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ABSTRACT 

SANJANA SUDARSHAN 

USING ENERGY CENTRALITY RELATIONSHIP (ECR)  
TO IDENTIFY AND PREDICT FUNCTIONALLY-LINKED   

INTERACTING PROTEINS (FLIPS) 
 

MAY 2015 

 

Interacting networks of proteins are responsible for a multitude of biological 

functions. These Functionally-Linked Interacting Proteins (FLIPs) occur at specific 

interfaces. It is therefore important to distinguish them from Functionally uncorrelated 

Contacts (FunCs). Here we utilize geometric, energetic, and sequence conservation 

characteristics at the interface to identify factors that may contribute towards an interface 

being FLIP or FunC. We studied these interface properties by analyzing a protein 

database we created called FLIPdb, which contains proteins belonging to various 

functional sub-categories. In our approach, which we term the Energy Centrality 

Relationship (ECR), we coupled Kortemme and Baker’s computational alanine scanning 

analysis to estimate the energetic sensitivity of each amino acid at the center of the 

interface with geometric features. Principal Component Analysis and K-means Clustering 

analysis on FLIPdb could distinguish FLIPs from FunCs with an accuracy of 76%. To 
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investigate if evolutionary pressure plays a role in maintaining FLIPs, similar analyses 

were carried out on a set of 154 interfaces.  Here we use Lichtarge’s Evolutionary Trace 

(ET) method to calculate the ET score (ρ) and alignment variability (# of states) of 

residues within various types of interfaces. Using PCA and K-means clustering analysis, 

we were able to distinguish FLIPs from FunCs with an accuracy of 69%. We also tested 

ECR’s ability to identify near-native (≤ 5 Å RMSD) poses in a docking run. A common 

problem in molecular docking is the generation of a large number of false positives. The 

ECR methodology was able to predict near-native poses in 50% of the cases, representing 

an increase of 9% relative to HEX (a well known docking software package) alone. 

Overall, we identified that FLIPs have a stronger central organizing tendency than FunCs. 

Although FLIPs also show more conservation at the core than at the edges, they exhibit 

more overall variability than FunCs, suggesting energy is conserved at the expense of 

sequence stability. Finally, we indicate how our ECR method may be used to reduce false 

positive predictions in docking calculations. 
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CHAPTER I 

INTRODUCTION 

Protein interactions  

Networks of interacting proteins carry out various biological functions. These 

interactions can be permanent, such as the proteins involved in the formation of 

molecular machinery, or transient, like many of the proteins involved in cell growth, 

signal transduction, enzyme and immune regulation, and cell adhesion1, 2. To understand 

how these molecular systems function, it is important to develop methods that identify 

and characterize protein interactions. The formation of protein interfaces is generally 

governed by electrostatics, hydrophobic interactions, shape complementarity (particularly 

Van der Waals [VdW] interactions), and the flexibility of the molecules involved3, 4. The 

chemical properties of the amino acid residues that comprise these interfaces and their 

interactions are therefore complex. Our understanding of these properties and their 

interplay is currently inadequate to use them as the basis for the prediction of which 

amino acid residues are important for the maintenance of protein structure as well as 

those that contribute to function5, 6. The research described here addresses this deficiency 

and proposes two related methods, our own Energy Centrality Relationship (ECR, 

described in Chapter 2) and the use of the Evolutionary Trace method (described in 

Chapter 3), to identify and classify such contacts. The efficacy of using these methods to 

augment other protein:protein interaction (PPI) prediction methods, particularly protein 
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docking, are explored in Chapter 4 and also serve to further support our concepts and 

methodology. The studies described here characterize the properties of interfaces 

(particularly at the amino acid level) and identify underlying geometric and energetic 

principles of amino acid residues across protein interfaces. It is our working hypothesis 

that identification of such features can improve the differentiation between functionally 

relevant and non-functional protein associations. In this work, we describe research that 

examines this general hypothesis.  

Significance of protein interactions 

Through various biological and biochemical studies, it is evident that protein 

function is directly correlated to its quaternary structure. Understanding this structure-

function relationship requires an in-depth structural characterization of protein interfaces. 

This would promote functional annotation of proteins of unknown function and help 

understand protein interactions at the system level. Overall, identifying interfacial 

features important to structure and function could lead to improved ways of manipulating 

signaling pathways by targeting interfaces with drugs designed for that purpose.  

Types of protein interactions  

PPIs are very diverse, both structurally and functionally, and can be broadly classified 

into the following categories: 

i. Homo- and hetero-oligomeric complexes 

PPIs that occur between identical chains are called homo-oligomers, while 

those occurring between non-identical chains are called hetero-oligomers7. Homo- 
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oligomers are generally easier to ascertain as they are permanent complexes that, in 

general, have large, hydrophobic surfaces and tend to bury a large portion of their 

hydrophobic residues5. Homo-oligomers are generally symmetrical, making them, in 

general, more stable complexes8. Many soluble and membrane proteins are seen to 

form homo-oligomers and are found in abundance in the Protein Data Bank9, 10. The 

structures of hetero-oligomers, on the other hand, are more difficult to determine as 

they can exist independently in solution and often form complexes according to the 

conditions of the solution7, 11. 

ii. Obligate and non-obligate complexes 

When protomers (structural subunits) of a complex can exist independently in 

vivo, the complex is referred to as non-obligate. If the protomers are unstable on their 

own and not generally found in the cellular milieu, the complex is referred to as 

obligate. While functionally and structurally obligate interfaces generally form stable 

and permanent complexes, non-obligate interfaces can be transient or permanent12. 

iii. Transient and permanent complexes 

Transient and permanent interactions are classified based on their stability and 

the lifetime of the complex. Obligate complexes usually form permanent interactions 

that are very stable and generally irreversible. In contrast, transient interactions can 

associate and dissociate in vivo. Transient interactions can further be classified into 

weak and strong interactions based on the affinity and stability of the interaction7, 13. 

A number of such interactions take place within the cell but not all lead to assemblies  
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that contribute to protein function.  Functional protein assemblies require specific binding 

which is likely to be a result of selection pressures to maintain a functionally or 

structurally relevant interaction. Similarly, to avoid harmful aggregate formation, non-

specific interfaces likely undergo negative selection14, 15. Better understanding of how 

selection pressures act on interfaces to maintain function may help us differentiate 

between functional and non-functional interfaces. Over evolutionary time, selective 

pressures could result in larger sequence conservation of residues in functional 

interfaces16. 

The broad classification of protein interfaces discussed above often mixes 

structural and functional properties in their operational definitions. In an effort to separate 

these concepts, we have chosen to operationally define Functionally-Linked Interfaces of 

Proteins (FLIPs) (and the residues forming them) to be PPIs for which mutation or other 

chemical modification has been found to alter the native biological function. Similarly, 

we define PPIs that do not have such a known alteration in function as Functionally 

uncorrelated Contacts (FunC). There is a body of research, including our own work, that 

suggests no one particular physico-chemical characteristic occurring across the various 

different types of interfaces is sufficient to distinguish FLIPs from FunCs17-19. Such a 

lack of a defining characteristic likely arises because the combination of several traits 

tends to obscure the trends of any one individual feature that may be important17-19.  In 

this work, we analyze a number these interface properties and correlate them to the 

propensity to differentially form FLIP and FunC interfaces. The physical and chemical 
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characteristics that are important in formation and maintenance of PPIs are discussed 

below.  

Characterization of protein-protein interfaces  

 The simplest definition of a PPI is distance based. Many approaches use an 

atomic distance cut-off criteria measured between the centers of atoms in each protein 

chain of a complex20-23. For example, an interface might be defined as those residues 

whose atoms are within 4.0 Å of the atoms of another protein chain. Another commonly 

used definition of the interface is based on Solvent Accessible Surface Area (SASA), 

which represents the amount of surface of a protein that is exposed to solvent (generally 

water) 24, 25. Upon complexation, the total surface area of the individual monomers 

decreases and the difference in surface areas (∆ASA) represents the size of the interface.  

Along with interface size, shape complementarity is a commonly used feature in 

interface prediction26. Interfaces are rarely tightly packed27, which is one of the reasons 

for greater stability at the interface. The stability of interfaces is also strongly influenced 

by hydrogen bond interactions, hydrophobic interactions, van der Waals forces, 

desolvation energy, and electrostatics at the interface. While electrostatics and 

desolvation primarily govern high affinity binding in proteins28, hydrogen bonds, van der 

Waal’s forces and salt bridges often contribute significantly to the specificity of the many 

interactions29. While electrostatic interactions have a longer range than van der Waals 

forces and can therefore influence stability and affinity farther from an interface, they 

also tend to be much less numerous than van der Waals forces30. 
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Interface centrality  

Another feature that is useful in understanding interfaces is the identification of  

“core” (residues at the center of the interface) and “rim” (residues distal to the interface) 

regions. It has generally been seen that amino acids at the core are more hydrophobic 

than at the rim16.  Core residues are frequently functionally and structurally important, 

and are also more conserved than rim residues31. Such functionally or structurally 

important residues are generally referred to as “hot spots”. Core residues also have 

differing contributions to binding and stability than rim residues and consequently have 

different evolutionary pressures for conservation16.  

 In Chapter 2, we explore the contribution of individual residues to interface 

binding stability. In particular, we characterize the sensitivity of interfaces to residue 

substitution with alanine. Though described in more detail in Chapter 2, our initial work 

indicated that residues nearer the Center of an Interface (CoI, the mean of all interfacial 

Cα positions) tend to have different energetic contributions towards the maintenance of 

FLIP and FunC interfaces than do residues that are farther from the CoI. The analysis of 

preliminary data leads us to propose FLIPs generally exhibit a more radially symmetric 

(central) energy profile than FunCs. As some PPIs, particularly FLIPs, are the result of 

evolutionary pressure and selection, we also suggest there will be a detectable 

evolutionary “signature” in the form of distinguishable geometric and energy patterns at 

different interfaces. We speculate that the interactions start as weak contacts and “grow” 

(via advantageous mutations) in strength and size over evolutionary time. While amino  
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acid side chains contribute strongly to biological function, not all residues contribute 

equally32. We expect interfaces will show decreasing energetic and evolutionary 

contribution towards forming the interface as the distance from the CoI increases (See 

Figure 2.1). We define this as interface centrality. To study centrality, we took a two-

pronged approach; i) correlate energy with distance from CoI, ii) correlate sequence 

conservation with distance from CoI.  

We hypothesize that analyzing the geometric centrality patterns of the physico-

chemical properties of residues in PPIs will allow FLIPs and FunCs to be distinguished. 

We further hypothesize that proteins belonging to different functional sub-categories 

within the FLIP and FunC categories will cluster by function, even when the same 

general spatial and energetic features are used to characterize interactions.  

It is often challenging and laborious to obtain the quaternary structures that are 

required to address these hypotheses and study the molecular mechanisms of PPI 

formation. Most structures are obtained via X-ray crystallography or Nuclear Magnetic 

Resonance (NMR) spectroscopy33. It is therefore imperative to develop computational 

interface prediction methods that are fast and accurate. Protein docking is one such 

method that generates theoretical PPI structures (“poses”) using the structures of two or 

more monomers that are known to interact. An extremely small minority of the poses 

generated will reproduce known structures (true positives, both FLIP and FunC) while 

the vast majority will represent false positives34. We hypothesize that if the poses are 

false positives, they will not exhibit physical and biochemical properties like FLIPs and  
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are more likely to be similar to known FunCs. True positive poses with near native  

specific interactions would be expected to exhibit properties similar to known FLIPs. 

Thus, we expect that re-analyzing protein docking with respect to the putatively distinct 

physico-chemical properties of interface residues may lead to a reduction of the false 

positive rate and thus an overall improvement in the accuracy of docking methodologies.	
  

Prediction 

To distinguish between FLIP and FunC interfaces, various studies have analyzed 

different properties of the interface. Apart from the size of the interface, which is the 

chief discriminatory feature in many studies15, 35, 36, another commonly used feature is the 

amino acid composition. Only a fraction of residues, often referred to as hot spots, 

account for the majority of the binding energy and quaternary stability32. These hot spots 

can be identified experimentally by evaluating the free energy change by systematic 

amino acid mutation to alanine37. Loss of side chain functionality is assessed by a variety 

of biophysical methods38. The hot spots identified are sometimes deposited in databases 

such as ASEdb39 and BID40; however, the complexity of protein interfaces and analysis 

of hundreds of variants makes identification of hot spots a laborious process and 

therefore rigorous computational methods are required41. Several groups have used 

energy-based features such as hydrogen bonds, solvation, and packing interactions23, 42-44, 

or non-covalent interactions45, to develop models to computationally detect hot spots.  

Molecular dynamics (MD) simulations can describe changes in molecular 

conformations and particle interactions as a function of time and are commonly used to  
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characterize model systems46. The atomic level information gathered has been used to 

more accurately predict hot spots47. However, MD simulations are computationally 

expensive and cannot trivially be applied to large-scale predictions46. 

While various groups have studied sequence conservation patterns of proteins, 

they have varying opinions of the relative conservation of interfaces and the rest of the 

protein45, 48-50. Ma and co-workers have shown a correlation between hot spots and 

conserved residues51. These hot spots are seen to form clusters and are either buried or 

bound to neighboring residues forming regions of hot residues with central residues being 

more conserved52, 53. Several groups have also shown that active site residues are 

conserved across protein families48, 54, 55. Despite various studies on residue conservation 

in proteins, it has been difficult to identify precise patterns of conservation features that 

allow for FLIP/FunC distinction. The use of sequence conservation alone for interface 

detection is still not sufficiently understood or developed that it can be used in the 

absence of other corroborative methods48, 50.   

Another method commonly used to identify bound states of protein complexes is 

protein docking, a quaternary structure conformational sampling technique. Docking 

generates thousands of possible structures of receptor-ligand pairs by rotating and 

translating the conformations of an initial starting structure. Resulting conformational 

poses are then scored, generally based on energetics56, and ranked. However, docking has 

a two-part problem: 

i. Scoring functions are not fully capable of discriminating native structures  
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from ‘decoys’ (quaternary conformational poses far from the known native 

structure) 57. As a result, docking generates a high number of false 

positives34. This may be due to the heavy reliance of docking algorithms on 

shape complementarity. While complementarity alone is sometimes 

sufficient to dock separated sub-units of a known complex, it is less 

successful at docking unbound complexes58. 

ii. Proteins are dynamic, and even though various groups have made attempts to 

account for flexibility in their docking algorithms, the effect of flexibility on 

protein docking needs to be studied further57, 59. 

 Since there has been partial but inconsistent success with the methods listed 

above, we approached this problem using a combination of specific variants of the 

methods. By using a hybrid method combining geometric relationships and various PPI 

features (e.g. CAS energy values) with multivariate statistical approaches, we sought to 

answer the following question: 

Can the physico-chemical properties of protein interactions discriminate FLIPs 

from FunCs?  

We approached this question with the following specific aims: 

1. Identify patterns of physico-chemical properties of PPIs (particularly sensitivity 

to substitution and sequence conservation) that distinguish FLIPs from FunCs 

a. Create and manually curate a set of known PPI structures available from 

the PDB into FLIP and FunC categories. 
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b. Identify geometric, energetic, and evolutionary protein structural features 

that can discern FLIPs from FunCs. 

2. Determine if the features identified in (1b) can also distinguish between different 

functional sub-categories within FLIPs 

3. Identify FLIP-like structures from a set of docking decoys using this same 

methodology 

Overview of findings 

We analyzed physico-chemical properties of protein interfaces including energy, 

sequence conservation, and geometric distribution of interface residues. We used 

Principal Component Analysis and K-means clustering analysis in a multi-stage approach 

towards interface distinction. To assess the usefulness of the methodology, docking 

analysis followed by post-filtering using our methodology was performed.  

In Chapter 2, we describe the identification of energy related terms and their 

contribution to FLIP-FunC distinction in a dataset of 160 interfaces (FLIPdb).   

Chapter 3 describes a similar study of sequence conservation related terms. There we 

analyze the role of evolutionary pressure on FLIP maintenance. We also study the 

combined contribution of interface energy and sequence conservation towards FLIP-

FunC discrimination.   

Chapter 4 describes docking analysis done on a subset of our FLIPdb interface 

dataset. We identify whether we can improve the accuracy of bound docking calculations 

by augmenting them with our concepts and methods.   



	
   12 

Finally in Appendix 1, we performed a docking analysis similar to Chapter 4 but on 

interfaces originating from the CAPRI (Critical Assessment of Protein Interfaces) 

project60. Use of CAPRI targets allows us to assess the impact of conformational 

flexibility during PPI formation. We identify if we can improve the accuracy of 

“unbound” docking calculations by augmenting them with our method. 
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Abstract 

Specific protein interactions are responsible for most biological functions. 

Distinguishing Functionally Linked Interfaces of Proteins (FLIPs), from Functionally 

uncorrelated Contacts (FunCs), is therefore important to characterizing these interactions.  

To achieve this goal, we have created a database of protein structures called FLIPdb, 

containing proteins belonging to various functional sub-categories. Here, we use 

geometric features coupled with Kortemme and Baker’s computational alanine scanning 

method to calculate the energetic sensitivity of each amino acid at the interface to 

substitution, identify hot spots, and identify other factors that may contribute towards an 

interface being FLIP or FunC. Using Principal Component Analysis and K-means 

clustering on a training set of 160 interfaces, we could distinguish FLIPs from FunCs  
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with an accuracy of 76%.  When these methods were applied to two test sets of 18 and 

170 interfaces, we achieved similar accuracies of 78% and 80%. We have identified that 

FLIP interfaces have a stronger central organizing tendency than FunCs, due, we suggest, 

to greater specificity.  We also observe that certain functional sub-categories, such as 

enzymes, antibody-heavy-light, antibody-antigen, and enzyme-inhibitors form distinct 

sub-clusters. The antibody-antigen and enzyme-inhibitors interfaces have patterns of 

physical characteristics similar to those of FunCs, which is in agreement with the fact that 

the selection pressures of these interfaces is differently evolutionarily driven. As such, 

our ECR model also successfully describes the impact of evolution and natural selection 

on protein-protein interfaces. Finally, we indicate how our ECR method may be of use in 

reducing the false positive rate of docking calculations.  

Introduction 

Proteins interact with and bind to other proteins forming both transient and long-

term networks of specific complexes whose interfaces have highly-specific amino acid 

interactions [1-6]. These interfaces play vital roles in biological functions such as signal 

transduction, enzyme and immune regulation, adhesion, force generation, and 

maintenance of cellular structure. Methods for the identification and characterization of 

protein-protein interactions (PPIs) are thus critical to understanding how living systems 

function. 

Development of experimental and computational techniques to identify PPIs has  
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shed light on the determinants of specific interactions, as well as on some general 

features for different types of interactions [2-5, 7-13]. Experimental high throughput 

screening methods [3-5, 14] have provided information to construct large databases [15-

17] of PPIs and related functions. Computational methods such as molecular modeling 

and docking, have generally identified the shape, electrostatic complementarity, buried 

surface area, flexibility, solvation energy, and sequence conservation of the interactors 

(amino acid residues) as key features in interface detection [6, 7, 11-13, 18-20]. Use of 

these known relationships to better elucidate the principles by which amino acids are 

positionally organized and thus contribute energetically to interfaces would allow specific 

structure/function relationships to be characterized. Such knowledge could also promote 

the finding of novel interfaces via computational docking calculations, as well as 

allowing the testing of rival protein structure/function hypotheses. Unfortunately, the 

different attempts at characterization continue to be hampered by a fundamental lack of 

understanding about the underlying geometric and energetic principles of amino acid 

interaction across protein interfaces [6, 8, 19, 21-24]. 

Several potential reasons for this exist. Both experimentally and computationally, 

it has been observed that few of the residues present in a PPI are essential for 

maintenance of the integrity of the interface [2, 8, 24]. Some success has been had 

identifying these important hot spots, particularly with computational alanine scanning 

methods (CAS) [2, 25-29]. However, the use of CAS in PPI detection has had mixed 

success. CAS methods often very accurately distinguish residues critical to known 
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interfaces, while failing to identify all the residues in an interface [24]. Ofran and 

colleagues suggest that this may be due, in part, to a bias towards hot spot residues that 

may treat non-hot spot residues as “noise” and thus fail to identify all the residues in a  

PPI [24]. 

