, I. Uzkov generalized com-
pietely the concept of rings of quotients in his paper '"On Rings of
Quotients of Commutative Rings" [11]. Uzkov showed that it is possi-

ble to construct a ring of quotients from an arbitrary commutative ring

with an arbitrary multiplicative set. Uzkov's ring of quotients is now

referred to as the general ring of quotients.

Since 1927 when it was first introduced, the concept of rings of

gquotients has become a unifying idea in commutative ring theory and

thus in comrmutative algebra. Chevalley appears to have been led to

the idea of rings of quotients more because of its "usefulness in appli-

cations to algebraic geometry, than because of the important role it

can be made to play in the abstract theory" [10, p. 103]. The process

of localizing a ring at a prime ideal is the algebraic analogue of con-
centrating attention on neighborhoods of points in geometry. Thus the

nresults about localization can usefully be thought of in geometric terms"

[, p. vii]. As a result, '""commutative algebra is now one of the

foundation stones of algebraic geometry. It provides the complete local

tools for the subject. -~ TiFL B vii]. The modern trend in most all
areas of algebra puts more emphasis on modules and localization, so



that the rings of quotients have applications in many areas of algebra.
Probably the main reason for this trend is that the passage to the rings
of quotients makes many proofs shorter and considerably easier.
Many of the more important and interesting properties of rings
of quotients are now so well known to the experienced mathematician
that their proofs are often left to the reader. Indeed, in no single
source are all the proofs available together. Such scholars as
Kaplansky and Northcutt present some proofs, but in every case some
of the relevant properties are merely assumed and not fully developed.
The purposes of this paper, therefore, are to give a detailed construc-
tion of the ring of quotients deriving some of the well-known properties,

and to discover which properties of the ring R are preserved under

localization. Most of the theorems and problems in this paper are

taken from Kaplansky's Commutative Rings and Gilmer's Multiplicative

Ideal Theory.

The first chapter of this paper will include a detailed study of

multiplicative sets and prime ideals. The second chapter will include

the properties of the generalized ring of quotients, while the third

chapter will examine some of the properties of the classical ring of

quotients. The last chapter will be devoted to a consideration of pro-

perties of rings that are preserved under localization.



CHAPTER1
PRIME IDEALS AND MULTIPLICATIVE SETS

Prime ideals not only play a central role in the theory of commu-
tative rings, but they also play an important role in the process of local-

ization. Indeed Chevalley defined his multiplicative sets as the set-

theoretic complements of prime ideals. Hence it seems appropriate to

devote the first part of this paper to a few observations concerning prime

ideals and to some of the properties of multiplicative sets. Unless ex-

plicitly stated to the contrary, in all that follows R will denote a commu-

tative ring with an identity and S will be used for any multiplicative set.

An ideal P in a ring is prime if ab in P implies either a or b is in

P. A subset S of R is a multiplicative set if S contains the identity and

1) for a and b in S, the product ab is in S and 2) the zero element is not

in S. Examples of multiplicative sets include the following.

. The set consisting of just the unity element is trivially a multi-

plicative set.

2. The set S of all non-zero divisors is a multiplicative set. For

if aand b are in S then ab=# 0 since a=¥ 0 and b 74 0. If 0= (ab)c=a(bc)

then ¢ == ) since a and b are in S, and hence ab is in S.

3, The set S of invertible elements in R is a multiplicative set.

4
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For if we let a and b be elements of S, then a and b are invertible,

-1 =l -1
Thus 1= (ab)b'a: (ab){ab) . Therefore ab is invertible and so is an

element of S.

4. The set S of all powers of a non-nilpotent element is a multi-

plicative set. If {1,4,a%,...,a".. .} is the set of all powers of a,

kK L v e . % 3
then a* a% a**#is in S since a is non-nilpotent.

5. The set S of all integers not divisible by an arbitrary fixed

prime is a multiplicative set, For if m and n are elements of S, then

p does not divide m or n. Thus p does not divide mn. Therefore mn is

in S.

6. The set-theoretic complement of a prime ideal is a multipli-

cative set. The proof that this set is a multiplicative set is contained

in Theorem |, which also gives us another characterization of prime

ideals.

Theorem l. Let I be an ideal, and let S be the set-theoretic

comolement of I. Then I is prime if and only if S is a multiplicative set.

Proof: Suppose S is not a maltiplicative set. Then for some a

Thus ab is in I, and I is not prime. Now

and b in S, ab is not in S.

suppose 1 is not prime. Then for some ab in I, neither a nor b is in L.

Thus a and b are in S and S is not a multiplicative set.

The ideal I in Theorem | is obviously maximal with respect to the

exclusion of S. Actually the weaker condition that an ideal I need only
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be maximal with respect to the exclusion of S is a sufficient condition

for I to be prime.

Theorem 2. Let S be a multiplicative set in a ring R. An ideal

Iin R is prime if Iis maximal with respect to the exclusion of S.
Proof: Suppose ab is in I and neither a nor b is in I. Then the

ideal (I, a) is strictly larger than I. Therefore (I, a) intersects S.

Thus there exists an s' in S of the form s'= i'+ xa (i'in I, x in R).

Similarly we have s" in S and s8'"= i+ yb. But then
-s's'"'= (i'4+xa)(i""+ yb)=1i'i"+i'by+i''xa+ xyab.

Now i'i'" is in I obviously, i'yb is in I since i is in I and yb is in R.

Similarly i''xa is in I. Also xyab is in I since ab is inI. Therefore

s's" is in I. But this is a contradiction, since S/ I= Qf

This theorem suggests a method for constructing prime ideals

from ordinary ideals in the ring R.

Theorem 3. Let S be a multiplicative set. If an ideal J of R

does not meet S, then there is a maximal ideal I with respect to the

exclusion of S such that I contains J. Such an ideal I is prime.