An additional reason PPI principles may be difficult to elucidate can be found in 

how the experimental data used to develop computational methods like docking is 

organized and utilized. Most data for the patterns of amino acid characteristics at PPIs 

come from atomic resolution structures of protein complexes deposited at the Protein 

Data Bank (PDB) [30]. While an understanding of PPI principles for both prediction and 

design necessitates the use of natural exemplars, whether a reference structure is a highly 

specific interaction used in nature and critical for a biological function or whether the 

association is the result of the experimental conditions used in the technique can often be 

unclear. The majority (approximately 80%) of PPI structures available from the PDB are 

obtained through X-ray crystallography [31]. The very symmetrical and tightly packed 

structures that promote facile structure determination can also indicate interfaces not 

present in the cellular milieu [23, 32, 33].  As with hot spot/non-hot spot bias, 

development of PPI predictive methods based simultaneously on both aggregative (e.g. 

crystal contacts) and functionally-linked PPIs may obscure trends such that both can fail 

to be identified. 

Several groups have classified PPIs into different operationally defined categories  
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such as, homo- and hetero- complexes, obligate and non-obligate complexes, and 

transient and permanent complexes (reviewed in [6, 34]). These categories, however, 

often mix structural and functional properties in their operational definitions. While 

structure and function are, of course, related, natural selection operates on biological 

function, and it may serve useful to identify the functional importance of a given PPI as a 

separate characteristic feature. In this work, we operationally define Functionally-Linked 

Interfaces of Proteins (FLIP), and the residues forming these interfaces, to be those for 

which mutation or other chemical modification has been found to alter the native 

biological function. Similarly, we define PPIs that do not have such a known alteration in 

function as Functionally uncorrelated Contacts (FunC). 

Separation of FLIPs from FunCs can be problematic using PDB data alone, and 

additional knowledge is generally required [7, 13, 35] FLIPs and FunCs can be thought of 

as positive-design (specific) and negative-design (aggregative) natural exemplars in the 

parlance of Havranek [36]. While the PDB often provides a “Biological Assembly” 

structure (BioUnit) in addition to the standard “Asymmetric Unit” structure, in our 

experience, the correlation of the BioUnit structures with FLIPs is not straightforward. 

BioUnits are often not available, are duplicates of the Asymmetric Unit with little 

justification for that assignment, or are specified for non-native interactions as in the case 

of rabbit actin with bovine DNase (PDBid: 1ATN). As mentioned previously, shape and 

electrostatic complementarity, buried surface area, flexibility, solvation energy, amino 

acid composition, hydrophobicity, and sequence conservation are all common features 
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used to characterize and predict the quaternary assemblies and improve estimation of 

likely solution state structures [7, 11-13, 20, 37]. Indeed, more recent BioUnit 

assignments have been improved through the automated use of tools like PISA, which 

has a particular strength in that it leverages solvation energy calculations in addition to 

other features to identify macromolecular complexes in solution [13]. Even with these 

enhanced analyses, the relationship of the complex with function may still be 

problematic. For example, PISA, NOXclass, and EPPIC servers all identify Actin:DNase 

as the likely BioUnit [11-13].As a result, the ability to distinguish FLIP from FunC, 

though improved, remains obscure. While large interactome databases exist that often do 

indicate functional correlation [15-17], they generally specify whole protein chain or 

complex interactions and do not specify data at the atomic level.  

In principle, it is possible to use atomistic or coarse-grain computational methods, 

including docking methods, that use generic, empirical amino acid interaction functions 

to successfully predict quaternary interactions [19, 29, 38-40]. Unfortunately, two 

problems generally arise: 1) the false positive rate (average number of predictions needed 

to obtain a structure similar to a natural exemplar) is fairly high [38, 41, 42] and 2) while 

accurate structures can be identified, assessment as to the functional significance (i.e. 

FLIP or FunC) is not generally identified or remains obscure [19, 23, 38, 42].  

Physico-chemical properties of the amino acid residues in PPIs other than 

sensitivity to alanine substitution have also been investigated, including hydrophobicity, 

amino acid composition, hydrogen bonding potential, sequence conservation, and solvent 
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accessible surface area (SASA), all with differing success [6, 23, 42]. Combining these 

methods in hybrid approaches has improved successful identification of native PPIs 

relative to any one property alone [6, 11, 13, 23]. 

In light of these improvements, a hybrid approach that includes the statistical 

analysis of (a) atomic-resolution interface geometries and (b) CAS-based energy data of 

protein structures pre-classified based on functional importance (FLIP/FunC) may be 

successful, both in improving detection of interfaces and increasing our understanding of 

general principles of interface formation. To test this concept, we collected a set of PPI 

structures available in the PDB starting from a subset of members of commonly used sets 

to test PPI and docking software [7, 20, 43-45] and added additional structures of interest 

to the lab. We then used additional literature sources to manually categorize the interfaces 

as being FLIP or FunC (FLIPdb, see Methods). For each interface in FLIPdb, we used 

Baker’s CAS method [28] and our own geometry calculations (see Methods) to determine 

the energetics of alanine substitution of residues in a PPI as a function of geometric 

distribution in the interface. No attempt was made to bias towards only hot spot data. 

Using Principal Component Analysis [46] and K-means clustering [47] we were able to 

identify seven physical characteristics that could distinguish FLIP interfaces from FunC 

interfaces with 76% accuracy. These same characteristics, when tested against a set of 18 

unrelated PPI structures and a subset of 170 PPI from the set of Dey et al., were also able 

to distinguish FLIP from FunC with 78-80% accuracies. Overall, FLIP interfaces appear 

to have greater overall sensitivity to ala substitution than FunC (Figures 2.1-2.4), 
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particularly toward the center of the interfaces. This may be related to the finding that 

cores of interfaces have greater sequence conservation than interfaces rims [48]. Both are 

consistent with the ideas that FLIP interfaces are more specific than FunC interfaces [1, 

6] and that they may evolve increasing specificity radially across a PPI over evolutionary 

time (Figure 2.2a-c). 

The novelty of this approach, which we term the Energy Centrality Relationship 

(ECR), is that through the combination of geometric and energetic data, we are able to 

not only reproduce functional classifications and describe physical chemical sources of 

these differences, but also have a model that is consistent with natural selection pressures 

on protein interfaces. 

Results 

Database Composition, FLIPdb  

After construction, our FLIPdb database referenced 160 PPIs between 233 protein 

chains that were contained in 94 PDB structural files. This set was categorized and 

divided into 100 FLIP interfaces and 60 FunC interfaces. We further sub-categorized 

these PPIs into 7 FLIP and 2 FunC sub-categories: 1) antibody-antigen (AbAg); 2) 

immunoglobin Heavy Chain/Light Chain (AbHL); 3) Enzyme-Enzyme, both transient 

and persistent (Enzyme); 4) having a generally persistent structure that provides 

mechanical stability, such as cytoskeletal or viral proteins (Structural); 5) peptide/protein 

inhibitors to an enzyme (Inhibitor); 6) proteins whose function is to recognize 
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peptides/proteins (Receptor); 7) proteins regulated by post-translational modification by 

another protein (Regulated); 8) PPIs in an asymmetric crystal unit NOT found to be FLIP 

(FunC); and 9) PPIs obtained by applying crystal symmetry transforms to FLIP structures 

(XFunC). This set of PPIs (see supplementary Table S2.1) was used for training and 

development (summary in Table 2.1). 

An additional set of 18 PPIs between 19 protein chains in 7 PDB files was also 

categorized into 13 FLIP and 5 FunC interfaces and sub-categorized as above (see 

supplementary Table S2.1). This second set of PPIs was comprised of proteins that were 

generally less than 70% sequence identical to proteins in the training set and was used for 

cross-validation testing (Table 2.2).  

Finally, a third set of 170 PPIs between 301 protein chains in 139 PDB files was 

examined. These 170 PPIs represent a subset of 54% of the weakly and strongly 

interacting PPIs characterized by Dey and colleagues [7]. This set was not rigorously 

curated as to FLIP/FUNC status so as to compare the results of our training set with that 

of Dey. Overall, the structures and energetics of 348 PPIs were categorized and 

examined. 

CAS ∆∆G Distribution in PPI 

We used Baker’s CAS method [28] coupled with our own software to determine 

the sensitivity to alanine substitution of residues in a PPI, as a function of geometric 

distribution in the interface. All geometric analyses were based on residue Cα positions. 
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This sensitivity was compared between FLIP and FunC PPIs in the FLIPdb. Two 

representatives of this are shown in Figure 2.1, in which we compare a FunC (Yeast 

Phosphotransferase Ypd1p, PDBid: 1C02) and a FLIP (T4 bacteriophage 

dC-hydroxymethylase dimer, PDBid: 1b5e). Histogrammed contours of the pseudo-free 

energy change upon alanine substitution (∆∆G) are plotted on the principal component 

analysis (PCA) projections of the interface residue geometry (Figures 2.1a,b). (Note, that 

in this work, we follow Baker’s use of the terms “free energy” and “∆G” for consistency 

with the software output.) These distributions indicate that in the FLIP, “hotter” residues 

(whose CAS analysis resulted in more PPI destabilization upon substitution) tend to be 

more centrally located and tend to show a progressive radial symmetry. In contrast, the 

“hotter” residues in the FunC are fairly evenly distributed throughout the interface. Some 

“cold” residues (those favoring Ala substitution) are found near the interface center. 

These CAS energy distributions are representative of other FLIPs and FunCs. When all 

the ∆∆G vs. distance from the Center of Interface (CoI) were then fitted to a 1st order 

polynomial line via linear regression, 8 of the 10 highest intercepts were found to be 

FLIP, while 8 of 10 lowest intercepts were found to be FunC (Figure 2.1c). In general, 

FLIPs were found to fit a line better than the FunC (coefficients of determination, R2, 

were an order of magnitude larger). The FLIPs were also found to generally have a 

negative slope, indicative of a central tendency, whereas the FunCs generally had near 

flat or small magnitude positive slopes. The small magnitude slope and poor R2 suggests 

little geometric central tendencies in the FunC. These trends were generally maintained  
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throughout FLIPdb, with most FLIPs having a radially symmetrical central tendency and 

most FunCs demonstrating little-to-no correlation with distance from the center of the 

interface. One-way pairwise ANOVA at an α = 0.10 analyzing the slopes and intercepts 

indicated that the differences between FLIP and FunC were significant with P ≤ 0.0006 

and P ≤ 0.09, respectively. 

Energy Centrality Hypothesis 

There is no a priori reason FLIP PPIs should demonstrate a central tendency 

relative to FunC PPIs. Unless an organizing principle was involved, one might expect an 

interface to have a random correlation between CAS ∆∆G and geometry (Figure 2.2c-d). 

The presence of such a central tendency (Figure 2.1) in FLIP interfaces suggests that they 

are indeed organized (Figure 2.2e-f), perhaps through a natural selection process (see 

Discussion and Figure 2.2). 

Energetic and Geometric Features 

Though PPIs are complex 3-dimensional entities, for the sake of simplicity of 

analysis, we unified CAS ∆∆G and structural geometry characteristics into scalar 

quantities that could be used to describe a PPI. Three features arose from the regression 

of energy to geometry: the rate of change of substitution energy as a function of distance 

(∆r) from the interface center (slope_∆∆G), the extrapolated maximum ∆∆G sensitivity at 

the interface center (intcpt_∆∆G), and the adherence of the ∆∆G and ∆r data to a linear 

relationship (coefficient of determination, R2_∆∆G). Three features were found that 
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describe the net sensitivity of an interface to CAS: net sum of all ∆∆G changes 

(Sum_∆∆G), mean ∆∆G for all interface residues (Avg_∆∆G), and total number of 

residues in the interface (#total). The remaining two features address the number of 

residues extremely sensitive to Ala substitution (“hot” residues, residues with ∆∆G larger 

than +1 kcal/mol): the number of hot residues (#hot), and the ratio of hot to total 

(frac_hot). One-way pairwise ANOVA at an α = 0.10 indicated that all features except 

R2_∆∆G were significantly different between FLIP and FunC with #hot, total, 

Sum_∆∆G, frac_hot, and Avg_∆∆G having P ≤ 0.0001, intcpt_∆∆G having P ≤ 0.0006,  

and slope_∆∆G having P ≤ 0.09. Since these features could reasonably be viewed as 

coupled, we also performed one-way ANOVA with repeated measure at an α = 0.10 and 

with Tukey-Kramer post-hoc analysis. This analysis indicated differences between FLIP 

and FunC for #hot, total, Sum_∆∆G that were significantly different with P ≤ 0.0001. 

Though shown to be statistically different, individually none of these features were found 

to sufficiently correlate with FLIP or FunC categories such that a single feature could be 

used to identify the category. 

Principal Component Analysis and K-Means Clustering 

When no single feature could easily discriminate FLIP from FunC, yet each 

feature yielded significant differences between groups, the multi-factoral approach of 

PCA was used. Initial PCA analysis of the 8 features for all 160 PPI in the training set 

yielded a set of principal components (PCs) that reproduced 80% of the normalized data 

variation in the first two PCs (Figure 2.3a). Analysis of the eigenvector coefficients 
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(Figure 2.3a) agreed with the ANOVAs indicating that the variance in the data was far 

less dependent on a strict adherence to a 1st order linear model. Thus, for all subsequent 

analyses, R2_∆∆G was dropped as a feature. The resultant 7-feature PCA reproduced 

88% of the remaining data variation in the first two PCs (Figure 2.3b). Subsequent 

K-means cluster analysis with a two-cluster assumption of this data (Figure 2.4a) 

produced two clusters whose centroids straddled the origin for both PC1 and PC2 

indicating opposing correlation trends. Analysis of these clusters revealed they had high 

precision and specificity. Cluster 1 contained 49% of all FLIPs but only 2% of FunC PPI 

(Table 2.2). Cluster 2 contained 51% of all FLIPs and 98% of FunC PPI. The FLIP PPI in 

cluster 1 were predominately in the Enzyme (72% of Enzyme) and Antibody-

Heavy/Light sub-categories (100% of AbHL). Cluster 2 was dominated by FunC/XFunC 

(98% of FUNC), Antibody-Antigen (75% of AbAg), and Inhibitor sub-categories (100% 

of Inhibitor). Closer examination of cluster 2 revealed that FLIPs assigned to this cluster 

tended towards more positive PC1 values and larger magnitude PC2 values than 

FunCs/XFunCs. This consistency in trend suggested a second PCA over the same 

features might provide further distinction between FLIPs and FUNCs. A new PCA of 

only the 110 PPI in cluster 2 of the first PCA produced new PCs with extremely similar 

eigenvector coefficient correlations to the first PCA (Figure 2.3c). The same set of 

features still produced PCs that represented 84% of the resultant data variation in the first 

two PCs. This confirmed that similar data dependencies were in effect between the two 

PCA. K-means clustering of this second PCA again produced 2 clusters that straddled the  
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origin for both PC1 and PC2 (Figure 2.4b). As with the first PCA, cluster 1 of the second 

PCA was predominately FLIP, containing 61% of the remaining FLIPs but only 28% of 

the total FunCs. Likewise, cluster 2 was predominately FunCs, containing 20% of the 

FLIPs and 70% of the FunCs PPI (Table 2.2). Over two-rounds of PCA, 80% of the 

FLIPs were found in the clusters positively correlated with the features, and 70% of the 

FunCs were found in clusters negatively correlated with the features. 

Accuracy and Matthews Correlation 

Analysis of the two rounds of PCA of the training set PPI data indicated that the 

overall accuracy (the propensity to correctly identify FLIP or FunC) was ~67% in each 

PCA round. Over both rounds of PCA, the accuracy was 76% (Table 2.2). The Matthews 

Correlation Coefficient, a measure of how well a binary classification matches the data, 

was 0.49 in PCA round one, 0.32 in PCA round two, and 0.50 across both rounds. Such 

MCCs indicate a two-category assumption is quite consistent with the data. 

Cross-validation Testing 

While analysis of the training set data very favorably predicted distinct feature set 

correlations between FLIPs and FunCs, it was possible that the relationship was training 

set dependent and demonstrated compositional bias. In order to test this, we undertook 

three types of cross-validation testing: validation on two test sets and random sub-

sampling validation on the training set. 
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We first repeated the analyses on the 18 member test set (hereafter, Test-18).  The 

additional interfaces in this set were between protein chains that generally had less than 

70% sequence identity to chains in the training set (Table S2.1, see Methods). No new 

PCA or K-means clustering was undertaken; rather the features of Test-18 were projected 

through the PCs of the training set. Test-18 projections are shown in Figures 2.4c,d. As 

with the training set, FLIPs in the Enzyme and Antibody-Heavy/Light sub-categories 

could be reliably identified in cluster 1 of PCA round 1. Similarly, FunCs dominated the 

composition of cluster 2 in PCA round 2. While the accuracies of the PCA 1 projection 

were disappointingly lower than the training set (48%), the 2nd round projection 

accuracies were larger (73%), and the overall two-round accuracy was actually slightly 

higher than the training set at 78% (Table 2.2). Similarly, MCC values were also slightly 

higher, at 0.62 (Table 2.2). This backhanded success may in part arise due to the 

relatively high fraction of AbAg in Test18, as AbAg are generally identified in round 2.  

We next repeated the analyses on a second test set of 170 PPI derived from the 

dataset of Dey and colleagues (see Methods) [7]. The dataset of Dey and colleagues was 

designed to analyze PPI known to interact weakly or strongly in solution. Our subset 

(hereafter Dey-170) represents about 54% of the full Dey dataset and contains 32 weakly 

interacting PPI (weak) and 138 strongly interacting PPI (strong) (Table S2.2). Dey-170 

was not rigorously curated as to FLIP/FUNC status but instead was used to examine two 

model assumptions: a) Assume all 170 PPI are FLIP-like since all are known to 

oligomerize in solution or b) Assume weak PPI are more FUNC-like and strong PPI are 
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more FLIP-like. Testing these assumptions allows us to examine how well our 

operationally defined categories of FLIP and FUNC agree with the weak and strong PPI 

characterized by Dey. Again, the values of the 7 features of each Dey-170 PPI were 

projected through the PCs of the training set (Figure S2.1a,b, Table S2.3). In projection 

round 1, cluster 1 contained 59% of the strong PPI and no weak PPI. Cluster 2 contained 

100% of the weak PPI and 41% of the strong PPI. In round 2, 75% of the remaining 

strong PPI and 38% of the weak PPI were found in cluster 1, while 62% of weak PPI and 

10% of strong PPI were found in cluster 2. If we follow crude assumption (a) that all 

Dey-170 are FLIP (i.e. no true negatives or false positives exist), we still achieve an 

overall accuracy of 80% (Table S2.3a). As this assumption is false, this accuracy likely 

represents a lower limit. Interestingly, though this assumption has a near zero MCC 

(random guessing) in round 1, subsequent rounds of projection positively improve the 

correlation to an overall MCC of 0.12. The accuracy and improving MCC suggest that a 

two-category model, even when mis-assigned is superior to random chance. If we follow 

crude assumption (b) that weak PPI are FUNC-like and strong PPI are FLIP-like, we 

obtain results consistent and slightly superior to the training set results with accuracies of 

84.7% and an MCC of 0.51 (Table S2.3b). 

As the accuracy and MCC varied somewhat from training set to Test-18 set to 

Dey-170 set, we evaluated the compositional bias of our training set using random sub-

sampling validation (Table S2.4). Sub-samples of the training set were generated 

randomly in triplicate for subsets of the training set ranging from 90% down to 20%. 
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Regression analysis at an α = 0.10 for 1st through 6th order polynomial fits of number of 

PPI vs. Accuracy show substantial Lack of Fit error and a lack of statistical significance 

for each. Overall, while this suggests that little compositional bias exists until the number 

of PPI falls substantially below 80 (50% of the training set), it also suggests that 

analyzing more PPI will not dramatically improve the overall accuracy. 

Taken together these training set and random sub-sampling results suggest our 

method is robust to protein identity and of general applicability, though likely needing 

additional refinement in order to boost the accuracy to levels found in other methods [11-

13]  

Discussion 

ECR Analysis can Reproducibly Distinguish FLIP from FunC Interfaces 

Through the coupling of biological functional categorization with interface 

geometries and energetics, the ECR methodology produces very consistent results, both 

between training and testing sets, as well as between functional sub-categories of PPI. 

FLIP PPIs can be distinguished from FunC PPIs with 76% accuracy (Table 2.2). In 

addition, PPIs of the same functional sub-category generally have similar PC projection 

values such that they cluster (Figures 2.4 & S2.1). An accuracy of 76% compares 

favorably with other approaches combining several methods [19, 23, 24]. It has slightly 

lower accuracies (by approximately 10-12%) than PISA, NOXclass, and EPPIC [11-13]. 

While lower in overall accuracy than some of the most accurate methods, it does not 
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appear to have any significant compositional bias. ECR also has a distinct advantage over 

many methods in that it is based solely on interaction energies and structural features and 

does not rely on sequence conservation patterns or interactome maps [15-17]. However, 

given the success of approaches like those above that use sequence conservation, 

particularly sequence entropy, we can expect that future inclusion of features from these 

other approaches in our analysis would not hinder and might even improve our accuracy. 

Furthermore, the reproducibility across functional sub-categories, a characteristic not 

included in the model but rather emergent from the analysis, suggests that this method 

may also be useful in the annotation of PPIs with unknown function. It is also an 

improvement on methods that rely solely on hot spot analysis in that through examination 

of all interface residue interactions, ECR provides an energetic context for the hot spots 

and their differential presence in FLIP and FunC PPIs. 

Physical Interpretation 

From the analysis of CAS ∆∆G energetic and geometric features, several clear 

patterns emerge. The first of these is that FLIPs appear to have greater overall sensitivity 

to Ala substitution than FunCs (Figures 2.3, 2.4). FLIPs have strong positive correlations 

with Sum_∆∆G, #hot, and Avg_∆∆G in PC1, while FunCs are negatively correlated with 

these traits (Figure 2.3b,c and Figure 2.4). This suggests the FLIPs have more specific 

interactions that produce large disruptions on Ala substitution than those of FunCs, a 

finding that agrees with experimental work [1] and is consistent with the characterization 

of weak and strong interfaces [7]. 
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FLIPs also appear to have larger magnitude feature correlations along PC2 than 

FunCs, which cluster closer to the PC2 origin. PC2 is dominated by Slope_∆∆G, 

intcpt_∆∆G, and #total (Figure 2.3b,c), all 3 of which are statistical distinct between 

FLIP and FunC (P ≤ 0.09, P ≤ 0.0006, P ≤ 0.0001). Taken together, the correlations along 

PC2 suggest FLIPs have a strong central tendency with hotter centers and more 

interfacial residues than FunCs. This central tendency of FLIPs is also shown in       

Figure 2.1. While superficially, this is in agreement with certain precepts of Bogan and 

Thorn’s “O-ring” hypothesis [8], it helps explain failures of the O-ring hypothesis to 

explain confounding examples of structures with hydrophilic or mixed hydrophilic and 

hydrophobic interfaces. A central tendency towards stability could be present in both 

proteins that follow a hydrophobic O-ring type structure, but could also be present in 

more hydrophilic interfaces that rely more on solvent and electrostatic interactions. 

Implications for Interface Evolution 

The emergence of both a larger specificity and a central organizing tendency from 

our ECR methodology suggests a model of interface evolution in which nascent, 

fortuitous interactions in a loose protein-protein association develop residue contacts that 

improve biological function for the organism. These interactions may have a selective 

pressure to be maintained or even improved (via mutation) in order to maintain or 

enhance the specific affinity of the two protein chains (Figure 2.2c-f). Residues 

surrounding these contacts may also have pressure to enhance affinity. Over evolutionary 

time, these selective pressures on the size and specific affinity produce a radially 
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symmetric pattern in the energetics of the interface (Figure 2.2b,f). The resulting 

interface should demonstrate “stronger” energies near the “older” regions of the interface. 

This hypothesis qualitatively agrees with the Evolutionary Trace results of Lichtarge and 

colleagues, who identify radially symmetric “bulls-eye” sequence conservation patterns 

near functionally important residues [49]. It also helps explain why sequence 

conservation methods alone without spatial, accessibility, or energetic contributions do 

not perform well as PPI predictors [24]. As the selective pressure on an interface is on 

energetic affinity and specificity, not sequence identity, FLIP interfacial residues may 

actually demonstrate larger sequence variation during the evolutionary “optimization” 

events. This can occur since improvements in specific affinity could arise if residues in 

both sides of a PPI were replaced via mutation. Similarly, one would not expect 

interfaces that are not acted upon by natural selection to have a priori central tendency 

patterns (Figure 2.2f). They should instead show a more random distribution of important 

residues (Figure 2.2c,d). 

The ECR concept that evolutionary pressure will produce central tendency 

patterns with large specificity helps explain some discrepancies in our PCA/K-means 

cluster data as well. Both Antibody-Antigen and Inhibitor sub-categories cluster near the 

FunCs and XFunCs in our analysis (Figure 2.4). While antibody-antigen interactions are 

decidedly functionally linked, their quaternary structures are generally not evolutionarily 

driven. Instead, they are produced in a stochastic manner during V(D)J        

recombination [50]. As somatic cell hypermutation and B-cell selection is an 
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evolutionary-like process [51] and antibody-antigens are minimally oligo-trimers, it is 

also likely that center of interface of a large oligomer is not near the pairwise center, thus 

obscuring any central tendency. Similarly, enzyme inhibitors are often produced by 

infectious organisms to impede a host’s native functions. While, the infecting organism 

may have a selective pressure to improve inhibitor binding, the host organism actually 

has selective pressures to escape inhibitor binding. For both antibodies and inhibitors, the 

lack of a pairwise central organizing tendency is thus not unlikely and may explain why 

these two functional sub-categories cluster with the FunCs. 

Implications for Protein Docking 

Many protein-docking methods attempt to determine PPI structures by rapidly 

identifying and scoring regions of complementary shape and electrostatics [38]. 

Unfortunately, the large false positive rates of most docking methods reduce the 

usefulness of docking approaches [38, 41, 42]. Presumably, docking calculations are 

identifying regions of quaternary interaction conformational space that are not accessed 

by native conformations. As ECR can successfully distinguish FLIP conformations from 

FunC conformations, we propose ECR’s use as a post-filter on the poses resulting from 

docking calculations. Our preliminary attempts at this look promising. As a proof of 

concept, we filtered the top 500 scoring poses generated by the docking program         

Hex [52] with ECR for several Enzymes and Antibody-HL interactions (1tzi_AB, 

1bsr_AB, 1bsl_AB, 1biq_AB). In all these, we were able to identify the lowest RMSD  
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pose and in one case, 1bsr_AB, were able to identify a lower RMSD pose than Hex. 

Though very preliminary, we expect that our ECR method may substantially reduce false 

positive rates. 

Conclusions 

In this work, we have introduced the FLIPdb, a database of protein-protein 

interfaces categorized by biological function. We have also introduced the Energy 

Centrality Relationship (ECR) method for analysis of computational alanine scan 

energetic distributions within protein-protein interfaces. We have successfully identified 

energetic and geometric features of interfaces that may be used to distinguish between 

functionally-linked (FLIP) and functionally uncorrelated (FunC) interfaces with a 76-

80% accuracy. We have identified that FLIP interfaces have a stronger specificity and 

central organizing tendency than FunCs. Our ECR model also successfully describes the 

impact of evolution and natural selection on protein-protein interfaces. Finally, our ECR 

method may be of use in reducing the false positive rate of docking calculations. 

Methods 

Dataset: FLIPdb 

We collected a set of atomic-resolution structures all of which are available in the 

PDB [30] and then used additional literature and database sources to manually assign 

protein-protein interfaces to pre-decided categories. The database consists of 94 

structures involving 233 individual proteins chains that formed 160 interfaces, which 
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were grouped into two primary categories, functionally-linked (FLIP) or functional 

uncorrelated (FunC). We initially combined selected subsets of structures from the 

databases of Janin and Weng [7, 43-45]. These datasets characterize proteins by whether 

they are known to be in protein complexes, have crystal contacts, are weakly or strongly 

interacting in solution, and how difficult they are to predict. Finally, we supplemented 

these with structures of general interest in our research. In this work, we chose to expand 

from prior datasets rather than simply use the datasets outright as these other sets were 

created to study specific questions but more importantly, did not always clearly delineate 

biological functional relevance of the PPI. For this work, we limited our selections to 

only bound complexes in an effort to purposefully limit structural variability and thus 

bias towards conformations with enhanced specificity. From this initial set, structures 

with resolutions greater than 3Å were rejected. We also generally excluded structures 

with very large cavities or projections whose curvature would produce interface centroids 

(based on Cα positions) either out in space or far within the interior of one of the binding 

partners. We further removed any structure with 2 or fewer residues in the interface, 

partly in an effort to bias towards larger affinities and partly because the use of linear 

regression to map geometric features requires at least 3 bodies. We rejected structures 

with disordered residues or heteroatoms other than water or simple ions in the interface in 

order to bias the analyses towards amino acid interactions. 

For each of the resultant interfaces, we performed a limited literature search 

focused on identifying: (1) whether the proteins were known to oligomerize in vivo; (2) 
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whether the proteins were known to oligomerize in vitro but under conditions similar to 

those within living systems; and (3) if mutations, post-translational modification, 

chemical modification, or small-molecule binding of residues within the interface were 

known to alter the function of the protein. (4) Additionally, we identified PPIs whose 

quaternary geometries were generally indicative of biological function, such as 

cytoskeletal proteins, viral capsid proteins, or immunoglobin interactions between the 

heavy-chains as well as immunoglobin heavy-chain:light-chain interactions outside the 

Fv region. We noted, but did not exclusively depend upon, whether PDB/PISA had 

designated the interface as being present in a Biological Assembly Unit (BioUnit). We 

categorized interfaces passing all these tests as FLIP. In addition, as a tool to aid our 

categorization, we noted whether the proteins could be simplistically sub-categorized 

into: (1) antibody-antigen (AbAg); (2) immunoglobin Heavy Chain/Light Chain (AbHL); 

(3) Enzyme-Enzyme, both transient and persistent (Enzyme); (4) having a generally 

persistent structure that provides mechanical stability, such as cytoskeletal or viral 

proteins (Structural); (5) peptide/protein inhibitors to an enzyme (Inhibitor); (6) proteins 

whose function is to recognize peptides/proteins (Receptor); or (7) proteins regulated by 

post-translational modification by another protein (Regulated). We elected to use these 7, 

admittedly simplistic, operationally-defined sub-categories, rather than use SCOP [53], 

CATH [54], or GO [55] designations in order to limit the number of sub-categories and 

thus examine general FLIP characteristics. This is also consistent with categorizing all 

PPI into only the 2 FLIP/FunC categories. Most interfaces that could not be annotated as 
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FLIP were categorized as FunC, though some interfaces were eliminated from study if a 

number of conflicting annotations existed. 

As the exclusions mentioned previously tended to eliminate FunC structures, we 

augmented our FunC numbers in two ways. First, we increased the number of proteins 

with a functionally unrelated PPI in the asymmetric unit by following the inverse of the 

method of Dey et al. [7]. We supplemented our set with entries from the PiQSi         

server [37] that were listed as solution-state monomers yet also had an entry of 

“PROBYES” in the Error field that indicates whether literature is in conflict with the 

reported quaternary assessment at PDB/PISA. Secondly, we utilized the available crystal 

symmetries to transform the coordinates of FLIP proteins such that crystal packing 

contact interfaces were produced. These transformations were created using the 

SYMEXP module of Pymol [56] and were sub-categorized as XFunCs. While it is 

generally desirable to have low similarity between dataset members to minimize 

compositional bias, our use of XFunCs derived from FLIPs actually provides a valuable 

internal control in that the two should be distinguishable. Failure to distinguish XFunCs 

from FLIPs in the same protein might suggest that general features of the protein rather 

than the interface were being biased towards. In order to further increase our FunC 

structures while maintaining some continuity with the datasets from the literature, we 

also created XFunCs from a subset of the members of the weakly interacting set of Dey et 

al. that were listed as only having crystal symmetry. All additional FunCs/XFunCs were 

also rejected if they failed to pass the same exclusionary limits placed on existing FLIPs 
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and FunCs. In addition, we rejected XFunC structures that literature review suggested 

might in reality be FLIP. The final database consisted of 94 structures comprised of 219 

individual proteins chains that formed 160 interfaces. Of these, 100 were FLIP interfaces 

and 60 were FunC interfaces.  Summary statistics of the FLIPdb are shown in Table 2.1. 

In additional to this training set of interfaces, 18 additional interfaces (Test-18) 

were analyzed in order to provide a test set for cross-validation. All but two of the 

proteins in Test-18 had less than 70% sequence identify to proteins in the training set. 

Identity was determined using BLAST [57] run with default parameters available at 

servers at the National Center for Biotechnology Information. The remaining 2 proteins 

(immunoglobin chains), though not identical to immunoglobins in the training set, did 

have substantial similarity outside of the Fv region. These 18 PPI were subjected to the 

same physical and literature exclusionary limits as the training set. Summary statistics of 

the Test-18 are shown in Table 2.1. 

Finally, as the training set had 38 members in common with the set of Dey and 

colleagues (16 weak and 22 strong in the training set), we created a second cross-

validation testing set from 32 additional weak and 138 additional strong interfaces of Dey 

and colleagues [7]. Dey and colleagues purposefully characterized PPI predicted to have 

some level of oligomerization in solution, some weakly but most strongly. It is tempting 

to presume that the majority of these proteins would have some functional importance 

since they oligomerize in solution. However, without literature curation, one can only 

assume either (a) that all 170 PPI are FLIP or (b) the strong PPI are more FLIP-like and 
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the weak PPI are more FUNC-like. These assumptions were evaluated in this work. 

Summary descriptions of these 170 PPI are listed in Table S2.2. 

Computational Alanine Scanning (CAS) 

The CAS method of Kortemme and Baker [27, 28, 58], was used to process all the 

interfaces in the FLIPdb. In brief, this method evaluates enthalpy and free energy of 

solvation terms over conformations arising from a rotamer library for both the existing 

and alanine substituted residues in a PPI (native Gly and Pro excluded). These terms are 

used to determine a pseudo-free energy change upon substitution (∆∆G) [28]. 

Computational Alanine Scanning (CAS) calculations were performed using the Agnito 

HPC Linux cluster at Texas Woman's University according to scripts and libraries kindly 

supplied by Dr. Tanja Kortemme (UCSF). These results were spot-checked against CAS 

calculations made using the ROBETTA server of David Baker’s lab [59]. In all cases the 

results were identical. 

Interfacial Geometry 

Interfacial residues were defined using the same interface definition as in the CAS 

method of Kortemme and Baker [28]. The geometric distribution of residues in each PPI 

were determined by calculating the displacement (∆r) of the Cα position from the mean 

of the Cα positions (termed the Center of Interface, CoI) using software written by the 

authors. A linear regression of the ∆∆G and ∆r data to a first-order polynomial 

(∆∆G=slope * ∆r + intercept) was calculated for each interface using software written by 
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the authors as well as GNUPLOT [60]. The calculations provided 8 features for each 

interface: the slope (slope_∆∆G), intercept (intcpt_∆∆G), coefficient of determination 

(R2_∆∆G), net sum of all ∆∆G changes (sum_∆∆G), mean ∆∆G for all interface residues 

(avg_∆∆G), total number of residues in the interface (#total), number of residues with 

∆∆G larger than +1 kcal/mol (#hot), and the ratio of “hot” to total (frac_hot). Examples 

of the distribution of these ∆∆G values for a FLIP (PDBid: 1vfr) and FunC (PDBid: 

1c02) are shown in Figure 2.1. 

Principle Component Analysis (PCA) 

Principle component analysis of the variation of CAS energetic and geometric 

feature data for all PPI was undertaken using JMP [61]. PCA determines a set of linearly-

uncoupled eigenvectors from normalized correlations between variables that 

progressively describe the largest sources of variance in a data set [46]. The eigenvector 

coefficients for each principal component vector indicate the relative correlation between 

each feature and the overall variation of all features. In this work, we sought to identify 

the set of features that would describe more than 80% of the total set variation in the first 

two principal components (PCs) such that we could use a minimum number of PCs to 

discriminate between FunC and FLIP data. The results from these PCA analyses are 

shown in Figures 2.3 and 2.4 and Table 2.2. Due to the lower contribution of the 

coefficient of determination (R2) of the linear regression towards overall feature 

variation, this term was dropped and only the remaining seven features were used. 
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K-Means Clustering 

K-means clustering [47] is a data analysis method that clusters observations into a 

specific number of clusters by attempting to find the point(s) that have the lowest mean 

variation from the other input data. When combined with PCA, the combination of 

features that allows input data to be clustered can be identified. In this work, two clusters 

were specified and the correlations between cluster and functional category determined 

(Figure 2.4a,b and Table 2.2). Forty-seven (47) FLIP interfaces (mostly enzyme and 

immunoglobin heavy-chain/light chain interfaces) could easily be identified. A second 

round of PCA and K-means clustering excluding these 47 FLIP (and 2 FunC PPI falsely 

identified as FLIP) was subsequently performed (Figure 2.4c,d and Table 2.2). 

Accuracy and Matthews Correlation Coefficient 

The following measures were used to assess the performance of our clustering 

analysis: 

 Accuracy (ACC), the propensity to correctly identify FLIP or FunC: 

 

 

ACC =
TP+TN⎛
⎝⎜

⎞
⎠⎟

TP+TN+FP+FN⎛
⎝⎜

⎞
⎠⎟
               (1)

 

and Matthews correlation coefficient  (MCC), a measure of how much a set of predictive 

data agrees with a two-state model:

 
MCC = TPxTN−FPxFN

(TP+FP)(TP+FN )(TN+FP)(TN+FN )              (2)
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where, 

TP = the number of interfaces correctly predicted as FLIPs (True Positive) 

TN= the number of interfaces correctly predicted as FunCs (True Negative) 

FP = the number of interfaces wrongly predicted as FLIPs (False positive) 

FN = the number of interfaces wrongly predicted as FunCs (False Negative) 

These values are shown in Tables 2.2, S2.3. 
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Figure 2.1. Distribution of Alanine Substitution Energies in FLIP and FunC     
Interfaces. 
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Figure 2.1. Distribution of Alanine Substitution Energies in FLIP and FunC     
Interfaces. (a) and (b) show a histogrammed contour plot colored blue-to-red of the 
∆∆Gala of substitution to alanine of interfacial residues (blue: more favorable values, red: 
more disruptive values). The plot axes are the first two principal components of the 
geometric distribution of alanine Cα positions. PCA was used to align the interface along 
the X- and Y-axes. Axes are normalized.  (a) ∆∆Gala of the FunC interface from PDBid: 
1c02, chains A&B. (b) ∆∆Gala of the FLIP interface from PDBid: 1b5e_AB, chains A&B. 
(c) Linear regressions of ∆∆Gala  vs. Distance from interface center. Regressions for the 
interfaces in the FLIPdb training set with the 10 most positive [1acy_HP, 1biq_AB, 
2cii_AC, 1b5e_AB, 1edh_AB, 1pky_BD, 1tx4_AB, 1hjc_AC, x1bsf8_AJ, 1bo5_OZ] and 
10 most negative [1tzi_AV, 1acy_LP, x1ppf2_EZ, x1dv82_AC, x1wtl_BZ, x1py94_AE, 
x1erv2_AC, x1gaf2_LY, 1scu_BD, 1c02_AB] intercepts. FLIP are shown in green and 
blue [1tzi_AV, 1acy_LP]. FunC are shown in red and yellow [x1bsf8_AJ, 1bo5_OZ]. 
∆∆Gala are normalized to MAX(ABS(∆∆Gala)), while distances of each residue’s Cα from 
the mean of the Cα positions (Center of Interface) are normalized to MAX(distance). All 
3 plots generally show that FLIP interfaces are more centralized and radially symmetric 
than FunC interfaces. 80% of shown positive intercepts are FLIP and 80% of shown 
negative intercepts are FunC. [Figures (a,b) generated using JMP [46]. Figure (c) 
generated using Microsoft Excel, 2008] 
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Figure 2.2. The Energy Centrality Relationship (ECR) for Interface Evolution. 
The ECR hypothesis is that upon initial fortuitous protein-protein association, residues 
in a nascent interface have a selective pressure to maintain or improve the affinity 
arising from the initial contact, while simultaneously having a similar pressure on 
residues surrounding that contact. (a) and (b) show a conceptual PPI that has a radially 
symmetric distribution of ‘hot’ (energetically favorable, red) and ‘cold’ (energetically 
unfavorable, blue) residues in a FLIP, while (c) and (d) are example residue energy 
distributions of weaker (c) and stronger (d) affinity FunC. Over evolutionary time (c-
f), selective activity, affinity, and specificity pressures on residues in a FunC produce a 
radially symmetric pattern in the energetics of the interface. The resulting interface 
should demonstrate “stronger” energies near the “older” regions of the interface. These 
“older” regions may or may not demonstrate sequence conservation as the pressure is 
on energy, not identity. As natural interfaces are generally more punctate than the ideal 
model, we expect that while both FLIP and FunC interfaces may demonstrate multiple 
contacts, only FLIP interfaces will maintain overall centrality (e-f).  
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Figure 2.3. Correlation of Features with Principal Components. Loading plots of the 
eigenvector coefficients of each feature analyzed by PCA show the influence and 
correlations of each variable to the principal components. Eight features were analyzed to 
identify the set of features that could represent ~80% of data variation in the first two 
principal components (see text for feature descriptions). (a) 80.3% of the total variance of 
all eight features could be accounted for with just the first two PCs, though R2_∆∆G 
(red) had demonstrably smaller coefficients. (b) Exclusion of R2_∆∆G produced a PCA 
over 7 features whose PC1 and PC2 accounted for 87.9% of the variance. (c) After 
removal of 49 interfaces predicted to be FLIP in the first PCA, a second round of PCA 
using the same seven features but with only data for the remaining 110 protein interfaces 
was calculated. This PCA produced eigenvectors that had 84.2% of the variance in the 
first two PCs. [Figure generated using JMP [46] and Microsoft Excel, 2008]. 
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Figure 2.4. PCA and K-means Clustering of Training and Test-18 Sets. Principal 
component analysis followed by K-means clustering was performed on the residues in the 
100 FLIP and 60 FunC interfaces in the FLIPdb. The same 7 features identified in Figure 
2.3 are used here and the number of clusters was set to k=2. Green (“cluster 1”) and red 
(“cluster 2”) ovals represent 1 standard deviation for Euclidean distances around the 
cluster centroid marked by “x”.  Interfaces are indicated with symbols representing their 
functional sub-category. Green and Blue symbols are FLIP structures, but blue symbols 
are specifically AbAg and Inhibitor sub-categories. Red symbols are FunCs. (a) and (b): 
training set. (c) and (d): Test-18 testing set. (a) 49 FLIP interfaces (mostly enzymes and 
immunoglobin Heavy-Light chains) and 1 FunC are identified in cluster 1 (98% 
precision). (b) After removal of these 50 interfaces, a second PCA analysis of the 
remaining 110 interfaces produces new clusters with 48 and 62 members, respectively. 
PCA 2 Cluster 1 is 64% FLIP and cluster 2 is 68% FunC. Overall accuracy across both 
(a)+(b) is 76%. (c) and (d) show the projection of the 7 feature values 18 unrelated PPIs 
in the Test-18 set through the principal components developed on the training set. 
Enzymes and immunoglobin Heavy-Light again dominate cluster 1 (100%) and overall 
accuracy in both clusterings is 78%. [Figure generated with JMP [46] and Microsoft 
Excel, 2008]  
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Table 2.1. Summary of Protein and Protein Interface Counts in FLIPdb. 