Proof: Suppose J is not maximal, and let a be an element in

neither J nor S. Then (J,a), the ideal generated by J and a properly

contains J. If (J,a)is maximal, then (J,a) is the required ideal. If

(J,2) is not maximal, then there exists an element b in neither (J, a)

nor S such that (J, a,b) properly contains (J, a). Now (J,a,b) is either
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maximal or not maximal, and we repeat the argument above. We thus
obtain an inductive set. Hence, Zorn's lemma implies the existence of
I. By theorem 2, Iis prime.
Not only can we find maximal ideals with respect to the exclusion
of S, but we can also find maximal multiplicative sets with respect to
the exclusion of a given ideal I. This result is stated as Theorem 4.

A proof can be found in McCoy [9, p. 104].

Theorem 4, LetI be an ideal in a commutative ring R and S a

multiplicative set of R which does not meet I. Then S is contained in

a maximal multiplicative set T which does not meet I; that is, if M is

a multiplicative set such that T is a proper subset of M, then M con-

tains an element of L.
If a multiplicative set S is the complement of a prime ideal, then

it has the additional property of being saturated. Thatis, if an element

x is in S, then all divisors of x are also in S. All the examples on

pages 4 and 5 are saturated except for example 1. That the set of all

invertible elements is a saturated multiplicative set is immediate. For

if ab is in S, then (ab)_|= b’ a”' exists. Thus a and b are invertible and

in S. The proofs of the other examples are just as trivial and will be

omitted. Other examples of saturated multiplicative sets include the

following.

. If R is an integral domain and S is the set of all elements
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expressible as products of principal primes, then Sis a saturated
multiplicative set. An element pis a principal prime if the ideal (p) is
grime and non-zero. This set is obviously closed. The proof that S is
saturated can be found in Kaplansky [8, p. 4].

2. The set Sis a saturated multiplicative set if and only if the
complement of S is the set-theoretic union of prime ideals in R. Let S
e a saturated multiplicative set, and let T be the union of all prime
ideals that do not intersect S. If an element a is in the complement of
S, then the principal ideal (a) is disjoint from S since S is saturated.
if we expand (a) to an ideal I maximal with respect to the exclusion of §,
then I is prime. Thus every a not in S is in a prime ideal disjoint from
5, so the complement of S is a subset of the union of prime ideals in R.
The reverse inclusion follows from the definition of T, and so 8§ =T,
Now suppose the complement of S is the set-theoretic union of prime
The proof that S is multiplicative is similar to the proof of

ideals in R.

theorem !, so will be omitted. If abis in S, then ab is not an element

of any prime ideal P of R. Thus a is not in P and b is not in P. There-

fore both a and b are in S, so S is saturated.
It follows from example 2 that the set of zero divisors in Ris a
union of prime ideals. A saturated multiplicative set containing 0 is

the whole ring, for if 0 is in S, then 2:0=0 is in S for all a2 in R.

Therefore a is in S since S is saturated.



CHAPTER II
RINGS OF QUOTIENTS

In this chapter and the next we shall make a systematic investi-
gzation of the properties of rings of quotients. We will consider the
most general case in this chapter, where S is any multiplicative set,
then restrict S to the set of non-zero divisors in Chapter 3.

Let us now consider the set of all symbols of the form (r, s) with
rin R and s in S. We say (r, s) is equivalent to (r',s'), denoted by
(r,s)~ (r", s'") provided t(s'r —sr')= 0 for some tin S. We will show

that ~ is an equivalence relation. To prove that ~ is reflexive, let

t be an element of S. Then t(0)= tlas—sa)= 0, and so (a, s) ~ (a, s).

The relation is symmetric for if (a,s)~ (r,t) then
x(at —sr) = 0 = xat —xsr — xta—xsr = xsr — xta= x(rs—ta)

for some x in S. Thus (r,t) ~ (a,s). The relation is transitive since

if (a,b) ~ (c, d) and (c,d)~ (e, f) then r(da— bec) = rda —rbc= 0, and

t(fc—de) = tfc —tde =0, for some r and t in S. Thus rda= rbc and

tfc = tde. Multiplying the first equation by tf and the second by rb we

get trdaf = trbcf and rtfcb =trdeb. Thus trdaf = trdeb and

trdaf— trdeb = trd(af —eb)= 0.
Therefore (a,b)~ (e,f) since trd is in S. The notation for the equivalence

9
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class containing (r,s) will be r/s. The process of forming equivalence

classes is called a localization of R by S.

If multiplication and addition are defined by analogy with the oper-

ations for ordinary fractions, the collection of all equivalence classes
forms a ring, called the ring of quotients of R by S and denoted by S™R.

That is, s™'R ={r/sl r is in R, s in S} . Multiplication and addition are

defined as follows:

(a/s)(b/t)== (ab)/(st) and a/s+ b/t=(ta+ sb)/st.

These operations are well defined. Suppose a/s=a'/s' and b/t =>b'/t".

We need to show that (ab)/(st)= (a'b')/(s't'). Since a/s= a'/s' and

b/t=Db'/t' then x(s'a—a's) =0 and y(t'b—tb') = 0 for some x and y in

S. Hence xs'a— xa's and yt'b = ytb' and so xs'ayt'b=1xa'sytb'. Thus

xs‘yat'b—xa'sytb‘z xy(s'at'b_als tb')= 0.

Therefore (ab)/(st)= (a'b')/(s't'). To show that addition is well defined

we must show that (at+sb)/(st)= (a't'+s'b')/(s't'). Multiplying

x(s'a—a's) and y(t'b—tb') by yt't and xs's respectively, we have
xy(t'tsa—t'ta's)= 0 =xy(s'st'b—s'stb’).