Function Training Set Test 18 Set 

Category Sub-
categories 

PDB 
Structures 

Protein 
chains Interfaces PDB 

Structures 
Protein 
chains Interfaces 

FLIP 

AbAg* 4 15 12 1 6 5 
AbHL* 5 10 5 1 4 2 

Enzyme 33 74 40 2 4 2 

Structural 7 21 16 1 2 1 

Receptor 7 16 10 1 2 1 

Regulator 9 20 12 1 2 1 

Inhibitor 3 10 5 1 2 1 

Total 63 155 100 7 18 13 

FunC 
FunC 22 47 25 - - - 

XFunC‡ 23 44 35 5 10 5 

Total 44 89 60 5 10 5 

Total   94 219 160 7 19 18 

*  Proteins chains are common to multiple sub-categories though the interfaces are 
distinct. 
‡ Interfaces are constructed from existing FLIPs through coordinate transformations 
arising from the symmetry of the source X-ray crystal structure (XFunCs). 
 
FLIPdb contains 160 interfaces in 94 structures involving 219 individual protein chains.  
These interfaces have been assigned to FLIP or FunC functional categories and 9 
functional sub-categories based on a review of the literature (see Supplement Table S2.1). 
Due to the reuse of some chains, the totals represented in the first two columns do not 
sum across sub-categories. 
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Table 2.2.  Accuracy of Clustering in Training and Test-18 Sets. 

Training 
Set† 

True 
Positive 

(TP) 

False 
Positive 

(FP) 

False 
Negative 

(FN) 

True 
Negative 

(TN) 
Accuracy MCC 

1st clustering 

49 1 51 59 67.5% 0.49 

2nd Clustering 

31 17 20 42 66.4% 0.32 

Total* 80 18 20 42 76.3% 0.50 

Test 18 
Set† 

1st clustering 

3 0 10 5 44.4% 0.28 

2nd clustering 

6 0 4 5 73.3% 0.58 

Total* 9 0 4 5 77.8% 0.62 
†TP: FLIP found in Cluster 1 †TN: FUNC found in Cluster 2 
†FP: FUNC found in Cluster 1 †FN: FLIP found in Cluster 2 
*Total FNs and TNs do not add sum across 1st and 2nd clustering. TP and FP sum, but FN and TN arise only 
from 2nd clustering 
 
 
The accuracy and Matthews correlation coefficient (MCC, a measure of the quality of a 
binary classification) of the results of the clusterings shown in Figure 2.4 are indicated. 
The overall accuracy is 76% and 78% for both training Test-18 sets, respectively. TPs are 
quite readily identified in both training and Test-18 sets (80% and 69% sensitivity, 
respectively). The majority of TPs are enzymes and immunoglobin heavy chain-light 
chain interactions. TNs are less well identified (70% and 56% negative predictive values, 
respectively). MCCs of 0.50 and 0.62 indicate that our simple two-category approach is 
generally appropriate. 
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Supporting Information  

 

Figure S2.1. PCA and K-means Clustering of the Dey-170 Set. 
Projection of the 7 feature values of the PPI in the Dey-170 set through the principal 
components developed on the training set. Grey dots show the values of the training set. 
Green and red ovals represent 1 standard deviation for Euclidean distances around the 
cluster centroid marked by “x”.  Values for Dey-170 interfaces are indicated with purple 
symbols representing “Strong” PPI interactions and blue symbols representing “Weak” 
PPI interactions. (a) and (b) shows projections through PCA 1 and 2 principal 
components, respectively. (a) 60% of Strong PPI and 0% Weak PPI group in cluster 1 
while 40% of Strong and 100% of Weak group in cluster 2, yielding 100% precision and 
100% negative predictive value. (b) After removal of the 82 PPI in cluster 1, a second 
projection of the 88 remaining values through PCA 2 produces new clusters with 54 and 
34 members, respectively. PCA 2 Cluster 1 is 78% Strong while cluster 2 is 59% Weak. 
[Figure generated with JMP [46] and Microsoft Excel, 2008] 
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Supplementary Tables  

Due to dissertation formatting constraints, please see the following webpage for full 
table: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0097115 
 
Table S2.1. FLIPdb Interface Composition 
Structures and interfaces used in the training and testing sets. The FLIPdb database 
contained 160 pairwise PPI between 219 protein chains that were contained in 94 PDB 
structural files. The Test-18 set contains 18 pairwise PPI between 19 proteins chains 
contained in 7 PDB files. Based on literature review, these PPIs were categorized into the 
FLIP or FunC interface class (100 FLIP, 60 FunC). The PPIs were further sub-
categorized into 7 FLIP and 2 FunC sub-categories: 1) antibody-antigen (AbAg); 2) 
immunoglobin Heavy Chain/Light Chain (AbHL); 3) Enzyme-Enzyme, both transient 
and persistent (Enzyme); 4) having a generally persistent structure that provides 
mechanical stability, such as cytoskeletal or viral proteins (Structural); 5) peptide/protein 
inhibitors to an enzyme (Inhibitor); 6) proteins whose function is to recognize 
peptides/proteins (Receptor); 7) proteins regulated by post-translational modification by 
another protein (Regulated); 8) PPIs in an asymmetric crystal unit NOT found to be FLIP 
(FunC); and 9) PPIs obtained by applying crystal symmetry transforms to FLIP structures 
(XFunC). The Dey-170 set contains 170 pairwise PPI between 301 proteins chains 
contained in 139 PDB files. Categories were uncurated and sub-categories of “Strong” 
and “Weak” were derived from [7]. The number of chains, number of interfaces, and the 
references used to justify classification for each pairwise interface are listed. 
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Table S2.2. Summary of Protein and Protein Interface Counts in Dey-170. 
 

Function Dey-170 Set 

Category Sub-
categories 

PDB 
Structures 

Protein 
chains* Interfaces 

Unknown 
Weak 17 46 32 
Strong 127 266 138 
Total 139 301 170 

*  Proteins chains are common to multiple sub-categories though the interfaces are 
distinct. 
 
Dey-170 contains 170 interfaces in 139 structures involving 301 individual protein 
chains.  These interfaces have been labeled as Strong or Weak categories based on 
information available in [7] (see Supplement Table S2.1). Due to the reuse of some 
chains, the totals represented in the first two columns do not sum across sub-categories. 
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Table S2.3. Pseudo-Accuracy of Clustering in Dey-170 Test Set 

 

Dey-170 
Testing 
Set 

True 
Positive 

(TP) 

False 
Positive 

(FP) 

False 
Negative 

(FN) 

True 
Negative 

(TN) 
Accuracy MCC 

a)† a 
 
Assuming  
All:FLIP 

1st clustering projection 

82 0 88 0 48.2% -0.005 

2nd clustering projection 

54 0 34 0 61.4% 0.05 

Total 136 0 34 0 80.0% 0.12 

b)‡ 
 
Assuming 
Weak:FUNC 
Strong:FLIP 

1st clustering projection 

82 0 56 32 67.1% 0.46 

2nd clustering projection 

42 12 14 20 70.4% 0.37 

Total* 124 12 14 20 84.7% 0.51 
†TP: FLIP found in Cluster 1 †TN: FUNC found in Cluster 2 
†FP: FUNC found in Cluster 1 †FN: FLIP found in Cluster 2 
aMCC adjusted to set all zero-values to 1 
‡TP: Strong found in Cluster 1 ‡TN: Weak found in Cluster 2 
‡FP: Weak found in Cluster 1 ‡FN: Strong found in Cluster 2 
*Total FNs and TNs do not add sum across 1st and 2nd clustering. TP and FP sum, but FN and TN arise only 
from 2nd clustering 
 
 
 
The accuracy and Matthews correlation coefficient of the results of the cluster projections 
for the PPI in the Dey-170 test set shown in Figure S2.1. Values likely represent a lower 
limit, as all PPI in this set were purposely not rigorously curated and were operationally 
presumed (a) to be FLIP or (b) for Weak to be FUNC and Strong interactions to be FLIP. 
(a) The overall accuracy is 80%. Subsequent projection rounds and the overall MCC shift 
positively to 0.12. The accuracy greater than 75% and MCC > 0 (b) Presuming Weak 
interactions match FUNC and Strong interactions match FLIP yields a larger accuracy of 
84.7% and a MCC of 0.51.  
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Table S2.4.  Random Sub-Sample Validation of FLIPdb Training Set 
 

% FLIPdb                         
(# of Interfaces)  Trial TP† FP† FN† TN† Accuracy MCC 

100                      
(160) 

1 80 18 20 42 76% 0.50 

90                        
(144) 

1 68 15 21 40 75% 0.48 
2 70 16 19 39 76% 0.49 
3 74 18 17 36 76% 0.48 

80                         
(128) 

1 67 19 11 31 77% 0.50 
2 64 15 16 33 76% 0.49 
3 64 14 19 30 74% 0.44 

70                          
(112) 

1 32 0 35 45 69% 0.52 
2 56 16 12 28 75% 0.47 
3 40 3 29 40 71% 0.51 

60                           
(96) 

1 39 4 22 31 73% 0.51 
2 47 15 12 22 72% 0.40 
3 53 14 12 17 73% 0.37 

 50                          
(80) 

1 38 2 14 26 80% 0.63 
2 34 4 17 23 73% 0.49 
3 42 10 12 16 73% 0.39 

40                           
(64) 

1 15 3 20 26 64% 0.36 
2 30 12 8 14 69% 0.34 
3 25 4 14 21 72% 0.47 

30                          
(48) 

1 20 1 15 12 67% 0.44 
2 18 1 11 18 75% 0.57 
3 19 4 7 16 76% 0.53 

20                          
(32) 

1 15 2 4 11 81% 0.63 
2 12 5 7 8 63% 0.24 
3 10 0 15 7 53% 0.36 

‡ ) TP: Strong found in Cluster 1 TN: Weak found in Cluster 2 
FP: Weak found in Cluster 1 FN: Strong found in Cluster 2 

 
The distribution of overall accuracies and MCCs of repeated retraining when sub-samples 
of the training set were generated randomly in triplicate for subsets ranging from 90% to 
20% of the original. The general accuracy is 70-80% until more than 50% of the training 
set is removed. MCCs stably range between approximately 0.20-0.60. This stability 
suggests little compositional bias in the FLIPdb training set. 
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Abstract 

Interacting networks of proteins carry out various biological functions such as 

providing structure, or carrying out metabolic or other cellular processes. Most contacts 

are identified via X-ray crystallography. Often, such interactions are simply crystal 

contacts that lack relevancy to the functions of those proteins. In previous work, we have 

used our Energy Centrality Relationship (ECR) concept to discriminate Functionally-

Linked Interacting Protein (FLIP) structures from Functionally uncorrelated Contacts 

(FunC) by assessing how the energetic contribution of each interface amino acid varies as 

a function of distance from the interface. We hypothesize that evolutionary pressure plays 

an important role in maintaining FLIPs. Here we use Lichtarge’s Evolutionary Trace 

(ET) method to calculate the ET score (ρ) and alignment variability (# of states) of 

residues within various types of interfaces. Using Principal Component Analysis and 

K-means clustering on a set of 154 interfaces, we were able to distinguish FLIPs from 
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FunCs with an accuracy of 69%. Here we show that while having a central tendency and 

showing more conservation at the core than at the edges, FLIPs nevertheless had more 

variability than would otherwise be expected, perhaps demonstrating conservation of 

energy at the expense of sequence stability.  

Introduction 

Protein-protein interactions (PPIs) form important components of cellular 

machinery and are involved in performing various biological processes1-5. Some key 

characteristic features of PPIs used in interface detection are shape and electrostatic 

complementarity, size of the interface (including buried surface area, number of residues, 

and number of core interface atoms), flexibility, solvation energy, and sequence 

conservation of the interactors (amino acid residues) 6-12. Interfaces also often differ from 

the remainder of the protein surface, exhibiting the following characteristics: surface 

planarity13, enriched residue conservation14, prevalence of aromatic residues15, modular 

architecture16, uneven distribution of hot spots (energetically important residues) 2, 17, and 

increased packing18. These features can be used to characterize PPIs and combinations of 

these features have been used to differentiate between: (a) biologically relevant interfaces 

and artifacts of crystallization19, (b) transient and obligatory interfaces9, 20, and (c) native 

and non-native poses in protein-protein docking21, 22. The presence or absence of these 

general characteristics have also led to various hypotheses in interface delineation; for 

example, one group suggested that non-conserved residues surround hot spots at the 

interface, commonly known as the O-ring hypothesis17. Another suggested the interface 
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could be divided into a core region, consisting of buried residues and a rim region, 

consisting of exposed residues23. 

Even with these diverse sets of features available, in order to understand protein 

interactions, it is important to know which residues at the interface contribute the most to 

the stability of the interface24. X-ray crystallographic and NMR (Nuclear Magnetic 

Resonance) structures provide atomic level details of proteins but are often limited to 

individual domains that may also lack specific binding site information25. The importance 

of each residue towards maintenance of structure and function has often been assessed by 

looking at how conserved it is within a family of proteins8, 10, 26-30.  

Residues critical to binding are more likely to be conserved12 and located in 

structurally important locations and at active sites25, 28-32. In general, residues at interfaces 

are slightly more conserved when compared to surface residues26, 33 but not significantly 

different from the interior34. This suggests that interfacial and core regions are important 

to maintaining structure and function, and that the surface residues are less actively 

involved in the folding and stability of the protein35. Conservation signals are observed 

by comparing interface to surface residues and a high signal-to-noise ratio could be 

indicative of mutations that are not well-tolerated35. It could be understood from evidence 

available that by coordinating with residues directly involved in binding, residues away 

from the binding sites could influence the stability of PPIs24.  

It is possible conservation is seen at the interface because these binding sites are  

subjected to natural selective pressures to maintain the interaction over evolutionary  
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time36. Multiple sequence alignment (MSA) and phylogenetic tree based methods have 

been used by several groups to study conservation patterns at interfaces10, 27-30, 37. While 

Lichtarge and co-workers have looked for patterns in functional groups of homologous 

sequences of a protein family25, Lockless & Ranganathan have shown energetic coupling 

of residues at the interface with distant residues and that these coupling pathways were 

evolutionarily conserved38. These methods were, however, based on the idea that residues 

at the interface are more conserved than the rest of the protein38. Grishin & Phillips tested 

this idea and showed that active site residues were highly conserved and evolved at a 

slower than average rate34. Interfacial and core residues on the other hand were not as 

well conserved and evolved as rapidly as the rest of the protein surface. Interfacial 

residues, although less conserved than active sites, were still more conserved than the 

surface residues34. Buyong et al, in their correlation studies, show that energy hot spots 

are generally conserved and that these residues can help distinguish between interfacial 

and surface residues39. Groups employing sequence conservation for interface detection 

have had mixed success depending on precisely which features they employ. To date the 

EPPIC server of Duarte appears to achieve one of the highest successes at an impressive 

89% accuracy on the set of Ponstingl10, 40; however they, like others, combine several 

hybrid approaches with sequence conservation. 

In previous work41, we operationally defined Functionally Linked Interfaces of 

Protein (FLIP) structures as interfaces known to be critical to biological function. This 

would include interfaces known to oligomerize in vivo or ones in which mutation, 

chemical modification, or other physical change to the PPI alters the native biological 
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function. Similarly, PPIs with no such identified alteration in function, such as known 

obligate monomers, crystal contacts, or artificial constructs, were defined as Functionally 

uncorrelated Contacts (FunC). In our prior work, by combining geometric relationships 

from atomic resolution structures and energetic data from computational alanine scanning 

(∆∆Gala), we could distinguish FLIPs from FunCs with 76-80% accuracy41. In that work, 

while both FLIPs and FunCs demonstrated strong and weak energetic values, overall 

FLIPs demonstrated much stronger energies than FunCs. In addition, these energies were 

organized radially around the geometric centers of the interface. FunCs, on the other 

hand, tended to have smaller, energetically weaker, and less organized features. The 

presence of a central tendency, which we term the Energy Centrality Relationship or 

ECR, in FLIPs suggests a progressive re-organization relative to the interface center, 

possibly through selective pressure on interface maintenance. This ECR concept is 

supported by the fact that radial symmetry of sequence variation in functionally important 

regions is also observed in Evolutionary Traces from Lichtarge and colleagues25. It is also 

in qualitative agreement with work by Janin8, 23 and Capitani10 showing interface rims are 

less important for PPI detection than well packed and buried cores17. 

FLIP interfaces in general exhibited more specificity and an overall greater 

central tendency than FunCs, suggesting that FLIPs experience selective pressure to 

maintain a stable interface. Over evolutionary time these selective pressures might 

generate a radially symmetrical pattern, with more conserved residues at the center of the 

interface in FLIPs. FunCs on the other hand experience limited or no selective pressure 

and should have more random distribution of conserved residues.  
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To test this concept, we analyzed the FLIPdb set of PPI from our earlier work. For 

each interface, we used Lichtarge’s Evolutionary Trace method37 and our own geometry 

calculations to determine the residue conservations patterns in an interface as a function 

of geometric distribution in the interface. ρ-score and # states in multiple sequence 

alignment values were regressed against distance from the center of the interface. 

Principal component analysis42 and K-means clustering43 were used to identify 5 spatial 

characteristics of sequence conservation that could distinguish FLIPs from FunC, with 

69% accuracy. The same characteristics were used to analyze a test set of 18 sequence 

dissimilar interfaces, though only with 61% accuracy. To test for compositional bias, 

random sub-sample analysis was used and indicated little bias. Overall, as with energetic 

criteria, sequence conservation also could distinguish FLIPs from FunC, and protein 

interfaces with similar biological functions were found to group together. FLIPs were 

indeed found to have more stable cores and more variable edges. In head-to-head and 

hybrid comparisons, sequence conservation was found to be not as strong a discriminator 

as previous energetic based features. 

Though slightly lower in accuracy, this work is useful, particularly in comparison 

to our prior work as we show that while having a central tendency and showing more 

conservation at the core than at the edges, FLIPs nevertheless had more variability than 

would otherwise be expected, perhaps demonstrating conservation of energy at the 

expense of sequence stability.  
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Results 

Database composition – FLIPdb-ET 

Here, we analyzed the sequence conservation patterns of the interfaces in our44 

interface database, FLIPdb. The protein interfaces studied were the same as in our 

previous work, although 6 interfaces generated pathological errors and were excluded 

(Table 3.1).  In 4 proteins (1daz_AD (inhibitor), 1aw7_CD (FunC), 1pky_AB, and 

1pky_BD (Enzyme)), the Evolutionary Trace (ET) method25, 37, 44 failed due to a lack of 

sufficiently similar sequences being generated by BLAST45. In the remaining 2 proteins 

(1tzi_AV, 1tzi_BV (Ab-Ag)), the ET method identified sequences whose conservation 

scoring patterns were more than twice the upper confidence limit during Mahalanobis 

outlier analysis at an α = 0.05 and were therefore removed from further consideration. 

The version of FLIPdb used for the analysis of ET data (FLIPdb-ET), therefore, consists 

of 154 interfaces (Table 3.1). Since the rejected interfaces were from different functional 

sub-categories and comprised only 4% of the original data, we did not expect their 

exclusion to have substantial impact on data analysis and conclusions drawn from it. The 

test set used to validate was the same as in our previous work41. 

ρ distribution in PPI 

We used Lichtarge’s Evolutionary Trace method25 to determine two measures of 

sequence conservation, the degree of amino acid variation at a given multi-sequence 

alignment position (ρ) and the number of amino acid states for a residue in a multiple 

sequence alignment (states). Simplistically, the ρ score is a Shannon entropy hybridized 

with a tree branch ranking trace37. These sequence conservation metrics were also 
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compared to their geometric distribution in the interface (r, distance (Å) of each residues’ 

Cα from the mean Cα position). The distributions of the two metrics were compared 

between FLIPs and FunCs. Two representative examples are shown in Figure 3.1, in 

which we compared analysis of the structure of a FunC (PDBid: x1brw1, chains A and Z 

– a crystal contact of the PDB structure 1brw – a nucleoside pyrolase) and a FLIP 

(PDBid: 1osj, chains A and B – an oxidoreductase dimer. Histogrammed contours of the 

variation in ρ are plotted on major axes of the interface geometry (as determined by 

Principal Component Analysis) (Figures 3.1A and B). These analyses indicate that, in the 

FLIPs, conserved residues are more centrally located and exhibit a radial distribution 

pattern (Figure 3.1B). FunCs, on the other hand, have more random distribution of 

conserved residues and generally do not display a radial distribution pattern or central 

tendency (Figure 3.1A). Conservation scores and distances for interfaces in the FLIPdb 

were then fit to first order polynomial line via linear regression, generating slopes and 

intercepts. The distribution of the upper and lower quartiles of slopes are shown in Figure 

3.1C. FLIPs tend to populate the positive slope region (mean 0.08, range -2.63:1.09) 

while FunC, (mean -0.109, range -1.82:0.94) tended to populate the negative slope 

region. One-way ANOVA at an α = 0.10 and using Kruskal-Wallis tests show slopes of 

the # of states are significantly different (P ≤ 0.029) between FLIPs and FunCs. Positive 

slopes are indicative of a central tendency with less sequence variation at the interface 

center and more sequence variation at the periphery. The average negative slope of 

FunCs suggest that they have just the opposite behavior with more sequence variation at  
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the interface centers, in agreement with8, 10, 17, 23. Interestingly, Ab-Ag interactions had 

amongst the most negative slopes (mean -0.772, range -2.63:0.217) and were distinctly 

more similar to FunCs that to FLIPs. Summary statistics are described in the next section. 

Evolutionary and Geometric Features 

We analyzed sequence variation (number of states and ρ) and its correlation with 

distance from Center of Interface (CoI) to represent PPIs. By regression of these 

variations to geometry, we generated 4 features: the sequence variation as a function of 

distance (slope_state and slope_ρ), and the sensitivity to variation at the interface center 

(intcpt_state and intcpt_ρ).  	
  

Three (3) features describe net sensitivity to variation at the interface: collective 

variation of all residues at the interface (sum_states, sum_ρ), mean variation for all 

residues at the interface (avg_states, avg_ρ), and total number of residues at the interface 

(#total) (Figure 3.2). Non-parametric one-way ANOVA at an α = 0.10 with Kruskal-

Wallis tests show all features based on # states were significantly different between FLIP 

and FunC (P_slope ≤ 0.02, P_intcpt ≤ 0.004, P_sum ≤ 0.001, P_avg ≤ 0.01 and P_total ≤ 

0.0001). Somewhat unexpectedly, of the features based on ρ -scores from Evolutionary 

Trace, only the intercept and averages were significantly different (P_intcpt ≤ 0.0006, 

P_avg ≤ 0.003). Though statistically distinct, individually, none of these features were 

found to sufficiently correlate with FLIP or FunC designations such that a single feature 

could be used to identify the category. 
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Principal component analysis (PCA) 

With no individual feature easily discriminating FLIP from FunC, a multi-

factorial approach of Principal Component Analysis of the 9 features for all 154 PPI in 

the training set was undertaken. Features with lower eigenvector coefficients were 

systematically removed until the first two principal components (PCs) reproduced 80% of 

the normalized data variations (Figures 3.2 and 3.3). Terms based simply on the number 

of amino acid states, rather than ρ, demonstrated larger eigenvector coefficients (i.e. 

better correlations). While this was consistent with the ANOVA, this still surprised us, as 

traces and Shannon entropies generally produce more useful and reliable comparisons 

than simple residue variation. One source of the stronger correlations with number of 

states may have been the fact that ρ is derived from the branches and log frequencies of 

one chain whereas our geometric analyses essentially mixed the ρ of two chains. Simple 

variation in states is less dependent on within chain clustering and may have been more 

resilient to our simplistic analyses. In the future work, a multi-point coupled analysis like 

that of Ranganathan38 may improve the relationship with ρ. Because of this poor 

correlation and lack of statistical difference, ρ-based terms were eliminated. The resulting 

PCA reproduced 84.1% of the variance in the first two principal components. 

K-means clustering	
  

 To ascertain if the features identified could identify groups of FLIPs and FunCs, 

we performed a K-means cluster analysis. The K-means method clusters data into k 

clusters based on specific criteria (features identified from loading plot). The clustering 

analysis with a two-cluster assumption (k = 2) of our data produced two clusters whose 
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centers straddled the origin for both PC1 and PC2, indicating opposing correlation trends 

(Figure 3.3). Cluster 1 (hereafter called the FLIP cluster as it contained more FLIPs than 

FunCs) contained 92% and 69% of FLIP and FunC interfaces, respectively. Cluster 2 

(hereafter the FunC cluster as it contained more FunCs than FLIPs) contained 8% of all 

FLIP and 30% of FunC interfaces. Further inspection indicated that PPIs in the FLIP 

cluster were more positive on PC1. Limited trends emerged from our analysis, including 

the fact that distinct sub-category groupings of FLIPs and FunCs were observed and that 

Ab-Ag and inhibitors cluster with FunCs, as was seen in energetic analysis. A second 

clustering of only the 26 interfaces in the FunC cluster was performed to further analyze 

these initial trends. The same set of variables was used in the second clustering and it 

produced PCs that represented 87% of the data variation in the first two PCs (Figure 3.2 

C). In both clusterings, FunC, XFunC, and Ab-Ag sub-categories dominated the FunC 

cluster and the PCs produced had similar eigenvector correlation coefficients for these 

sub-categories. From these results we understood that interfaces in the two clusterings 

had similar data dependencies. K-means clustering of the second PCA also produced two 

clusters; cluster 1 contained 50% of the unassigned FLIPs and 3% of FunC interfaces 

again demonstrating discrimination. Over two-rounds of clustering, 95% of the FLIPs 

positively correlated with the chosen features and 28% of the FunCs negatively correlated 

with the features.  FLIPs were defined by larger interfaces that correlated with lower 

average #states (more conservation) at the interface. 
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Accuracy and Matthews correlation 

Analysis of the two rounds of PCA of the training set PPI data achieved 

accuracies (propensity to correctly identify FLIP or FunC) of 68% and 77% in each round 

of clustering. Over both rounds the total accuracy was 69% (Table 3.3). This accuracy 

was rather lower than might be expected based both on the success of our earlier 

energetic analysis (76-80%) and on the success of other sequence conservation methods 

that achieved accuracies as high as 84-89%9, 10. However, the Matthews Correlation 

Coefficient (MCC), a measure of how well a binary classification matches the data, was 

0.29 in clustering round one and 0.54 in clustering round 2, and 0.30 overall. Again, this 

was slightly lower than using energetic criteria but still consistent with a two-cluster 

approximation. 

Cross-validation testing 

While analysis of the training set favorably predicted distinct feature set 

correlations between FLIPs and FunCs, it was possible that the relationship was training 

set dependent. To test this, we repeated the analyses on the same test set of 18 unrelated 

proteins as used in our previous work41. This set of 18 interfaces was design to have less 

than 70% sequence conservation with the training set. No new PCA or K-means 

clustering analyses were undertaken; rather the features of the test set were projected 

through the PCs of the training set. Test set projections are shown in Figures 3.3C and D. 

The overall accuracy was lower than the training set at 61% (Table 3.3). Similarly, MCC 

values of the test set were much lower than the training set at -0.22 (Table 3.3). In 

previous work based on energetic analysis, this test set gave us superior results (78%) and 
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extremely consistent results with the training set. This test set was small in number and 

was slightly enriched in Ab-Ag interactions, both factors potentially reducing our success 

rates. 

Because of this possible training set dependence, we evaluated the compositional 

bias of our training set for sequence variation using random sub-sampling validation 

(Table 3.5). Sub-samples of the training set were generated randomly in triplicate for 

subsets ranging from 90% down to 20%. Regression analysis at an α = 0.10 for 1st 

through 6th order polynomial fits of number of PPI vs. Accuracy show substantial Lack of 

Fit error and a lack of statistical significance for all but the 4th order fit, which has a tepid 

P ≤ 0.5. Overall, from regression analysis we can infer that little compositional bias exists 

until the number of PPI falls substantially below 50% of the training set. As our test set 

had only 18 interfaces (12% the size of our training set) and several of those were Ab-Ag, 

we may have fallen into this limit. In effect, our test may have been biased. This was 

unexpected as the test set was highly consistent with training results in previous energetic 

analysis. These results suggest that conservation data is potentially more training set 

dependent than energetic data and may be less suitable for FLIP/FunC discrimination. 

Energetic and evolutionary features 

Our previous work using energy distributions from computational alanine scans in 

PPI had yielded seven features that can distinguish FLIPs from FunCs with 76-80% 

accuracy41. Even though analysis of features obtained from our calculations of sequence 

conservation and geometric data seemed to be more training set dependent than energetic 

analysis, we explored combining features obtained from energy and geometric 
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calculations with the sequence conservation features. No ρ values were tested as they had 

previously been found to be less diagnostic than #states. The 11 combined features 

accounted for 64% of the total variance in the first two PCs (Figure 3.4A). Three features, 

intcpt_states, avg_states and slope_states, were excluded from further analysis due to 

limited contributions (coefficients less than 0.6) to the overall data variation compared to 

energetic features. Though these values were distinct in conservation analysis alone, they 

were not as strong as energetic values in describing the data. The net effect was adding 

only the sum_states feature to the energetic features. A loading plot of these features 

shows PCs 1 and 2 accounted for 85% of the variance (Figure 3.4B).  

The results of clusterings of these 154 interfaces using both 11 features and 8 

features with k = 2, are shown in Table 3.4. All 11 features produced clusters with 75% 

accuracy and essentially the same discriminatory characteristics as energy alone (Table 

3.4.A). However, when energy features were coupled with the one single strongest 

sequence variation trait (sum_states, Table 3.4.B), the accuracies essentially dropped 

below sequence conservation accuracies almost to random guessing.  Oddly, the MCC’s 

remained high, continuing to suggest a two-category model was appropriate. By 

themselves, each feature appears capable of discriminating FLIPs from FunCs. However, 

these data suggest that hybridizing energetic and sequence conservation methods cancel 

the sensitivity of the other. Overall this suggests that energetic-based criteria are more 

useful for interface detection than sequence variation. 
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Discussion 

Evolutionary trace can distinguish FLIP from FunC interfaces 

Our comparison of evolutionary data with interface geometries during analysis of 

the training set seems to suggest FLIP interfaces are likely to have different residue 

characteristics than FunC interfaces. FLIP PPIs could be distinguished from FunC PPIs 

with 69% accuracy (Table 3.2). This result is also supported by the fact that PPIs of the 

same functional sub-category generally have similar PC projection values such that they 

cluster (Figure 3.3), even though FLIP and FunC categories had substantial overlap in 

characteristics. Our cross-validation methods provided mixed messages. Random sub-

sampling had little compositional bias until random compositions of less than 50% of the 

training set were tested, while the test set of 18 PPI with less than 70% sequence identity 

achieved limited success with sequence traits but high success with energetic traits. The 

relationship between sequence conservation and geometry, as we have used it here, does 

not seem to be as reliable a FLIP/FunC discriminator as energetic criteria. Irrespective of 

that, certain overall patterns did seem to consistently emerge from our analyses from both 

training and testing sets (Figures 3.2, 3.3). 

Physical interpretation 

Consistent with our hypothesis of FLIPs having a central tendency, FLIPs had 

positive correlation with the regression slope of number of states, meaning that less 

variation occurs near the interface center relative to the edges. FunCs on the other hand 

seemed to be much more variable in conservation patterns and indeed were generally 
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negatively correlated with slope, meaning they have more variation towards the center.  

This is also consistent with the patterns observed by Lichtarge and colleagues in 

numerous systems37, 44, 46. 

Contrary to our expectations, our hybridization of energetic and sequence 

conservation studies was actually worse than using energy or sequence traits by 

themselves (Figure 3.4A&B). We suggest this cancelling out of sensitivity in FLIP 

interfacial residues may be due to the co-evolutionary “optimization” of the interface. 

During selection at an interface, different co-evolved residue interactions can equally 

well improve energetic stability. This would have the effect of increasing sequence 

variation and disrupting correlation with geometric patterns. This type of mixed 

population should be amenable to detection by Evolutionary Trace methods if the 

correlation between chains can be established. 

Implications 

The geometric distribution of conservation features can distinguish between 

FLIPs and FunC but only with limited accuracy. While several conservation trends 

consistent with the findings of others emerge from our analysis, the discriminatory power 

is less than that of energetic criteria. Thus, sequence conservation methods, as we 

implement them here, may be less reliable at FLIP/FunC discrimination. This mixed 

success using conservation methods is consistent with prior findings38, 39, 47. Sequence 

conservation is not simply a result of chemistry but also genetic control mechanisms that 

may not be represented by positional variation within the protein.  
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In our previous ECR work, we saw enzymes and Ab-HL to be strongly associated 

with FLIPs; Ab-Ag, though classified FLIP, strongly grouped with FunCs, and 

Structurals clustered with both FLIPs and FunCs. Cluster analysis on conservation data 

also generated results consistent with our ECR work41.  

Clustering shows that our operational definition of FLIP/FunC may not be 

appropriate for all functional sub-categories. Ab-Ag, for example, tends to cluster with 

the FunCs. These findings are consistent with our previous energy-based studies. We 

suggest that sequence variation alone, as a function of geometric distribution at the 

interface, is less likely to cleanly differentiate FLIP from FunC and that energetic criteria 

be used whenever possible. 

Additional studies excluding Ab-Ag interfaces were performed to assess if these 

interfaces improved or obscured data discrimination. In this modified clustering analysis 

we achieved an accuracy of 75% and a MCC of 0.32. These were promising results as 

they not only produced a larger success of predicting FLIPs and FunCs but also clarified 

the nature of these interfaces. It could mean that though Ab-Ag interactions have a 

selection component during somatic cell hypermutation and B-cell selection, it may be a 

different evolutionary-like process than that experienced by enzymes. 

Conclusions 

Here, we show that protein-protein interfaces associated with biological functions 

maintain distinct physical features from contacts uncorrelated with function. As in 

previous work, here we show that FLIPs demonstrate a strong central tendency with more 

conserved central cores that have stronger binding and edges that are much more variable 
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and contribute less to interface stability. We show that while having a central tendency 

and showing more conservation at the core than at the edges, FLIPs nevertheless had 

more variability than would otherwise be expected, perhaps demonstrating conservation 

of energy at the expense of sequence stability. We find that energetic-based methods are 

more diagnostic than similar sequence-based approaches. 

Methods 

FLIPdb-ET dataset 

FLIPdb was constructed using atomic resolution structural data available in 

PDB48 and additional information available in literature and structural information 

databases to categorize them into functionally-linked interfaces (FLIP) and functionally 

uncorrelated interfaces (FunC). FLIPdb consists of 160 PPIs and the version of FLIPdb 

used for this project consists of 154 interfaces analysis issues with six interfaces. The 

interfaces omitted were 1tzi_ab, 1tzi_av (Ag-Ab), 1daz_ad (Inhibitor), 1aw7_cd (FunC), 

and x1brw1 (XFunC) (Table 3.1). For details on construction of FLIPdb refer to41. 

Evolutionary trace 

The Evolutionary Trace (ET) method of Lichtarge et al25, used to evaluate all 

interfaces in FLIPdb-ET, is a rapid method for ranking the evolutionary importance of 

residues. Simplistically, the ρ score of ET is a Shannon entropy hybridized with a tree 

branch ranking trace.  All ET analysis was performed using Report_Maker at the ET 

server49.  
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Interfacial geometry 

Kortemme and Baker’s50 definition of interface was used in our analysis. In brief, 

it is residues with atoms within 4 Å of partner chain atoms or residues with Cß buried 

during interface formation. The geometric distribution of residues at the interface was 

studied by calculating the distance (∆r, Å) between residue Cα at the interface and the 

CoI. The CoI is defined as the mean of all interfacial Cα positions.  

Geometry analysis 

Linear regressions of ρ or #states values with ∆r were calculated using 

GNUPLOT51 and our own software. The calculations provided 7 features for each 

interface: the slope (slope_ρ and slope_states), intercept (intcpt_ρ and intcpt_states), net 

variation of all residues at the interface (sum_ρ or sum_state), mean variation of all 

residues at the interface (avg_ρ, avg_states), and total number of residues in the interface 

(#total). 

Principle component analysis (PCA) 

Principle component analysis of the variation of ρ, variability and geometric 

feature data for all PPI was undertaken using JMP52. PCA determines a set of linearly-

uncoupled eigenvectors from normalized correlations between variables that 

progressively describe the largest sources of variance in a data set42. The eigenvector 

coefficients for each principal component vector indicate the relative correlation between 

each feature and the overall variation of all features. In this work, we sought to identify 

the set of features that would describe more than 80% of the total set variation in the first 
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two principal components (PCs) such that we could use these PCs to discriminate 

between FunC and FLIP data. The results from these PCA analyses are shown in Figure 

3.2 and Table 3.1.  

K-means clustering 

K-means clustering43 is a data analysis method that clusters observations into a 

specific number of clusters by attempting to find the point(s) that have the lowest mean 

variation from the other input data. When combined with PCA, the combination of 

features that allows input data to be clustered can be identified. In this work, two clusters 

were specified and the correlations between cluster and functional category determined 

(Figure 3A,B, Table 3.3).  

Accuracy and Matthews correlation coefficient 

The following measures were used to assess the performance of our clustering 

analysis:  Accuracy (ACC), the propensity to correctly identify FLIP or FunC: 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁  

and Matthews correlation coefficient  (MCC), a measure of how much a set of predictive 

data agrees with a two-state model: 

𝑀𝐶𝐶 =
𝑇𝑃𝑥𝑇𝑁 − 𝐹𝑃𝑥𝐹𝑁

𝑇𝑃 + 𝐹𝑃 𝑇𝑃 + 𝐹𝑁 𝑇𝑁 + 𝐹𝑃 𝑇𝑁 + 𝐹𝑁!  
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where, 

TP = correctly predicted as FLIPs, TN= correctly predicted as FunCs 

FP = wrongly predicted as FLIPs, FN = wrongly predicted as FunCs. 