Thus xy(t'ts'a— t'ta's+s'st'b—s'sth')= xy[t's'(ta+sb)— st(t'a'+ s'b')]=

0. Therefore since xy is in S, (ta+ sb)/(st)= (t'a'+ s'b')/(t's').

The ring S™R will consist of just one element if the 0 element is

in 8. For if r/s is in S™R, then r/s= 0, since O(sr—0)= 0. Itis for

this reason that 0 cannot be in S. When S is the complement of a prime
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ideal P, the ring of quctients will be denoted by R, instead of S”R. In
the case where S is the set of all non-zero divisors of R, then S™ R will
be called the classical ring of quotients of R and will be denoted by S.'R.
If R is an integral domain and S is the set of all non-zero elements of R,
then SR is a field, called the quotient field of R. For example if R is
the ring of integers, then its quotient field is the field of rationals.

Every element of S is invertible in S7'R, for if s is in S, then 1/s=g"

is in S”'R.

There is a natural ring homomorphism ¢ from R iato S™'R defined
by ag = a/l. This is a homomorphism since if a and b are in R, then
(a+b)g= (a+Db)/l= a/l+b/l= agd+bg, and (ab)gd= (ab)/1==(a/l)(b/l)=
(ad)(bg). The kernel of g is the set of elements annihilated by some

member of S. That is, if x is in the kernel of 4 then there exists an

s in S such that xs= 0. The natural homomorphism g is not, in

general, injective (one-to-one). For example, suppose R 1is the ring

5 7,§,ﬁ3 . Then 4 is in the

-

Z/(12), and S= R—(2). Thatis, S= i1, 3,

kernel of & since 3-Z= 0. If, however, R is an integral domain, then

g is injective. For if r is an element of the kernel of 4, then

rgd =r/l= 0/s. Thus there existsat in S such that tsr = 0. Since
ts is in S and R is an integral domain, then r= 0. Therefore 4 is one-
to-one.

. y . -
There is a correspondence between ideals in R and ideals in S™ R.
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Theorem l. If A is a subset of R and A a subset of SR and
Ad= A, then Aj'is an ideal if and only if A is an ideal. Further,
A={a/sl a in A, sin S}.

Proof: Let AJ be an ideal in R. Then ar and a—b are in Aq” for
any a and b in AJ " and r in R. Thus (a/l1)(r/1)= (ar)/l= (ar)d is in A,
and (a/l—b/1l)= (a—b)/l==(a—b)d is in A. Therefore (a/l)(r/1) and
a/l—b/l are in A& for a/l, b/l in A and r/l in S R, so A is an ideal.
Now suppose A is an ideal in S™' R, then (a/l)(r/l)and a/l— b/l are in A
for any a/l, b/l in A and r/1 in S"R. But (a/l)(r/l)= (ar)/1 in B, thus
ar is in A, Also a/l—b/1= (a—b)/l is in A, thus (a—b) is in Ad.
Therefore ar and a—b are in ch‘ for some a and b in Ad and r in R,

s6 Ad is an ideal. Now let M= {a/slain A, s in S}, and let a/l be

in A, Then a/l is obviously in M since 1 is in S. Thus AC M. Now

let a/s be in M, then a/s= (a/1)(l/s) is in A since A is an ideal and a/l
is in A and 1/s is in S'R. Thus M C A. Therefore
A=f{a/s!| a in A, s in S}.

The ideal A explodes to S™ R if and only if A contains an element
of S. For if A= S R, then l is in A. Soif s is in SCR, then s-l=3s

is in A since A is anideal. Thus AN S# . Now ifaisin AM S,

then a/a== l is in A, Therefore A= S§'R. The correspondence between

ordinary ideals in R and S™R is not necessarily order preserving.

That is, if A and B are ideals in R and A C B, then A might equal B in
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S"R. Also on returning to R, Ag” might possibly be the whole ring R.
The correspondence improves if only prime ideals are considered as

the following theorem shows,

Theorem 2. The natural homomorphism implements a one-to-

one order preserving correspondence between all prime ideals in S R

and those prime ideals in R disjoint from S.
Proof: Let P be a prime ideal in R such that PN § = J. By

theorem | of this chapter P is an ideal in S” R since P= Pd. The ideal

P is proper since PN S= ¢ The ideal P is prime since if (r/s)(a/b)=

(ra)/(sb) is in P, then (ra)/(sb)= p/s' for some pin P, s' in S. Thus

there exists an s' in S such that s''s'ra= s''sbp. Now s''sbp is in P,

so s'"s'rais in P. Thus r is in P or a is in P since P is prime, and

s's'' is not in P. Therefore r/s or a/b is in P, and so P is prime. To

show g is one-to-one, let P and Q be prime ideals in R, and assume

F=0. Suppose pisin P, and let s be in S. Then p/s is in P. Since

P= (0, then p/s= q/tin Q for some q in Q and t in S. Thus there

exists an s' in S such that s'tp= s'sq. Therefore p is in Q since Q is

a prime ideal and S/ Q= ¢ Now suppose ¢ is in Q and let s be in S.

Then q/s is in @. Thus q/s= p/t in P for some p in P, tin 5, and

there exists an s" in S such that s''tg= s''st. Therefore g is in P since

P is a prime ideal and SN P = ¢ Therefore P= Q. Since 4 is one-

to-one, then -ﬁd"=— P. That is, P returns to P. Thus if P& Q, then
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I:’Q't_;fio)“l and so PC Q. For if P gﬁQ, then there exists an element P
in P such that p is not in Q. Thus p/s is not in Q and so P gﬁﬁ. There -
fore order is preserved,
Thus the maximal ideals in S”R are simply the maximal prime
ideals disjoint from S, which were discussed in the previous chapter.
it we apply theorem 2 to the case where S is the complement of a prime

1deal P, then theorem 2 implies that Rp has exactly one maximal ideal;

thus Rp is a local ring. (A local ring is defined to be a commutative

ring with a unique maximal ideal.) To see that R; is a local ring, note

that if r/s is not in P, then r is notin P, Thus r is in S and so r/s is

a unit in Rp . It follows that if A is an ideal in R, and A D P, then A

contains a unit and A= Rp. Therefore P is the unique maximal in R.

The necessary condition that S™'R be a local ring is given in theorem 3

that follows.

Theorem 3. Let T be a localization of R and assume that T is

local. Then T has the form Rp with P a prime ideal in R.

Proof: Since T is a localization of R, then there is a multiplica-
> . t
tive set S in R such that T= fa/s|aisin R, s in S}. Define P= S

the complement of S. If a and b are in P, then a and b are not in S.

Thus a/l, b/l are not units in T. Since T is local a/l and b/l are in

M, the maximal ideal of T. Thus (a—b)/lis in M, so is not a unit in

T. Therefore a—b is in P. Now if a is in P, then a/lis in M in T,
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and (a/l)(r/s) is in M for all r in R, s in S. Thus (ra)/s is not a unit

in T, and ra is in P. Therefore P is an ideal. To show P is prime
assume ab is in P. Thus ab is not in S so (ab)/s is not a unit in T.
Thus (ab}/s is in M. We may consider (ab)/s as (ab)/1+1/s or a/s+b/l
or af/l*b/s. For example, (ab)/s=(ab)/l-1/s. Since M is prime in T,
either (ab)/l is in M or I/s is in M. Since s is a unitin T, 1/s is not
in M, thus (ab)/lis in M. But (ab)/l=(a/1)(b/1), so either a/l or b/l
is in M since M is prime. If a/l is in M, then a isnotin S. Thus a

is in P. Similarly for b/l. Therefore either a or bis in P, and P is
prime.

Not only is there a correspondence between ideals in R that are
disjoint from S and ideals in S™R, but also some of the properties that
the ideals may have in R are preserved in S™R. Examples include the
following. In each case A= Ad for some ideal A in R.

l. If A is a principal ideal in R, then A is a principal ideal in
S'R. Since A= (a), then Ag = (a)y= (a/l)= A. Therefore A is
principal.

2. If A has a primary decomposition in R, then A has a primary
decomposition in S™R. (An ideal A is said to have a primary decompo-
sition if A can be expressed in the form A= Q.M Q,N QN so s TV Qs

where each Q; is primary.) The proof that A has a primary decompo-

gition can be fouad in Northcutt [10, p. 18].
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3. If Qis a P-primary ideal in R, then Q is a P-primary ideal
in S'R. (An ideal Q is called a P-primary ideal if for ab in O, with
a not in P, then b isin Q.) For, letx= g/s, y=q'/s' where xand y
are elements of S™R with the properties that xy = (qq')/(ss') is in Q and
x=g/s is not in P. Then qq' is in Q, while q is not in P. Thus q' is
in Q. Thus y=gq'/s'is in Q, and so Q is a P-primary ideal.

4. If A is invertible in an integral domain R, then A is invertible
in S'R. (The inverse of A, denoted A", is defined to be the set of all
x in the quotient field of R with the property that xA C R. An ideal A
is invertible if AA™= R.) Suppose that AA'== S R. Then
(AA‘ﬁ:}A%(S_'R)cf' since R is an integral domain. Thus
(A9")(A'Y) # (S'R)Y. Therefore AA'7 R.

5. If A is a dense ideal in R, then A is a dense ideal in S™R

where S is a set of non-zero divisors in R. (An ideal A is dense if for

all r in R, A= 0 implies r = 0.) Suppose A is not dense in S™R

where A= A. Then there exists an r/s in S~ R such that (r/s)A= 0

and r/s % 0. That is, for every a/tin A, (r/s)(a/t)= (ra)/(at) =0.

Thus ra= 0 for every a in A, so rA= 0. But A is dense in R, sor=0,

b 7 - - -
and thus r/s = 0, a contradiction. Therefore A is a dense ideal in S R.
- . i
6. If A is the nilradical of R, then A is the nilradical of S R.
(The nilradical of R is the intersection of all prime ideals in R.)

Since A is the nilradical of R, then A= NP whereeach B is a prime
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ideal in R. Let r/s be an element in A with r in A. Then r is in B
for every B} in R. Thus rd = r/lisin F for every B in S™R.
Therefore (r/l)(l/s)= r/s is in B, for every B and so r/s is in NE.
Now let p/s be in (\F,. Then p/sisinP for every P, in S™'R.
Thus p is in Py for every P; in R and so p is in A. Therefore p/s is
in A,

7. I P is a prime ideal in R that is disjoint from S, then the
rank of P= the rank of P in ST R. (We say that P has rank n if there
exists a chain of distinct prime ideals of length n descending from P,
but no longer chain exists.) If we let P be of rank n, then
P=EBDED ... DE,; where each B is prime. Since there is a one-
to-one, order preserving correspondence between prime ideals in R
ihat are disjoint from S and prime ideals in S™ R, then

D

ED-P:D e :Dl_:’,l Thus P is of rank n also.

The following theorem shows that finite sums, products, and
intersections of ideals in R are preserved in S™'R.

Theorem 4. Let S be a multiplicative set in R. Then for ideals

I and J in R:
s I+ J)=5"1+5"J

s~ (1T)= (5" I)(S”' J)
g ann = st 80,

Proof: Firstwe will show that §(I+J)= ST'I+S87I. If we let
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x/s be an element of S"'(I‘f‘J), then x is in (I+J), so x= i+j for some
iinl, and j in J. Thus x/s= (i+j)/s= i/s & j/s. Therefore x/s is
in S'I+S™J. Now let y be an element of S"I+S"J. Then y=
i/s-+j/s'== (s'i4sj)/ss' where s'i is in I, sj is in J. Thus s'i+ sj is
inI+J. Therefore y is in S™(I+J). To show that 8L = {8~ s ),
we let x/s be an element in S (IJ). Then x is in IJ and x=——% a; b; for
scme a; in I, by in J. Thus x/s ———g(a,- b;)/s ——_i_i(ai /s)b /1) in
(S'lI)(S"'J). Now let z be an element in (STI)(S™'J). Then z=
?Z(x/s)] (y/s*)= .?:(xiy-, )/(s;s!) for some x;/s;, in §7'I, y,/s' in S™'J.