These values are shown in Table 3.3. 
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Table 3.1. FLIPdb-ET: Protein Interfaces and Functional Categories 
 
Category Sub-category Protein Interfaces 

FLIP 

Ab-Ag 1acy_HP  1acy_LP  1adq_AH  1adq_AL  1tzi_AV  1tzi_BV  
2bse_AE  2bse_AF  2bse_BD  2bse_BE  2bse_CD  2bse_CF 

AbHL 1acy_HL  1adq_HL  1gaf_HL  1tzi_AB  1wtl_AB 

Enzyme 

1b5e_AB  1biq_AB  1bis_AB  1bjw_AB  1bkp_AB  1bmd_AB  
1brw_AB  1bsl_AB  1bsr_AB  1cg2_AD  1cg2_BC  1cnz_AB  
1coz_AB  1daz_CD  1hjr_AC  1hjr_BD  1itv_AB  1ivy_AB  
1nhk_RL  1nsy_AB  1oro_AB  1osj_AB  1pgt_AB  1pky_AB  
1pky_AC  1pky_BD  1pky_CD  1pre_AB  1qks_AB  1qr2_AB  
1r2f_AB  1scu_AB  1scu_DE  1sft_AB  1slt_AB  1smn_AB  
1sox_AB  1ubs_AB  1vfr_AB  x1ubs1_BZ 

Inhibitor 1cmi_AC  1cmi_BD  1daz_CB  1daz_DA  1ppf_EI 

Receptor 1cdc_AB  1eaj_AB  1fcc_AC  1h0t_AB  1nrv_AB  2bse_AB  
2bse_AC  2bse_BC  2cii_AB  2cii_AC 

Regulator 1awi_AB  1awi_AP  1awi_BP  1edh_AB  1f13_AB  1f4v_AD  
1psr_AB  1qfh_AB  1tx4_AB  2arc_AB  2trc_BG  2trc_BP 

Structural 
1cmb_AB  1f95_AB  1f95_AC  1f95_BD  1sa0_AB  1sa0_AE  
1sa0_BE  1sa0_CD  1sa0_CE  1sa0_DE  1tub_AB  2bkh_AB  
2bki_AB  3kin_AB  3kin_BD  3kin_CD 

FunC 

FunC 

1atn_AD  1aw7_CD  1azt_AB  1bin_AB  1bkz_AB  1bo5_OZ  
1c02_AB  1cmi_AB  1cqx_AB  1f4v_AB  1gqp_AB  1hjr_AB  
1lcu_AB  1m6k_AB  1naw_AB  1nmt_AB  1nmt_BC  
1oio_AB  1ome_AB  1scu_AE  1scu_BD  1scu_BE  1vio_AB  
1xca_AB  3k3e_AB 

XFunC 

x1b8e4_AE  x1brw1_AZ  x1brw3_BY  x1bsf8_AJ  x1bsr1_AB  
x1dto6_AG  x1dv82_AC  x1e872_AC  x1erv2_AC  
x1gaf1_HZ  x1gaf2_LY  x1gaf3_HL  x1ihk3_AD  x1neu4_AE  
x1oal6_AG  x1oro1_AZ  x1oro3_AZ  x1ppf1_EI  x1ppf2_EZ  
x1ppf3_EI  x1py94_AE  x1sox2_BY  x1tx41_AB  x1tx42_AZ  
x1tx43_AB  x1uq54_AE  x1vfr2_AZ  x1vfr3_BY  x1wtl1_BZ  
x1wtl2_BZ  x1xca1_AZ  x1xca2_BY  x1xca3_AB  x3bri2_AC  
x3il85_AF 

*Light grey interfaces were rejected from the analysis due to lack of sufficiently similar sequences.  
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Table 3.2. Summary of Protein and Protein Interface Counts in FLIPdb-ET 
	
  

Function Training Set Test 18 Set 

Category Sub-
categories 

PDB 
Structures 

Protein 
chains Interfaces PDB 

Structures 
Protein 
chains Interfaces 

FLIP 

Ab-Ag* 4 14 10 1 6 5 
AbHL* 5 10 5 1 4 2 
Enzyme 33 73 38 2 4 2 
Structural 7 21 16 1 2 1 
Receptor 7 16 10 1 2 1 
Regulator 9 20 12 1 2 1 
Inhibitor 3 9 4 1 2 1 
Total 63 150 95 7 18 13 

FunC 
FunC 21 45 24 - - - 
XFunC‡ 23 44 35 5 10 5 
Total 43 87 59 5 10 5 

    Total 93 214 154 7 19 18 
* Protein chains are common to multiple sub-categories though interfaces	
  are	
  distinct.	
  
‡ Interfaces are constructed from existing FLIPs through coordinate transformations arising from the 

symmetry of the source X-ray crystal structure (XFunCs). 
 
FLIPdb-ET contains 154 interfaces in 93 structures involving 214 individual proteins 
chains. These interfaces have been assigned to FLIP or FunC functional categories and 
9 functional sub-categories based on a review of the literature41. Due to the reuse of 
some chains, the totals represented in the first two columns do not sum across sub-
categories. 
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Table 3.3. Accuracy of Clustering in Training and Testing Sets 
 

 
 
 
 
Training 
Set 
 

True 
Positive 
(TP) † 

False 
Positive 
(FP) † 

False 
Negative 
(FN) † 

True 
Negative 
(TN) † 

 
Accuracy 

 
MCC 

1st Clustering 
87 41 8 18 68.18 0.29 

2nd Clustering 
4 2 6 16 76.92 0.54 

Total 91 43 6 16 69.48 0.30 

 
Testing 
Set 

1st Clustering 
9 4 4 1 55.56 -0.11 

2nd Clustering 
2 1 2 0 40.00 -0.41 

Total 11 4 2 1 61.11 -0.22 
† TP: FLIP correctly predicted † TN: FUNC correctly predicted 
† FP: FUNC identified as FLIP † FN: FLIP identified as FUNC 
*Total FNs and TNs do not add sum across 1st and 2nd clustering. TP and FP sum, but FN and TN arise only 
from 2nd clustering 
 

 
The accuracy and Matthews correlation coefficient (MCC, a measure of the quality of a 
binary classification) of the results of the clusterings shown in Figure 3.3 are indicated. 
Analysis of two rounds of K-means clustering of the training set data indicated that the 
overall accuracy of predicting FLIP is 68% and 61% in both testing and training sets, 
respectively. TP are more readily identified in both Testing and Training sets (68% and 
73% sensitivity, respectively). 92% of the total FLIP population was identified in the first 
round of clustering. TN are less well identified (28% and 25% negative predictive values, 
respectively). Our two-category approach had an MCC of 0.30 for the training set and an 
MCC of -0.41 for the test set 	
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Table 3.4. Accuracy of Clustering upon Combining ECR with ET. 
 

A 
 
 
ECR + ET 
 
All 11 
Features 
 

True 
Positive 
(TP) † 

False 
Positive 
(FP) † 

False 
Negative 
(FN) † 

True 
Negative 
(TN) † 

 
Accuracy 

 
MCC 

1st Clustering 
57 5 38 53 72.07 0.51 

2nd Clustering 
23 18 15 36 64.13 0.29 

Total 80 23 15 36 75.32 0.46 

B 
 
ECR + ET 
8 best 
Features 

1st Clustering 
7 1 88 58 42.20 0.12 

2nd Clustering 
39 0 53 54 63.69 0.46 

Total 46 1 53 53 64.93 0.47 
† TP: FLIP correctly predicted † TN: FUNC correctly predicted 
† FP: FUNC identified as FLIP † FN: FLIP identified as FUNC 
*Total FNs and TNs do not add sum across 1st and 2nd clustering. TP and FP sum, but FN and TN arise only 
from 2nd clustering 
	
  

 
The accuracy and MCC of the clustering results of combining Energetic and Sequence 
features (Figure 3.4) are indicated. Results are shown for (A) the complete overlap of 
ECR and ET (11 features) and (B) for the combination of only the most correlating 
features (essentially ECR plus sum_states from this work). The overall accuracy of 
predicting FLIPs in the training set is 75% and 65% for each set of features, respectively. 
(A) FLIPs continue to be readily identified in both approaches (78% and 98% sensitivity, 
respectively). (B) Interestingly combination of the most maximally correlating features 
actually reduced the accuracy with respect to BOTH methods alone. Seemingly the 
reverse, MCC’s of 0.46 and 0.47 continue to suggest that a two-category approach is 
representative for the current training set.  
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Table 3.5: Random Sub-sample Validation of FLIPdb-ET Training Set 
 

% FLIPdb                         
(# of Interfaces)  Trial TP† FP† FN† TN† Accuracy MCC 

100                      
(160) 

1 91 41 6 16 69% 0.30       
0.30 

 90                        
(138) 

1 85 32 6 15 72% 0.33 
2 83 38 5 12 68% 0.26 
3 80 38 5 15 68% 0.30 

80                         
(123) 

1 70 27 5 21 73% 0.44 
2 71 35 6 12 66% 0.24 
3 65 27 10 20 69% 0.33 

70                          
(108) 

1 30 20 36 22 
 

48% -0.02 
2 33 25 31 19 48% -0.05 
3 80 29 6 12 72% 0.29 

60                           
(92) 

1 53 19 5 15 73% 0.41 
2 50 30 6 18 65% 0.31 
3 53 18 8 13 71% 0.32 

 50                          
(77) 

1 29 34 14 0 37% -0.41 
2 15 20 32 10 32% -0.34 
3 32  2 20 23 71% 0.50 

40                           
(62) 

1 26 1 13 22 65% 0.28 
2 36 21 3 2 61% 0.01 
3 18 10 42 38 51% 0.1 

30                          
(46) 

1 18 9 6 12 66% 0.32 
2 18 8 12 8 56% 0.09 
3 14 4 15 13 58% 0.11 

† TP: FLIP correctly predicted † TN: FUNC correctly predicted 
† FP: FUNC identified as FLIP † FN: FLIP identified as FUNC 

 
The distribution of overall accuracies and MCCs of repeated retraining when sub-samples 
of the training set were generated randomly in triplicate for subsets ranging from 90% to 
20% of the original. The general accuracy is 67% until more than 50% of the training set 
is removed. MCCs stably range between approximately 0.07-0.32. 	
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Figure 3.1. Distribution of conservation at interfaces. Figure 3.1a and b show histogrammed 
contour plots of the amino acid variation “Rho (r)” (blue: low variation, red: high variation). 
The plot axes are the first two principal components of the geometric distribution of Cα 
positions. PCA was used to align the interface along the X- and Y-axes.  Amino acid 
variation in the crystal contact interface from PDBid: 1brw, chain A (x1brw1_AZ) had more 
randomly distributed sites of conservation (a) while amino acid variation in the FLIP 
interface from PDBid: 1osj, chains A&B (b) shows a radial pattern of organization and a 
more conserved center. (c) Distribution of the top and bottom quartiles of the slopes from 
linear regressions of the amino acid variation with respect to the distance of each residue’s 
Cα from the mean of the Cα positions (Center of Interface). Green/Blue: FLIP. Red: FUNC. 
Symbols represent the functional sub-category of each interface: A=Ab-Ag, H=AbHL, 
E=Enzyme, R=Receptor, G=Regulator, I=Inhibitor, S=Structural, U=FUNC, X=XFunC.  
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Figure 3.2. Correlation of features with principal components. The loading plots 
(eigenvector co-efficients of each feature analyzed by PCA). The co-efficients indicate 
the contribution of each principal component. (a) All 9 features accounted for 64.8% of 
the total variation of the first two principal components. Features based on ρ, the 
Evolutionary Trace score (circles) had demonstrably smaller coefficients than features 
based on states (a count of the number of amino acid states at the position). (b) Removal 
of features based on ρ, produced a loading plot with PC 1 and 2 accounting for 84.1% of 
the resulting total variance. (c) Removal of 128 interfaces predicted to be FLIP in the first 
PCA, followed by a second round of PCA. This PCA reproduced 86.7% of the variance 
in the first two PCs. 
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Figure 3.3. PCA and K-means clustering of training and test sets. PCA and K-means 
were performed on the 154 interfaces in the FLIPdb. The 5 features identified in Figure 
3.2 were used and the number of clusters was set to k = 2. Green (“cluster 1”) and red 
(“cluster 2”) represent 1 standard deviation for Euclidean distances around the cluster 
centroid marked by “x”. Interfaces are indicated with symbols representing their 
functional sub-category. Green and blue symbols are FLIP structures but blue symbols 
are specifically Ab-Ag and Inhibitor sub-categories.  Red symbols are FunCs. (A) and 
(B): Training set. (C) and (D): Testing set.  (A) 87 FLIP (92% of the FLIPS excluding 
most of the Ab-Ag) and 41 FunC interfaces were identified in cluster 1 (68% precision) 
(b) after removal of these 128 interfaces, a second analysis of the remaining 26 interfaces 
produced new clusters with 77% accuracy, 100% precision, and 73% negative 
predication value, but contributing little to the net accuracy. The overall accuracy across 
both (A) and (B) is 69%. (C) and (D) show the projection of the training set clusters on 
18 unrelated PPIs.. The overall accuracy in both clusterings is 61%.  
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Figure 3.4.	
  Correlation of evolution and energy features with principal components. The 
loading plots (eigenvector co-efficients of each feature analyzed by PCA) indicate the 
correlation of each variable to the principal components. (A) All 11 non-redundant 
energy and sequence conservation features accounted for 64.3% of the total variation. 
Overall, sequence-related terms (vectors with large circles) had much smaller coefficients 
than energy terms. (B) A new PCA with all features from (A) with coefficients less than 
0.6 in both PC1 and PC2 removed generated a loading plot with new PC1 and PC2 
accounting for 84.5% of the resulting 8-feature variance.  
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Table	
  S3.1.	
  FLIPdb-­‐ET	
  interface	
  composition.	
  Structures and interfaces used in the 
training and testing sets
 

PDBid Chains Category Subcategory 
# of Protein 

Chains 
# of 

Interfaces Citation 
Training 

Set 
      1acy HP FLIP AbAg 3 3 1 

1acy LP FLIP AbAg 3 3 1 
1adq AH FLIP AbAg 3 3 2 
1adq AL FLIP AbAg 3 3 2 
2bse AE FLIP AbAg 5 9 3 
2bse AF FLIP AbAg 5 9 3 
2bse BD FLIP AbAg 5 9 3 
2bse BE FLIP AbAg 5 9 3 
2bse CD FLIP AbAg 5 9 3 
2bse CF FLIP AbAg 5 9 3 
1acy LH FLIP AbHL 3 3 1 
1adq LH FLIP AbHL 3 3 2 
1gaf LH FLIP AbHL 2 1 4 
1tzi AB FLIP AbHL 3 3 5 
1wtl AB FLIP AbHL 2 1 6 
1b5e AB FLIP ENZYME 2 1 7 
1biq AB FLIP ENZYME 2 1 8 
1bis AB FLIP ENZYME 2 1 9 
1bjw AB FLIP ENZYME 2 1 10 
1bkp AB FLIP ENZYME 2 1 11 
1bmd AB FLIP ENZYME 2 1 12 
1brw AB FLIP ENZYME 2 1 13 
1bsl AB FLIP ENZYME 2 1 14 
1bsr AB FLIP ENZYME 2 1 15 
1cg2 AD FLIP ENZYME 2 2 16 
1cg2 BC FLIP ENZYME 2 2 16 
1cnz AB FLIP ENZYME 2 1 17 
1coz AB FLIP ENZYME 2 1 18 
1daz CD FLIP ENZYME 4 3 19 
1hjr AC FLIP ENZYME 4 3 20 
1hjr BD FLIP ENZYME 4 3 20 
1itv AB FLIP ENZYME 2 1 21 
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1ivy AB FLIP ENZYME 2 1 22 
1nhk RL FLIP ENZYME 2 1 23 
1nsy AB FLIP ENZYME 2 1 24 
1oro AB FLIP ENZYME 2 1 25 
1osj AB FLIP ENZYME 2 1 26 
1pgt AB FLIP ENZYME 2 1 27 
1pky AB FLIP ENZYME 4 4 28 
1pky AC FLIP ENZYME 4 4 28 
1pky BD FLIP ENZYME 4 4 28 
1pky CD FLIP ENZYME 4 4 28 
1pre AB FLIP ENZYME 2 1 29 
1qks AB FLIP ENZYME 2 1 30 
1qr2 AB FLIP ENZYME 2 1 31 
1r2f AB FLIP ENZYME 2 1 32 
1scu AB FLIP ENZYME 4 5 33 
1scu DE FLIP ENZYME 4 5 33 
1sft AB FLIP ENZYME 2 1 34 
1slt AB FLIP ENZYME 2 1 35 

1smn AB FLIP ENZYME 2 1 36 
1sox AB FLIP ENZYME 2 1 37 
1ubs AB FLIP ENZYME 2 1 38 
1vfr AB FLIP ENZYME 2 1 39 

x1ubs1 BZ FLIP ENZYME 4 3 38 
1cmi AC FLIP INHIBITOR 4 3 40 
1cmi BD FLIP INHIBITOR 4 3 40 
1daz CB FLIP INHIBITOR 4 3 19 
1daz DA FLIP INHIBITOR 4 3 19 
1ppf EI FLIP INHIBITOR 2 1 41 
1cdc BA FLIP RECEPTOR 2 1 42 
1eaj AB FLIP RECEPTOR 2 1 43 
1fcc AC FLIP RECEPTOR 2 1 44 
1h0t AB FLIP RECEPTOR 2 1 45 
1nrv AB FLIP RECEPTOR 2 1 46 
2bse AB FLIP RECEPTOR 5 9 3 
2bse AC FLIP RECEPTOR 5 9 3 
2bse BC FLIP RECEPTOR 5 9 3 
2cii AB FLIP RECEPTOR 4 2 47 
2cii AC FLIP RECEPTOR 4 2 47 
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1awi AB FLIP REGULATOR 3 3 48 
1awi AP FLIP REGULATOR 3 3 48 
1awi BP FLIP REGULATOR 3 3 48 
1edh AB FLIP REGULATOR 2 1 49 
1f13 AB FLIP REGULATOR 2 1 50 
1f4v AD FLIP REGULATOR 3 2 51 
1psr AB FLIP REGULATOR 2 1 52 
1qfh AB FLIP REGULATOR 2 1 53 
1tx4 AB FLIP REGULATOR 2 1 54 
2arc AB FLIP REGULATOR 2 1 55 
2trc BG FLIP REGULATOR 3 2 56 
2trc BP FLIP REGULATOR 3 2 56 

1cmb AB FLIP STRUCTURAL 2 1 57 
1f95 AB FLIP STRUCTURAL 4 1 58 
1f95 AC FLIP STRUCTURAL 4 1 58 
1f95 BD FLIP STRUCTURAL 4 1 58 
1sa0 AB FLIP STRUCTURAL 5 6 59 
1sa0 AE FLIP STRUCTURAL 5 6 59 
1sa0 BE FLIP STRUCTURAL 5 6 59 
1sa0 CD FLIP STRUCTURAL 5 6 59 
1sa0 CE FLIP STRUCTURAL 5 6 59 
1sa0 DE FLIP STRUCTURAL 5 6 59 
1tub AB FLIP STRUCTURAL 2 1 60 
2bkh AB FLIP STRUCTURAL 2 1 61 
2bki AB FLIP STRUCTURAL 2 1 61 
3kin AB FLIP STRUCTURAL 4 3 62 
3kin BD FLIP STRUCTURAL 4 3 62 
3kin CD FLIP STRUCTURAL 4 3 62 
1atn AD FUNC FUNC 2 1 63 
1azt AB FUNC FUNC 2 1 64 
1bin AB FUNC FUNC 2 1 65 
1bkz AB FUNC FUNC 2 1 66 
1bo5 OZ FUNC FUNC 2 1 67 
1c02 AB FUNC FUNC 2 1 68 
1cmi AB FUNC FUNC 4 3 69 
1cqx AB FUNC FUNC 2 1 70 
1f4v AB FUNC FUNC 3 2 51 
1gqp AB FUNC FUNC 2 1 71 
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1hjr AB FUNC FUNC 4 3 20 
1lcu AB FUNC FUNC 2 1 72 

1m6k AB FUNC FUNC 2 1 73 
1naw AB FUNC FUNC 2 1 74 
1nmt AB FUNC FUNC 3 2 75 
1nmt BC FUNC FUNC 3 2 75 
1oio AB FUNC FUNC 2 1 76 
1ome AB FUNC FUNC 2 1 77 
1scu AE FUNC FUNC 4 5 33 
1scu BD FUNC FUNC 4 5 33 
1scu BE FUNC FUNC 4 5 33 
1vio AB FUNC FUNC 2 1 78 
1xca AB FUNC FUNC 2 1 79 
3k3e AB FUNC FUNC 2 1 80 

x1b8e4 AE FUNC XFunC 2 1 81 
x1brw3 BY FUNC XFunC 2 1 13 
x1bsf8 AJ FUNC XFunC 2 1 82 
x1bsr1 AB FUNC XFunC 2 1 15 
x1dto6 AG FUNC XFunC 2 1 83 
x1dv82 AC FUNC XFunC 2 1 84 
x1e872 AC FUNC XFunC 2 1 85 
x1erv2 AC FUNC XFunC 2 1 86 
x1gaf1 HZ FUNC XFunC 2 1 4 
x1gaf2 LY FUNC XFunC 2 1 4 
x1gaf3 HL FUNC XFunC 2 1 4 
x1ihk3 AD FUNC XFunC 2 1 87 
x1neu4 AE FUNC XFunC 2 1 88 
x1oal6 AG FUNC XFunC 2 1 89 
x1oro1 AZ FUNC XFunC 2 1 25 
x1oro3 AZ FUNC XFunC 2 1 25 
x1ppf1 EI FUNC XFunC 2 1 41 
x1ppf2 EZ FUNC XFunC 2 1 41 
x1ppf3 EI FUNC XFunC 2 1 41 
x1py94 AE FUNC XFunC 2 1 90 
x1sox2 BY FUNC XFunC 2 1 37 
x1tx41 BA FUNC XFunC 2 1 54 
x1tx42 AZ FUNC XFunC 2 1 54 
x1tx43 AB FUNC XFunC 2 1 54 
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x1uq54 AE FUNC XFunC 2 1 91 
x1vfr2 AZ FUNC XFunC 2 1 39 
x1vfr3 BY FUNC XFunC 2 1 39 
x1wtl1 BZ FUNC XFunC 2 1 6 
x1wtl2 BZ FUNC XFunC 2 1 6 
x1xca1 AZ FUNC XFunC 2 1 79 
x1xca2 BY FUNC XFunC 2 1 79 
x1xca3 BA FUNC XFunC 2 1 79 
x3bri2 AC FUNC XFunC 2 1 92 
x3il85 AF FUNC XFunC 2 1 93 

*NOTE: Canonical XFunC PDBids are the 2nd-5th characters of their listed 
PDBids 

Test set 
1avx A:B FLIP Enzyme 2 1 94 
1mah A:F FLIP Inhibitor 2 1 95 
1hiv A:B FLIP Enzyme 2 1 96 
1kac A:B FLIP Receptor 2 1 97 
1buh A:B FLIP Regulator 2 1 98 
1ijj A:B FLIP Structural 2 1 99 

1ahw A:B FLIP AbHL 2 1 100 
1ahw A:C FLIP AbAg 2 1 100 
1ahw A:F FLIP AbAg 2 1 100 
1ahw B:C FLIP AbAg 2 1 100 
1ahw D:E FLIP AbHL 2 1 100 
1ahw D:F FLIP AbAg 2 1 100 
1ahw E:F FLIP AbAg 2 1 100 

x1kac1 B:A FunC XFunC 2 1 97 
x1avx1 A:A FunC XFunC 2 1 94 
x1mah1 F:A FunC XFunC 2 1 95 
x1buh1 B:A FunC XFunC 2 1 98 
x1ijj1 B:A FunC XFunC 2 1 99 

*NOTE: Canonical XFunC PDBids are the 2nd-5th characters of their listed 
PDBids 

	
  
The FLIPdb-ET database contained 154 pairwise PPIs. The Test set contained 18 
pairwise PPIs. 
	