Thus z= (x,y))/(s,8]/)+ (x,y,)/s,8})+ ... oy, ) 8,8 )=

) =

s

Jﬂ

(8,8 - .88 R, Y, + ...+ 88 ...o8.8. %) (s8]} 59 ... a
n
(2fy+ Xp Y+ ..o +%x) o )M/ 8= ?:‘ (x! y;)/s in S7'(1J) where xi'——-g S; S}' X;.
o
Therefore z is in S7'(IJ). Now let x/s be an element in S™ (I .J).

Then x is in (I J) so x is in both I and J. Thus x/s is in S I and S™ J.

Therefore x/s is in STIMN S™'J. Now if y/s is in STIM S J, then y/s

is in both S™I and S'J. Thus y isinIand J. Therefore y is in INJ

and so y/s is in A
It might be noted here that the passage from R to S” R cuts out
all prime ideals except those contained in P, where P is maximal with

respect to the exclusion of S. That is, there are no proper prime

ideals in S™ R that contains P. For if a prime ideal I contains P and

P is maximal with respect to the exclusion of S, then I contains an



19
element of S and soI= S R. The passage from R to R/P, the residue
ring modulo P, cuts out all prime ideals except those containing P.
Thus if we localize the ring R with respect to P and then obtain the
residue ring modulo P the result is a field.

Theorem 5. Let P be a prime ideal. The quotient field of R/P

is isomorphic to Ry/P where P is prime in R..
The proof of theorem 5 is not difficult, but it is long and tedious
so it will be omitted. The proof can be found in Barshay [2, p. 35].
The number of prime ideals in a ring indicates to some degree

the number of localizations a ring might have.

Theorem.6. A ring R has an infinite number of localizations if

and only if it has an infinite number of prime ideals.

Proof: Suppose R has an infinite number of localizations. Thus

there exist multiplicative sets S,, S,, ... such that S R# S; R# ....

Let P, be an ideal in R maximal with respect to the exclusion of §;.

Since B C S!, B C S}, where S/ is the comple-

Thus E is prime.

ment of S,, then P,# F,. For if F= F, then , = E where P,= Fd.

Thus B'= B'. ButP'= S/ R—F and B'= S;'R— P . Thus

S'R—PBP= S R—

; ) ; E=S8'R—F,, and so 5 R= S;'R. A contradiction,

B

thus B ?} , and R has an infinite number of prime ideals. Now
suppose R has an infinite number of prime ideals. Then define S=FR'

and thus S, S .... Therefore SR+ S;'R¥ ..., and R has an
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infinite number of localizations.

An example of a ring with an infinite number of localizations is
the ring of integers J, for Jp JF. . . . Notice that in this case we
have J C J,(CQ, where Q is the field of rationals. For J C J,since if
x is in J, then x=— x:I'=x/1 in Jog Also JCJ,,CQ. Infact every ring
between the ring of integers J and the field of rationals Q is a ring of
quotients of J as shown in the next theorem.

Theorem 7. Every ring between the ring of integers and the

tield of rationals is a ring of quotients of J where J is the ring of inte-
gers and Q is the ring of rationals.

Proof: Let Rbe a ring such that J R CQ and let
S—=1fm in J| n/m is in R for some n, (n,m)=l}. The set S is a multi-
plicative set, since if a and b are in S then (n,,a)=1and (n,, b) =1
for some n,, n, in J. Thus there exist integers x, y, 8, and t in J
such that xa+ yn,—! and sb+tn,= |l. Hence l/a=y(n;/a)+x is in R
since y{n,/a) is in R and x is in JC R. Similarly I/bis in R, and so
{l/a)(l/b) is in R. Therefore ab is in S, and so R=2©5"J is a ring of

guotients of J.

The field of quotients of J is also the field of quotients of Ju, Jusy

. by the following theorem.

Theorem 8. Let R be a ring and let Sbe a multiplicative set of

1 i ivi i i ined in
R which contains no zero divisors. If R, contains R and is contal
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pu} - | b
S R, then S R=S R.
Proof: Since R CR,, then STRCS™ R, obviously. Now let r'/s
be in S~ R,, where r'is in R, and s is in SC R. Then r'= r/s,, with
rin R, s in S, since R,C ST"R. Thusr'/s=— r/ss,, sor'/s is in S™R.

Therefore S R= S™R,.
Corollary. Let R be an integral domain and let F be the quotient

field of R. If R, is an integral domain and R CC R,CF, then F is the

quotient field of R .

Proof: Let S and S, be the set of non-zero elements of R and R,

respectively., Obviously SCCS,, solet s be in S,. Then l/s is in S™R,

since S;CR,CS™'R. Therefore S=S,. Thus S'R=S['R,. Now S"R=S'R,

by theorem 8, and F=5"R, so F=S] R,, the quotient field of R,.

Since in the example J C J,, J CJy), . . , then we have JCﬂJﬁ.

Actually the stronger result that J=(1J; holds.

Theorem 9. Let R be any integral domain. Then R= (| Ry, the

intersection ranging over the maximal prime ideals in R.

Proof: Obviously RC R, for each R, and therefore RCIMR,. Let

x be in (] R,. Thus x=r/s where r and s are in R, and s is not in any
maximal ideal M of R. Consider the ideal D of R consisting of all ele-
ments y in R such that xy is in R. Since x—=r/s, then sx=r is in R.

Hence s is in D, and so D is not a subset of any maximal ideal in R.

Hence D= R. Therefore |l is in D and so I'x=x is in R.
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Therefore if an integral domain R has only one non-zero prime
ideal, then from theorem 9 R= R;, and this is the case when P #= R,

Theorem 10. If R is an integral domain with quotient field K,

and R7* K, then R has exactly one non-zero prime ideal if and only if
the only localizations of R are R and K.
Proof: Suppose R has exactly one non-zero prime ideal, say P.

Since P# R, then R is local and S"R={r/s| r is in R, s in S}, where

S is such that P is maximal with respect to the exclusion of S. Obvious-

ly RCS"R. Soletr/sbe in STR. Then s is not in P. Thus s is a

unit in R since R is local, and so r/s is in R. Therefore R=— S™'R.

Now suppose R has two distinct non-zero prime ideals F, and F,. Then

RQ#R& and both are different from K since K is a localization of R with

respect to the prime ideal (0), a contradiction.
We observe that we have established in the proof above that R is

its own ring of quotients; that is, R= S™R, when Pz R in an integral

domain R if P is the only non-zero prime ideal. The next theorem

shows that there are other times when the ring of quotients S™ R equals

R. We recall first that an element u in T is said to be integral over

R if it satisfies an equation of the form u™a, u"™. . .+a=0, with all

a, in R, where T is a ring containing R. We say that T is integral if

all its elements are integral. The elements of T that are integral over

R form a subring of T [8, p. 10], called the integral closure of Rin T.
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Theorem ll. Let R be an integral domain. If a localization S™R

is integral over R, then R=S™'R.

Proof: Obviously R S™'R. Now if S™'R is integral over R then
for every s'in S™R, s”is integral over R. Also since every s in S is
invertible in S™'R and s”'is inte gral over R, then s'is in R[s] by a
result of Kaplansky [8, p. 10]. Since s is in R, then R[s]= R, and so

s'is in R. Therefore R=S™'R.
There are other examples when R= S™'R in the next chapter where

the classical rings of quotients are considered. Before proceeding to

the special case we should consider, at this point, how integral closure

behaves relative to localization. An integral domain is said to be

integrally closed if every x in K, the quotient field of R, which is

integral over R is in R.

Theorem 12. If R is an integrally closed integral domain and if

S is a multiplicative set in R, then STR is integrally closed.

Proof: Suppose that the element u is in the guotient field and is

integral over S'R. We are given say, u'+ (alls,_)u"'I-I-. . Hagley)=0

s, and t;=-=s/s;. Then

with a; in R, s; in S. Put s= s§,8, . . . 8§,

sut t,a,u F . . . +ta,=0. If we multiply by " we get an equation

asserting that su is integral over R. Hence su is in R, so u=—(su)/s

is in ST'R.

Theorem 13, If Ris an integral domain with integral closure T,
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then the integral closure of S™'R is S'T.

Proof: If uis in K, the quotient field of R, and u is integral

over SR, then uq‘*'agfsiun"i-. . . taq/sx= 0 with a; in R, s;in S. Let

n -1
$=8,8,. . .8, ansl t,.=s/s;,. Then su+ tiaiu“ +. . .+ta,=— 0 and
2 - -4 n n-1 -1 e
s ut+ aii:,.hs’t'it.l"t T antqs" = 0= (su)+a,ty(su)+ . . .+ ::1.,.Lt,.(9:'T 's"

Hence su is integral over R. So u= (su)/s is in S™'T. Now let u be in

S*T. Then u= t/s for some t in T, s in S. Since T is integral over R,

then t%a,t"+. . . +a,=0. Thus ({4 at +. . . +a,)/s'=10/s" in §7'T.

Hence (t/s)n!f—,(ails)(t/s)“-l-i-. 5 -;-an/s"‘ = 0. Therefore u is integral

over S"R, and so is in the integral closure of S‘lR.



CHAPTER I1I
CLASSICAL RINGS OF QUOTIENTS

In this chapter we will examine some of the properties of the
classical ring of quotients, denoted S;'R, where R is any commutative
ring with an identity element and at least one non-zero divisor and S, is
the set of non-zero divisors in R. This ring is called the classical ring
of quotients since it was the first such quotient ring studied (by Grell).
As we shall see, the classical ring of quotients possesses many nice
properties that an ordinary ring of quotients may not necessarily pos-

sess. Since the classical ring of quotients is just a special case of the
rings of quotients, all the results shown in the last chapter hold. One

nice property the set S, has is stated in the following theorem.

Theorem 1. The set S, is the largest multiplicative set S for

which the natural homomorphism ¢: R—> S™'R is injective.

Proof: This theorem will be proved by showing that Q is
injective if and only if S contains no zero divisors. So suppose Q is
injective and there exists an s in S such that s = 0 and s is a zero
divisor. The sr = 0 for some r == 0 in R. Thus (sr)/s= 0/s and

r/s=0/s in ST R. Hence O is not one-to-one. Now suppose S contains

no zero divisors, and let r be in the kernel of 9. Then rg=r/s= 0/s.

25
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Thus there exists an s' in S such that s'sr — 0, and r = 0 since S con-
tains no zero divisors. Thus J is injective. Now since S, contains
all the non-zero divisors in R, then any set S, containing S, would
necessarily contain a zero divisor. Therefore d would not be injec-
tive for S,.
Any commutative ring R with at least one non-zero divisor

possesses a classical ring of quotients. Since the proof that R pos-

sesses a classical ring of quotients is long, it will be omitted. The
proof can, however, be found in Samuel [13, p. 44].
When the ring R is an integral domain, then S,= R— {0}. Thus

S'R forms a field, called the field of quotients. The field of quotients

constructed from the ring of integers is, of course, the field of ration-
als, and this field is the smallest field which contains the integers.