  



	
   113 

 

 

CHAPTER IV 

ENERGY CENTRALITY RELATIONSHIP REDUCES FALSE POSITIVE  

PREDICTION IN PROTEIN DOCKING 

Abstract  

Interacting protein networks are responsible for a multitude of biological 

functions and molecular docking has become an important tool in predicting protein 

interactions. A common problem with docking is the generation of a large number of 

false positives. In previous work, we have used our Energy Centrality Relationship 

(ECR) concept to differentiate between specific interactions between two categories of 

interfaces, Functionally-Linked Interacting Proteins (FLIPs) and Functionally 

uncorrelated Contacts (FunCs). We found that the positional and energetic correlation 

patterns arising from ECR can discriminate FLIP/FunC. Here we test ECR’s ability to 

identify near-native (≤ 5 Å RMSD) poses arising from docking components of known 

protein complexes. After generating docking decoys for structures of representatives of 

diverse protein functional categories using the docking software HEX, we demonstrate 

ECR reduces false positives in quaternary structure prediction. The ECR methodology 

was able to predict near-native poses in 50% of the cases, representing an increase of 9% 

relative to HEX alone.  
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Introduction 

Proteins participate in various cellular processes that are required for biological 

systems. Various groups have studied proteins interactions1-3; however, predicting 

interfaces of complex proteins via experimental analysis is often difficult and time-

consuming4. Understanding the contribution of an interface to the stability of a complex 

requires knowledge of the three-dimensional structures of proteins. Classical methods, 

such as X-ray crystallography and NMR (nuclear magnetic resonance) spectroscopy, 

produce high-resolution three-dimensional structures. However, due to the laborious 

nature of experimental protein structure generation, computational methods, like 

protein-protein docking, can be used as a structure-based approach for protein interaction 

prediction utilizing knowledge from existing three-dimensional protein structures.  

Docking algorithms employ a wide variety of strategies to identify near-native 

quaternary conformations (poses) of receptor and ligand (interactors). Some of these 

search methods include: an exhaustive global search, particularly Fast Fourier Transform 

(FFT) based methods5-14. local shape matching approaches15and randomized search16-20. 

A majority of docking algorithms use FFT-based21approaches as they are both 

well-optimized for quaternary structure prediction and parallelized for significant speed 

up of related calculations6, 9, 21. These programs are fast and effective in interaction 

prediction; however, most of these methods consider the interactors as rigid           

bodies9, 11, 12, 14, 22. Proteins, however, are dynamic and the enhanced computational 

complexity of adding flexibility to increase accuracy generally decreases computational 
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through-put in ways that are challenging to compensate for using FFT-based methods. As 

such, Rigid-body docking is often still used both as an end-goal and also to limit the 

conformational search space analyzed in flexible docking methods23. 

Though docking is used to predict Protein-Protein Interaction (PPI) structures, the 

validity and efficacy of this method can be evaluated by re-docking known quaternary 

interfaces. Since the starting structure for such re-docking is obtained from an 

experimentally determined structure, for docking purposes that experimental structure is 

considered to be the “native” conformation.  However, protein structure files obtained 

from the Protein Databank (PDB)24 contain the atomic coordinates of the asymmetric unit 

or ASU. The ASU is the smallest portion of a crystal that can be used to construct a 

repeating unit of the crystal and it may or may not be a biologically relevant 

conformation. Contacts between neighboring ASUs are often observed in X-ray 

structures25. These ‘crystal contacts’ can represent the biologically functional state of the 

protein, though generally they do not 25. Therefore, within a crystal structure, two 

monomers could form both functional and non-functional interfaces. It can be 

challenging to distinguish between the two26-30. In previous research, we have defined 

functionally relevant interfaces as FLIP (Functionally-Linked Interfaces of Proteins) and 

interfaces that do not contribute to function as FunC (Functionally uncorrelated Contacts) 

31. In our work, we use this operational definition as the work of others on PPI detection 

often characterizes the occurrence or existence of a PPI without considering whether that 

PPI is critical to biological function32, 33. 
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A docking algorithm’s accuracy depends on its ability to distinguish between 

native-like and non-native conformations.  Here a native-like conformation is defined as 

any structure within 5 Å root mean square deviation (RMSD) of the known structure. The 

accuracies of various docking software can be greatly improved by using knowledge-

based scoring functions6, 34-38 to generate more native-like conformations. The absence of 

a priori information of potential binding sites requires extensive sampling to identify 

possible low-energy conformations. Protein properties that tend to correlate with native 

interfaces and thus are useful to interface prediction are shape complementarity5, 11, 14, 22, 

39, 40, residue hydrophobicity41, 42, residue conservation at the interface43, and buried 

surface area upon complexation44. Scoring terms based on system energies, including van 

der Waals, electrostatics, and solvation energies help in evaluating poses by calculating 

the number of favorable intermolecular interactions and have been seen to improve the 

success rate of docking algorithms14, 22, 45. Even though some properties have significant 

correlations with known interfaces, it is still difficult to fully distinguish between native 

and non-native interfaces using a single feature.	
  Many algorithms therefore combine 

analysis of several different features to improve docking prediction46-48. 

Despite various developments in docking, the common problem of generating a 

high number of false positive poses remains. One way to approach this problem is to 

develop a post-filter for docking that can identify a few top structures using features that 

are known to be important to interface maintenance49, 50. In our earlier works, we 

investigated the use of both sequence conservation and energy related terms to 
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differentiate between FLIPs and FunCs31, 51. While interface sequence conservation can 

distinguish FLIP from FunC with an accuracy of 69%, the use of energy related terms 

could also distinguish the groups but with a better prediction accuracy of 77%. 

 We hypothesize that, if the interfaces generated by protein docking (“poses”) are false 

positives or aggregates, they would exhibit physical and biochemical properties more 

similar to known FunCs, while those with near native specific interactions would exhibit 

properties similar to known FLIPs. We suggest that post-docking analyses of these 

properties using our ECR methodology will improve the overall prediction accuracy. 	
  

Results 

ECR prediction of docking targets 

 The results of docking followed by ECR analysis of the 22 proteins in FLIPdb-lite 

are shown in Table 4.1. FLIPdb-lite is a derivative of the FLIPdb from our previous work 

(see Methods). These 22 interfaces were identified as easy, intermediate, and hard 

targets, where easy interfaces were defined as interfaces that upon docking generated 

greater than 75% native-like poses, hard generated fewer than 5% native-like poses, and 

intermediate generated between 5%-75% native-like poses. The Principal Component 

(PC) projections (see Methods) of all poses were identified as presenting in either the 

FLIP or FunC prediction clusters. For each interface, the RMSD of HEX’s top scoring 

pose (“HEX”) as well as the pose with the lowest RMSD from the original structure  

(“HEX best”) were compared with ECR’s top prediction (defined as the pose with the 

most positive PC1, in the PCA). Also in Table 4.1 is the structure with the smallest 
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RMSD within the FLIP cluster (“ECR best RMSD”). The FLIP or FunC cluster analyses 

of three representative examples (one from each class of target: PDBids 1cdc, 1bsr and 

1tub) are shown in Figure 4.1.  

A summary comparison of HEX and ECR’s overall performance is shown in 

Table 4.2. HEX’s success at predicting native-like structures when considering only its 

top solution (best scoring pose) was 41% (9 of 22). Post-filtering with ECR, however, 

increased success by 2 to 11 of 22 interfaces (50%), a 9% increase in accuracy. If all 

poses generated by HEX regardless of their score were considered, HEX achieved a 

success of one additional interface (12 of 22, 54%). Since our current ECR selection 

method identifies just one structure, its success remained at 50% (11 of 22). Dockings of 

AbAg (Antibody-Antigen) and Enzyme-Inhibitor interactions were particularly 

challenging (low success rate in both HEX and ECR). As such, ECR post-filtering 

offered no additional benefits for such interfaces. Regardless, post-filtering with ECR 

improved docking by 9% suggesting ECR is accounting for principles not represented by 

HEX’s docking method alone. 

In addition, Table 4.3 shows our success of prediction based on the analysis of 

distribution plots of RMSD values for all generated poses (Figures 4.2 and 4.S2). Of the 

18 FLIPs analyzed, 13 (70%) identified a pose in the lowest quartile of the RMSD 

distribution. Of these, 10 were correctly predicted (near-native). Our accuracy of 

prediction from the lower quartile was thus 77% (10/13). This could be of particular 

importance in our effort to post-filter docking poses as this suggests a strategy of 
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eliminating all poses not in the lowest quartile of produced poses. Such a strategy would 

therefore be predicted to eliminate the majority of the false positive poses from a docking 

run. 

Representative conformations 

Easy conformation: 1cdc 

1cdc is a dimeric membrane glycoprotein that functions as a cell adhesion 

molecule. All poses generated were native-like. Clustering analysis of 1cdc shows that 

almost all structures generated in the docking run (98%) partitioned in the FLIP cluster 

region (Figure 4.1a). The structure identified by ECR was solution 41 from HEX, which 

had an RMSD of 0.86Å from the experimental structure. The “best” solution and HEX’s 

pick was solution 1 with an RMSD of 0.19 Å.  

Intermediate conformation: 1bsr 

1bsr is the structure of the homodimeric enzyme, bovine seminal ribonuclease. 

25% of poses generated were native-like but very few partition in the FLIP region (Figure 

4.1b).  The structure identified after post-filtering by ECR was solution 3 from HEX, 

which had an RMSD of 0.21Å. This was also HEX’s lowest RMSD structure. The 

reduction of the number of possible poses from 25% (251/1000) to 1% (11/1000) 

demonstrates the ability of ECR as a beneficial post-filter.   
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Hard conformation: 1tub 

1tub is a heterodimer of αβ tubulin, the microtubule subunit. No poses generated 

by HEX were initially thought to be native-like. Since the initial PCA-projection analysis 

did not identify any poses in the FLIP region, features were re-analyzed using the second 

PCA-projection criteria from our prior ECR work (Figure 4.1c and d). The structure 

subsequently identified by ECR was solution 153 from HEX, which had an RMSD of 

78.14 Å. On further analysis of solution 153, we found that it had an RMSD of 2.2Å 

when superposed on the crystal symmetry transformed conformation of 1tub (RMSD of 

2.2Å) shown in Figure 4.3b. As this crystal symmetry conformation is that of a separate 

but related microtubule conformation (βα tubulin), we take this to demonstrate the ability 

of the ECR method to identify native poses. 

Distribution of poses 

Histogram and box plots of RMSDs of poses relative to the known structure are 

shown in Figure 4.2. HEX’s ability to generate native-like poses varies substantially for 

the three representative conformations discussed above.  While HEX produced a slightly 

more native-like structure for 1cdc, ECR’s result was still in the lower quartile (which 

includes the smallest RMSD structures) and was nearly a low RMSD outlier. HEX did 

not produce nearly as many native-like structures for 1bsr as it did for 1cdc (25% and 

100%, respectively); however ECR’s prediction was still in the lower quartile. 1bsr’s 

poses also demonstrated two distinct distributions of RMSD, indicating HEX identified  
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two groups of related, energetically favorable, quaternary conformations, only one of 

which was native-like. Of these two, ECR was successful at identifying the near native 

conformation. All of HEX’s poses for 1tub had large RMSDs from the source native 

structure, the smallest being 30.25 Å. Despite there being no obvious near-native poses in 

this distribution, ECR identified the symmetry-related native structure of 1tub. 

Histograms and box plots of additional interfaces are shown in supplementary data, 

Figure 4.S2. 

Symmetry operator prediction  

Another successful example is x1ubs1, a crystal symmetry operator defined 

structure generated using the symmetry operations of the PDB structure 1ubs (chains A 

and B). The native structure of 1ubs includes a two-chain hetero-dimer (Figure 4.4a). 

x1ubs1 consists of two B chains (Figure 4.4b) and as such this interface was not expected 

to be functional. However, after FLIPdb creation and analysis, additional literature 

information was identified suggesting that active 1ubs forms a dimer of dimers that 

creates a functional B:B interface (Figure 4.4d). Interestingly, native-like poses of this 

structure were identified both by ECR (solution 2, Figure 4.4c) and HEX (solution 1, not 

shown as it is not easily visually distinguishable from ECR’s pick). The RMSD between 

HEX solution 1 and x1ubs1 was 1.1 Å, while ECR’s pick had an RMSD of 0.33Å (Figure 

4.4e). 
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Discussion 

Docking poses exhibit different distribution patterns 

The ECR training set demonstrates specific distribution patterns corresponding 

with different categories of function31. Analysis of the ECR training set showed that 

FLIPs were mostly clustered in the positive PC1 region while FunCs mostly occupied the 

negative PC, quadrants 1 and 2 respectively. The projection of docking poses on the ECR 

training set showed that the docked poses were mostly distributed in the negative PC1 

region, the region generally occupied by FunC interfaces. One exception was 1cdc (a 

receptor, Figure 4.1a), where most poses were distributed in the positive PC1 region. 

These differences in the general pattern of FLIP, FunC, and docking pose distribution 

suggest a fundamental difference in the physical chemistry of these different types of 

interface structures.  The poses generated by HEX are the top scoring predictions from 

the docker and as such are extremely unlikely to be random predictions. Still, the 

generation of a high number of false positive poses not placed in either FunC or FLIP 

cluster indicates that HEX possibly predicts complexes with high affinity, which is 

important to the stability of the complex. However, high affinity alone does not 

necessarily mean high specificity29, 31. 

ECR can recognize symmetry-related native poses 

ECR analysis of the 1tub and x1ubs1 structures identified native poses that would 

otherwise have been missed or rejected. 1tub is a hetero-dimer that is a component of the  
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microtubule filaments within the cytoskeleton. The structure of a microtubule filament 

involves spirally repeating units of this hetero-dimer. As such, each monomer could have 

multiple FLIP interfaces, not simply the one observed in the crystal structure. Initially, 

the docking analysis of 1tub did not appear to generate any native-like poses nor was a 

pose identified in the FLIP cluster in the first clustering projection. The second clustering 

projection identified 11 possible interfaces in the FLIP region. Inspection of the pose with 

the most positive PC1 value revealed that this pose was native-like (2.2 Å RMSD) 

relative to a symmetry-related FLIP interface in the filament.  

The other example, x1ubs1, was initially identified as an XFunC as this structure 

was generated using the crystal symmetry operations of 1ubs, an enzyme. Since x1ubs1 

was initially misclassified, this structure serves as an, albeit unintentional, negative 

control of the ECR methodology. Docking was not expected to generate a native-like A:B 

pose like that in 1ubs, since x1ubs1 was a symmetry operator related pose involving only 

the B chain of 1ubs in a B:B interface.  However, ECR identified 6 docked poses within 

5 Å of x1ubs1. 1ubs was found in actuality to be a two-chain hetero-tetramer and, in 

creating x1ubs1, we had accidentally created an alternate FLIP. As such, ECR’s best 

solution was also an alternate FLIP.  

These two examples indicate that ECR is capable of identifying the underlying 

principles of functional linkage in protein association. It is possible that ECR identified a 

combination of features related to sensitivity to mutation that was not accounted for in 
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HEX. Some of this sensitivity comes from local structure perturbation due to changes in 

side-chain packing. 

  HEX could possibly get the correct answer by generating more poses and 

selecting a larger number of high scoring structures but that would be more 

computationally expensive since it is difficult to predict the minimum number of poses 

required to find the best solution. The goal in this work is to filter existing docking poses 

to predict the most native-like structure. As such, generating more poses, while possibly 

providing additional accuracy, would also dramatically increase computational demands.  

HEX’s larger success came at the cost of generating hundreds of alternative poses 

(13% increase in prediction success when 1000 poses were considered as opposed to just 

the best scoring pose). Most of this expensive but improved success was due to correctly 

predicting an enzyme-inhibitor interface PDB: 1ppf (ECR has very limited success in 

inhibitor prediction) and a FunC, PDB: 1bin (the current ECR selection criteria focuses 

on FLIP, not FunC, identification). AbAg and Enzyme-Inhibitor interfaces were 

especially difficult to predict by HEX as these surfaces have low shape complementarity, 

a key feature in interface prediction by docking. ECR analysis of these types of interfaces 

revealed that they, in general, partition with FunCs in the PCA suggesting they may be 

governed by similar underlying principles as FunCs or at the very least evolve via 

alternative mechanisms than other FLIPs. 
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HEX struggles with AbAg  

As stated above, the binding region of AbAgs tends to be flatter than other FLIP 

interfaces such as enzymes42. This difference in interface structure is a problem for most 

docking algorithms that use complementarity as a key factor in interface detection. This 

can partly be overcome by using docking algorithms such as Zdock14 or PatchDock15 that 

either mask the non-interacting regions of the proteins and allow conformational 

sampling only in the binding area or use a dedicated docking algorithm52. The poor 

performance of AbAg could also be because of enhanced sequence variability at the 

interface that obscures sequence conservation signals53.  

Conclusion  

Docking analysis coupled with ECR showed an improvement over docking alone, 

suggesting ECR accounts for principles not represented by docking software. This post-

filtering approach was less successful for AbAg and Enzyme-Inhibitor interfaces, perhaps 

due to different or limited evolutionary pressures, resulting in more FunC-like features. 

Overall, use of ECR as a docking post-filter not only reduces false-positive prediction by 

9% but also recognizes false negatives in our bound docking studies. In addition, it helps 

identify when no true-positives are likely to have been produced. Finally, ECR identifies 

patterns of physico-chemical properties that help distinguish affinity from specificity in 

protein association. 
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Methods 

Dataset: FLIPdb – lite 

For construction of FLIPdb, please refer to Sudarshan et.al31. Here we analyzed a 

truncated version of FLIPdb we called FLIPdb-lite. To construct FLIPdb-lite we 

identified 3 proteins from each protein sub-category of FLIPdb. The Euclidean distance 

from the values of 7 energy and geometry features of all FLIPdb proteins from FLIP and 

FunC cluster centroids have previously been determined31. The interfaces of each sub-

category were selected by determining the 2 within that sub-category with the closest and 

the 1 with the farthest 7-feature Euclidean distance to the appropriate FLIP or FunC 

centroid. If this procedure selected an additional interface from a previously identified 

PDB structure, this new interface was rejected and the interface with the next closest or 

farthest feature distance was chosen. The selected proteins that generated docking poses 

were included in FLIPdb-lite.  