This is a special case of the more general result:

Theorem 2. Any field F containing an integral domain R as a

subring contains the field of quotients g - W

Proof: Let x/s be in S;'R for some x in R, s in S,= R— {0}.

Since s is in R and RC F then s is in F. Thus s'=1/s is in F. There-

fore x/s is in F and so S; RC F.

That any two quotient fields of an integral domain R are isomor-
phic is a consequence of the next theorem, whose proof is straightfor-

ward but tedious and can be found in Samuel [13, p. 43].
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Theorem 3. Let R and R, be two commutative rings each con-

taining at least one non-zero divisor. Then, any isomorphism of R

onto R; has a unique extension to an isomorphism of S]'R onto S;' R,.
If the set S contains oniy non-zero divisors in a ring R, but not

necessarily all the non-zero divisors of R, then STR is a subring of

S.'R.

Theorem 4. Let S be any multiplicative set of the ring R which

contains no zero divisors of R. If the set T is defined by
T= fa/s in S;'Rlaisin R, s in S} then T is a subring of S]'R.
Proof: Obviously T C S.'R, so we need only prove that T is a
ring. Let a/s and b/tbe in T. Thena/s— b/t= (ta—sb)/st where
st is in S since S is a multiplicative set. Also st is in §, since st is
not a zero divisor, and ta— sb is in R since R is a ring and ta and sb
are in R. Thus a/s—b/tis in T. Now (a/s)(b/t)= (ab)/(st) is in T
since st is a non-zero divisor and ab is in R. Therefore T is a sub-
ring of S;'R.

That it is possible to extend the previous theorem to a chain of

o

subrings of S;'R has been shown in Gilmer [6, p. 15] in his theorem L.

Theorem 5. Let T be the classical ring of quotients of the ring

R and let RC M CMCT where M and M, are rings.

a) If M, is a ring of quotients of R, then M, is a ring of quotients

of M.
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b) If M is a ring of quotients of R and M, is a ring of quotients of
M, then M, is a ring of quotients of R.

As in the general case, if S;'R is the classical ring of quotients
of R and if R, is an intermediate ring, then theorem 5 shows that 8, R
is a ring of quotients of R,. It turns out that S;'R is also the classical
ring of quotients of R,. For if x is in R, then x is of the form r/s for
some r and s in R with s a non-zero divisor. Further it can easily be
seen that if x is a non-zero divisor in R,, then r must be a non-zero
divisor in R, since an element r/s is a non-zero divisor of S:'R if and
only if r is a non-zero divisor of R. Consequently, x is a unit of S.'R.

Thus if S;'R is the classical ring of quotients of R and if R, is an inter-

mediate ring, then S R= S;"Ri. In particular, S:lR is a classical ring

of quotients of S;'R and therefore each non-zero divisor of S.,'Ris a

unit in S;' R.

Theorem 6. Every element of S;'R is either a zero divisor or a

unit.

Proof: Letr/s be an element of S;'R and suppose r/s is a non-

zero divisor in S;'R. Hence r is a non-zero divisor in R, and sor is

in S, Thus r/s is a unit in S;'R.

We shall now look at some more examples of rings that are

identical with their classical ring of quotients.

. If R has an identity and every non-zero divisor of R is
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invertible, then R= S, R. Obviously R C S' R, so let r/s be in SR,
for rin R and s in S. Then s is invertible in R, thus r/ls——~_ rs™ is in R.
Therefore S, R CR, and so R="5['R.

2. For a commutative ring R with identity, R= S._'R if and only
if every non-unit is a zero divisor. For suppose R= SR and s is a
non-zero divisor in R. Then s is in S,, so /s is in S,'R. But
R=GS,'R, so l/s is in R. Thus s is a unit in R, proving that any non-
unit in R is a zero-divisor. The proof of the converse was given in
example L.

3. If R contains no non-zero divisors except the identity, then
R=S.'R. For if r/sisin S, R, thenr/s=r/l —r-[=r in R. Thus

SCRCR. ThatR C S.'R is obvious. Therefore R= SI'R.



CHAPTER IV

PROPERTIES PRESERVED UNDER

LOCALIZATION

In chapter 3 it was shown that many of the properties concerning

ideals are preserved under localization. Now we will look at some of the

properties of the ring which are preserved under localization. In all

that follows, S is an arbitrary multiplicative set of the ring considered.

Theorem l. If R is an integral domain, then S™ R is an integral

domain.

Proof: Suppose a/s*'b/t=0/s' with a/s, b/tin ST'R. Then

s'ab—st*0—=0, so ab=0 since s' is in S and s'5= 0. Then a=0 or b=0,

so that a/s=0 or b/t=0. Therefore S™R is an integral domain.

Theorem 2. If R is a principal ideal domain, then SR is a

principal ideal domain.

Proof: Let B be an ideal in ST'R. Then A= A9 for some ideal

A in R.. Since A= (a), then A§d=(a)d=(a/1)=A. Therefore A is

principal, and so S™'R is a principal ideal domain.

Theorem 3. If R is a unique factorization domain, then S™'R is

a unique factorization domain,

Proof: An integral domain R is a unique factorization domain

30
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if every ﬁon—zero element is expressible uniquely as a product of prime
elements. That this is equivalent to the definition that a ring is a
unique factorization domain if and only if every non-zero prime ideal
in R contains a non-zero prime ideal which is principal can be found
in Kaplansky [8, th. 5, p. 4].' Suppose P is a prime ideal in S™' R,
where P= P g, for some prime ideal P in R. Since R is a unique fac-

torization domain, P contains an ideal (p), where (p) is prime and

principal in R. Then (p)d is prime and principal in SR, and obviously

(p)Jd C P. Therefore S" R is a unique factorization domain.

Theorem 4. If R is a Noetherian ring, then SR is a Noetherian

ring.

Proof: A ring R is called a Noetherian ring if every prime ideal

in R is finitely generated. Suppose P is a prime ideal in ST R. Then

P— P4 for some prime ideal P in R, by theorem 1 of chapter 2. But

P is finitely generated in R, so P is finitely generated in ST R. There-

fore ST R is Noetherian.

Theorem 5. If Ris a valuation ring, then SR is a valuation ring.

Proof: A commutative ring R is said to be a valuation ring if for

any a and b in R either a divides b or b divides a. Suppose r/s and t/s'

are in ST R and r/s does not divide t/s'. Thus (rs')/(ss') does not

divide (ts)/(ss'), and so rs' does not divide ts. Since R is a valuation

ring, then ts divides rs'. Hence (ts)/(ss') divides (rs')/(ss'), and so
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t/s' divides r/s. Therefore S™ R is a valuation ring.

Theorem 6. If R is a Dedekind ring, then SR is a Dedekind

ring.

Proof: If R is an integral domain and every non-zero divisor of
R is invertible then R is said to be a Dedekind ring. Since R is an
integral domain, then SR is an integral domain and by example 4 of
chapter | every non-zero ideal A in S™'R is invertible if A is invertible
in R where A = Ag. Therefore S"Ris a Dedekind ring.

Theorem 7. If R is a Priifer ring, then ST R is a Prifer ring.

Proof: A Priifer ring is an integral domain in which every non-

zero finitely generated ideal is invertible. The ring S™R is an integral

domain, by theorem l. Also every non-zero finitely generated ideal is

invertible in R, since R is Priifer. Since A= Ag for some ideal A in

R, then A is finitely generated in S™R. Also by example 4 of chapter |

A is invertible in SR since A is invertible in R. Therefore S'Risa

Prifer ring.

Gilmer [6, p. 556] shows that Z[5] is a Prufer ring. Since

every Dedekind ring is a Priifer ring, this is also an example of a

Dedekind ring.

Theorem 8. If R is a Bezout ring, then S™'R is a Bezout ring.

Proof: A Bezout ring is an integral domain in which every

finitely generated ideal is principal. Let A be a finitely generated ideal
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in SR, where A= Ad for some finitely generated ideal A in R. Since
R is a Bezout ring, then A is also principal. Thus A is principal in
5" R by theorem 2 of chapter 4. Therefore S™ R is a Bezout ring.
Obviously every principal ideal ring is a Bezout ring. The ring

of entire functions, that is, functions of a complex variable that are
differentiable is another example of a Bezout ring. It can easily be
shown that Z[J-5] is not a unique factorization domain and so not a
principal ideal domain. Hence Z[/5] is an example of a Priifer ring

that is not a Bezout ring.

Theorem 9. If R is integrally closed, then S™'R is integrally

closed.

Proof: The proof of this was given in chapter 2, page 23.

Theorem 10. If R is absolutely flat, then S™ R is absolutely flat.

Proof: A ring R is called absolutely flat if every principal ideal

A is idempotent, that is, A= A. LetA be an ideal in S" R. Then
A= Ag for some ideal A in R. Leta/s be an element in A. Then
2 is in A= A. Thus a/s is in A2 so ACA. The reverse inclusion is
obvious. Therefor‘e S™'R is absolutely flat.

Theorem l1. If R is normal, then SR is normal.

Proof: An integrally closed domain is called a normal ring.

Thus by theorem 9, SR is normal.

There are many more properties that are preserved under
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localization, but to show them all would go beyond the scope of this
paper.
Although the converse of many of the theorems in this chapter is
not valid, there are times when we can look at S” R and determine the

properties of R. Justtwo of the many examples of going from S™ R to

R follows,
l. If the local ring Rp has no non-zero nilpotent elements, then

R has no non-zero nilpotent elements. For suppose x is an element in

R where xs= 0 and x'=0. Then x is in N F where B ranges over all

prime ideals in R. Thus x/s is in (P where F, ranges over all prime

ideals in Rp. Thus (x/s)'= x"/s"= 0/s® is in MP,. Therefore R, has

nilpotent elements not equal to zero.

2. Let R be a commutative ring such that R; is a principal ideal

domain for every prime ideal P of R. Then every non-zero prime ideal

in R is maximal. The proof of this example can be found in Barshay

[2, p. 98].

As we have just seen, many of the important properties of rings
are preserved under localization; therefore we can often pass from
the ring R to the ring SR without losing the properties of the original
ring in the process. In proving many theorems, the modern trend in
several areas of algebra is to pass to the ring of quotients to obtain

casier and simpler proofs of theorems that would otherwise be
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difficult and tedious to prove. Northcutt [LO], Samuel [13], and
Kaplansky [8], use the technique of passing to the ring of quotients to
obtain simpler proofs throughout their books. An example of how this
technique shortens proofs is seen in the theorem that if R is a unique
factorization domain, then R[x] is a unique factorization domain. This
theorem can be proven in just a few sentences by passing to the
quotient field of R. This is done in Barshay [2, th. 4-6, p. 46]. Other-
wise, this theorem would be long -- about one and one half pages in
Burton [3, th. 7-11, p. 124], and by no means easy to follow.

Since obtaining a short, simple proof of a theorem is desirable in

most branches of mathematics, the rings of quotients deserve to be
studied and carefully analyzed. However, obtaining simple proofs is

not the only application of rings of quotients. KExamples of recent

applications to algebraic geometry can be found in the papers of

Chevalley [4] and Zariski [12]. Applications can also be found in

Gilmer's Multiplicative Ideal Theory and in Nagata's Local Rings.

To try to show all the applications of the rings of quotients would go
beyond the scope of this paper, since it would require an extended

analysis of such areas as algebraic geometry and local rings.
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