Molecular docking  

The protein docking program HEX was used to generate poses for protein 

structures in FLIPdb-lite. Shape and electrostatic contributions to the docking correlation 

were enabled. The program was set to generate 1000 poses at Euler rotational increments 

of 7 degrees and a twist of 2 degrees. Chain 1 of the dimer was always identified as the 

receptor, which was fixed and chain 2 was identified as the ligand, which sampled 
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conformational space around the receptor. For each docking pose generated, an all atom 

RMSD to the PDB structure was calculated.  

Computational alanine scanning (CAS) 

The CAS method of Kortemme and Baker2, 54 was used to process all the 

interfaces in the FLIPdb. In brief, this method evaluates enthalpy and free energy of 

solvation terms over conformations arising from a rotamer library for both the existing 

and alanine substituted residues in a PPI (native Gly and Pro excluded). These terms are 

used to determine a pseudo-free energy change upon substitution (∆∆G)54 

Interfacial geometry 

Interfacial residues were defined using the same interface definition as in the CAS 

method of Kortemme and Baker54. The geometric distribution of residues in each PPI 

were determined by calculating the displacement (∆r) of the Cα position from the mean 

of the Cα positions (termed the Center of Interface, CoI) using software written by the 

authors. A linear regression of the ∆∆G and ∆r data to a first-order polynomial 

(∆∆G=slope * ∆r + intercept) was calculated for each interface using software written by 

the authors as well as GNUPLOT55  

Energetic and geometric features 

Calculations used in this work followed our previous protocol31, identifying 7 

features for each interface: the slope (slope_∆∆G), intercept (intcpt_∆∆G), net sum of all  
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∆∆G changes (sum_∆∆G), mean ∆∆G for all interface residues (avg_∆∆G), total number 

of residues in the interface (#total), number of residues with ∆∆G larger than +1 kcal/mol 

(#hot), and the ratio of “hot” to total (frac_hot). 

Principle component analysis (PCA) 

In our prior work, Principal Component Analysis of the variation of CAS 

energetic and geometric feature data for a training set of PPI was undertaken31. PCA 

determines a set of linearly-uncoupled eigenvectors from normalized correlations 

between variables that progressively describe the largest sources of variance in a data   

set56  

K-means clustering 

K-means clustering57 is a data analysis method that clusters observations into a 

specific number of clusters by attempting to find the point(s) that have the lowest mean 

variation from the other input data. When combined with PCA, the combination of 

features that allows input data to be clustered can be identified. In this work, we projected 

new energy and distance data for the poses of the 22 proteins through a polynomial 

obtained from the PCA and K-means clustering in our earlier work on a training set of 

proteins31. From this projection, we were able to identify where along the 1st two 

Principal Component vectors a new protein would present, as well as whether that protein 

would occur in a FLIP or FunC predicted cluster. We defined ECR’s pick from all 
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available poses to be the structure with the most positive PC1 in the FLIP region of our 

clustering analysis. 
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Table 4.1. Docking Results of FLIPlite  

PDB ID Category HEX 
RMSD 

(Soln #1) 

HEX best 
RMSD (Soln #) 

ECR RMSD   
(Soln #) 

ECR best RMSD       
(Soln #) 

1adq_AL AbAg 86.83 (1) 32.03 (269) 72.86 (522) 32.03 (269) 

1tzi_AV AbAg 52.53 (1) 33.09 (137) 43.94(257) ‡ 

1adq_HL Ab-HL 24.15 (1) 0.3 (2) 1.21 (11) 0.3(2) 

1tzi_AB Ab-HL 0.64 (1) 0.64 (1) 0.64 (1) 0.64(1) 

1bsr_AB Enzyme 0.63 (1) 0.21 (3) 0.21 (3) 0.21(3) 

1bsl_AB Enzyme 0.70 (1) 0.70 (1) 0.70 (1) 0.70(1) 

1biq_AB Enzyme 0.65 (1) 0.65 (1) 0.65 (1) 0.65(1) 

3kin_BD Structural 50.55 (1) 27.5 (596) 39.8 (241) 38.65(90) 

1tub_AB Structural 42.63 (1) 30.25 (179) 78.14/2.26* (153*) 30.25(179) 

2bkh_AB Structural 37.31 (1) 20.45 (996) 67.56 (395) 66.12(426) 

1cdc_BA Receptor 0.19 (1) 0.19 (1) 0.86 (41) 0.19 (1) 

1cmb_AB Regulator 0.32 (1) 0.32 (1) 0.32 (1) 0.32 (1) 

1tx4_AB Regulator 0.41 (1) 0.41 (1) 0.74(4) 0.41(1) 

1awi_AB Regulator 44.28 (1) 22.88 (770) 54.93(321) ‡ 

1ppf_EI Inhibitor 17.03 (1) 2.73(5) 46.69(47) 10.44(560) 

1cmi_BD Inhibitor 0.46 (1) 0.33 (12) 0.84 (9) 0.33(12) 

1daz_CB Inhibitor 18.14 (1) 13.63 (984) 21.09(28) ‡ 

1bin_AB FunC 9.51 (1) 3.18 (21) 23.09 (3) 12.38(61) 

1cqx_AB FunC 98.2 (1) 34.22 (543) 98.2(1) ‡ 

1c02_AB FunC 38.65 (1) 10.94 (73) 39.11 (46) 10.94 (73) 

x1ppf3_EI XFunC 52.01 (1) 14.0 (753) 55.48 (60) 24.88(472) 

x1ubs1_BZ XFunC/FLIP 1.10 (1) 0.33 (2) 0.33 (2) 0.33 (2) 

*Superposition of HEX solution 153 on the crystal symmetry transformed conformation of 1tub had an 
RMSD of 2.2Å 

‡No poses were identified in the FLIP region.  
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Table 4.1. Docking Results of FLIPlite  

Table with HEX and ECRs best prediction for each interface in FLIPlite. The RMSD of 
the highest scoring structure (HEX’s #1 solution); HEX solution with the smallest RMSD 
(HEX best) and its solution number (HEX Soln #); the RMSD of ECR’s prediction 
(ECR) and the solution number of the decoy (HEX Soln #); structure with the smallest 
RMSD within the FLIP cluster (ECR best RMSD). 
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Table 4.2. Success of HEX Versus ECR 

 

 Success AbAg Inhibitor 

1st Pose (HEX) 9/22  
(41%) 

0/2 1/3 

1st Pose (ECR) 11/22  
(50%) 

0/2 1/3 

1000 Poses (HEX) 12/22 
(54%) 

0/2 2/3 

FLIP Cluster Poses 
(ECR) 

10/22 
(45%) 

0/2 1/3 

 

The success of predictions in best 1 and 1000 poses for both HEX and ECR.  No AbAg 
interfaces were correctly predicted either by HEX or ECR. In predicting inhibitors, HEX 
and ECR identified only 1 of 3 native-like interfaces (33%) when considering only the 
top pose. However, when all thousand poses were considered, HEX identified 2 
interfaces (66%). When all poses from the FLIP cluster were considered, we achieved the 
same success rate.  
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Table 4.3. Analysis of Distribution Plots 

Category # 
proteins 

# 
correct 

# 
incorrect 

#  
lower 

quartile 

# 
upper 

quartile 

# upper 
and 

incorrect 

# HEX 
failures 

 
FLIP 

 
18 

 
10/18 

 
8/18 

 
13/18 

 
5/18 

 
4/5 

 
8/18 

 
FunC 

 
4 

 
0/4 

 
4/4 

 
2/4 

 
2/4 

 
2/2 

 
4/4 

 

The count of correct and incorrect predictions of ECR for FLIPs and FunCs. The number 
of interfaces for which ECR’s prediction was in the top or bottom quartile are indicated. 
The number of times ECR’s prediction was in the upper quartile and was also the 
incorrect solution as well as the number of times HEX failed are shown.  
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Figure 4.1. Distribution of docking poses of representative PPIs in FLIPlite. ECR 
analysis on PPIs partitions them into FLIP (yellow) and FunC (purple) clusters. ECR 
values for the known PDB structure for each example are indicated in orange. The 
structure with the smallest RMSD from the known PDB structure is indicated in cyan. 
HEX’s number 1 solution is also indicated for each example. The ECR solution in all 
cases is the structure with the most positive PC1. 
a). 1cdc, b). 1bsr, c). 1tub: 1st PCA projection, d). 1tub: 2nd PCA projection.  
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Figure 4.2. Histogram and box plots of RMSDs of poses relative to the known structure. 
For each box plot, the ends of the box represent the interquartile range. A horizontal line 
inside the box marks the median. The top and bottom points of the diamond represent the 
upper and lower 95% from the mean. The whiskers are 1.5 * interquartile range from the 
first and third quartile. The dots on the outside of each whisker are outliers. The arrow 
indicates the location of ECR’s chosen pose in the distribution and the blue line indicates 
the 5 Å cut-off, below which all poses are considered native-like.  a) 1cdc, b) 1bsr, and c) 
1tub 
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Figure 4.3. ECR prediction of 1tub. a) The PDB structure of 1tub, chains A (red) and B 
(blue). Also seen in a) is the HEX pose identified by ECR - solution 153 (chain A: yellow 
and chain B: green). The RMSD on super-positioning these structures is 78.14. b) When 
the same solution (153) was superposed on the crystal symmetry transformed 
conformations of 1tub, chains A (red) and B (blue), an RMSD of 2.2Å was obtained.  
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Figure 4.4. ECR prediction of x1ubs1. (a) The PDB structure of 1ubs chains A in blue 
and B in red. (d) The functional tetramer of 1ubs (dimer of dimers).  (b) The structure of 
x1ubs1 chains B in yellow and Z (a copy of chain B) in dark green. (c) ECR’s pick, 
solution 2 from docking x1ubs1 with chains B in orange and Z in green. (e) A 
superposition of x1ubs1 and ECR’s pick had an RMSD of 0.33Å. 
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Supplementary Figures 
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Figure S4.1. Distribution of docking poses of PPIs in FLIPlite. ECR analysis on PPIs 
partitions them into FLIP (yellow) and FunC (purple) clusters. ECR values for the known 
PDB structure for each example are indicated in orange. The structure with the smallest 
RMSD from the known PDB structure is indicated in cyan. HEX’s number 1 solution is 
also indicated for each example. The ECR solution in all cases is the structure with the 
most positive PC1.  

a. 1adq_al; b. 1tzi_av; c. 1adq_hl;  

d. 1tzi_ab; e. 1bsl_ab; f. 1biq_ab; 

g. 3kin_bd; h. 2bkh_ab; i. 1cmb_ab; 

j. 1tx4_ab; k. 1awi_ab; l.1ppf_ei; 

m.1cmi_bd; n. 1daz_cb;  o. 1bin_ab; 

p. 1cqx_ab; q. 1c02_ab; r. x1ppf3_ei; 

s. x1ubs1_bz 
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Figure S4.2. Histogram and box plots of RMSDs of poses relative to the known structure. 
For each box plot, the ends of the box represent the interquartile range. A horizontal line 
inside the box marks the median. The top and bottom points of the diamond represent the 
upper and lower 95% from the mean. The whiskers are 1.5 * interquartile range from the 
first and third quartile. The dots on the outside of each whisker are outliers. The arrow 
indicates the location of ECR’s chosen pose in the distribution and the blue line indicates 
the 5 Å cut-off, below which all poses are considered native-like.   

a. 1adq_al; b. 1tzi_av; c. 1adq_hl;  

d. 1tzi_ab; e. 1bsl_ab; f. 1biq_ab; 

g. 3kin_bd; h. 2bkh_ab; i. 1cmb_ab; 

j. 1tx4_ab; k. 1awi_ab; l.1ppf_ei; 

m.1cmi_bd; n. 1daz_cb;  o. 1bin_ab; 

p. 1cqx_ab; q. 1c02_ab; r. x1ppf3_ei; 

s. x1ubs1_bz 
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CHAPTER V 

CONCLUSION 

 

One of the goals of molecular and cellular biology is identifying functions of 

various molecules. Function is dependent on protein quaternary structure, which makes 

the prediction of binding modes important. However, binding is still not entirely 

understood.  Since it has been established that only a few amino acids are critical to 

maintaining structure, function or both, the identification of such residues may improve 

prediction of quaternary interaction. This in turn could improve functional annotation of 

protein structures of unknown function and thus improve docking and drug design 

studies. Various approaches focus on developing scoring functions to distinguish 

interface from non-interface using features such as hydrophobicity, sequence 

conservation, solvent accessible surface area, and shape complementarity.  These 

approaches have yielded limited to moderate success 1, 2. Similar success has been seen 

with machine learning approaches like support vector machine (SVM) and neural 

networks that use sequence and structure information as input to predict quaternary 

structures 3.  

In this work, our aim was to identify properties of PPIs that could discriminate 

between operationally defined FLIP and FunC categories of interfaces using both 

interface properties and machine learning methods. We constructed a dataset of 160 
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interfaces, categorized by function, called FLIPdb. We also introduced the Energy 

Centrality Relationship (ECR) concept. Simplistically, ECR presents as a central 

organizing tendency, with more hot spots at the center of the interface and residues with 

radially diminishing energetic importance around the center. Even though it is known that 

residues at the interface contribute variably 4  to its stability, it is generally also known 

that interfaces consist of subsets of residues that contribute to the bulk of the total binding 

energy 5 . This is of particular importance in drug designing, as the residues contributing 

to a high cumulative binding energy at the interface can be prime targets for drug 

binding.  Despite solely using energetic and geometric features, ECR has a success of 76-

80%, a distinct advantage over methods that use sequence conservation and interactome 

maps because energy is directly correlated to function and stability while conservation is 

not. Although ECR’s success is somewhat lower than some of the best predictors, it does 

not appear to have major database compositional bias. From the analysis of 

computational alanine scanning mutagenesis (CAS), free-energy of substitution (∆∆G) 

and geometric data, FLIPs demonstrate more specific amino acid interactions that 

produce larger disruptions on alanine substitutions than those of FunCs. This finding is 

consistent with experimental work 6  and with the characterization of specific and non-

specific interfaces 7 . 

The occurrence of both a central organizing tendency and a larger specificity at 

the interface suggest a model for evolution at the interface, in which interfaces start as 

week associations and grow over evolutionary time under a natural selective pressure to 

maintain or even “improved” (via mutation) the proteins’ biological function(s) 
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 (Figure 2.2c-f). Residues surrounding these contacts may also have pressure to improve 

affinity. The result of these selective pressures over evolutionary time on the size and 

specific affinity produce a radially symmetric pattern (Figure 2.2b,f) demonstrating 

“stronger” energies near the “older” regions of the interface. This hypothesis agrees with 

the Evolutionary Trace results of Lichtarge and colleagues, who identify radially 

symmetric “bulls-eye” sequence conservation patterns near functionally important 

residues 8.  

It has been observed that the evolutionary rate of proteins is constrained by 

factors such as structural and functional characteristics, pressures proportional to mRNA 

expression levels, and the role of protein abundance. At a higher population size and in 

the absence of genetic drift, proteins are intrinsically stable 9. Proteins that fail to evolve 

intrinsic stability are generally stabilized by PPI. The existence of a trade-off between the 

requirement for maintenance of sufficient stability and the necessity to avoid aggregation 

is also known 10 . Aggregation prone regions are flanked by “gatekeepers” residues that 

are conserved even at a high thermodynamic cost to the protein 11 . This suggests that a 

selective pressure is placed on the protein to interact with a particular partner with high 

affinity suggesting these residues are not structurally, but evolutionarily limited, in order 

to prevent protein aggregation. This requirement for biochemical conservation may be 

what protects an interface from genetic drift. 

Our conservation score analysis showed limited trends. A comparison of 

evolutionary data with interface geometries during analysis of the training set seem to 

suggest FLIP interfaces are likely to have different residue characteristics than FunC 
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interfaces. Consistent with our hypothesis of FLIPs having a central tendency, FLIPs 

have a positive correlation with the regression slope of the alignment variability meaning 

less variation occurs near the interface center relative to the edges. FunCs, on the other 

hand, seem to be much more variable in conservation patterns and indeed are generally 

negatively correlated with slope, meaning they have more variation towards the center.  

However, contrary to our expectations, FLIPs had a larger overall variability at the 

interface suggesting FLIP interfacial residues may demonstrate larger sequence variation 

during the co-evolutionary “optimization”, as multiple mutations may improve energy at 

the expense of increased variation. This is also consistent with the symmetric “bulls-eye” 

pattern of sequence conservation near functionally important residues as observed by 

Lichtarge and colleagues in numerous systems 8. 

Our hybridization of energetic analysis coupled with sequence conservation 

studies was not an improvement over our results from energy or sequence traits alone, 

which was also contrary to our expectations. This could be due to the co-evolutionary 

optimization events mentioned before. Natural selection of an interface could allow for 

variant interacting residue pairs while maintaining stability. This could have the effect of 

increased sequence variation, thus disrupting its correlation with geometric patterns.  

A comparison of the accuracy of prediction for both energy and sequence 

conservation based analysis showed that at 76%, energetic analysis gave us superior 

results compared to sequence conservation, which had a success of 69%. Unlike with 

energetic analysis, our analysis of sequence conservation seemed to be somewhat 

compositionally biased. Therefore, the relationship between sequence conservation and 
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geometry, as we have used here, does not seem to be as reliable a FLIP/FunC 

discriminator as energetic criteria. 

Detecting interacting regions and interacting partners of a protein helps in 

understanding large amounts of sequence and structural data. A combination of 

experimental and computational methods and analysis of the large amount of data 

accumulated from these sources would not only help in understanding how various 

proteins function within the cell, but would also lead to better ways of manipulating 

interfaces such as with drugs made for that purpose. Discovering a new drug is 

computationally expensive and is a process that generally takes decades. By narrowing 

the number of compounds that might treat a particular disease or by assembling novel 

drug molecules to disrupt specific disease pathways, computational methods could not 

only reduce the research time line but also the cost of experimentation. Some of the best-

known examples of computer aided drug design are the inhibitors of the HIV protease 

and the HIV life cycle 12 . Our goal was to apply the ECR methodology to molecular 

docking runs of proteins to filter the number of possible solutions to a few (or one) best 

candidates.  

Molecular docking is a conformational sampling method where receptor and  

ligand interact to generate many possible interaction conformations. The low energy 

conformations are then selected as the possible native state solutions. Docking should be 

guided by a scoring function but current scoring functions also generate a high number of 

false positive poses 13 . Re-sampling conformational space could therefore provide a 

pathway, much like the protein folding free-energy landscape, to generate conformations 
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with improved biochemical affinity. Such conformational targeting during binding may 

effectively provide a better path for association prediction. 

Since ECR had ~80% success in predicting FLIPs and FunCs, we incorporated it 

as a post-filter to our docking analysis. The docked poses of structures in FLIPdb-lite 

were projected through our PCA analysis of the training set. The poses generated for 

most structures seemed to mostly occupy quadrant 2 (FunC region) with some poses in 

quadrant 1 (FLIP region). The difference in the general distribution pattern of FLIPs, 

FunCs, and docking poses suggests a fundamental difference in the biology of these 

structures or interfaces. The poses generated by HEX are the top predictions for the 

docker and are not random predictions. Still, the generation of a high number of false 

positives indicates that HEX possibly focuses on predicting complexes with high affinity, 

which is important to the stability of the complex. However, high affinity does not 

necessarily mean high specificity. Distinguishing affinity from specificity may be 

essential for fine-tuning molecular interaction predictors.  Using ECR as a post-filter, we 

were able to improve the success of prediction from 41% to 50%. While this may not be a 

dramatic improvement over HEX, it shows us that ECR identifies features either ignored  

by or weighed less by HEX. One of the major contributions of ECR as a post-filter is the 

ability to identify alternate FLIP interfaces. Identification of the correct interface to 

disrupt is of particular importance in drug-design.  

Apart from using the appropriate scoring function to identify native-like 

structures, one other challenge is the incorporation of flexibility. The proteins studied in  
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our CAPRI-like experiment in Appendix 1, unlike the previous docking experiments in 

chapter 3, involved at least one unbound component. The difficulty of unbound docking 

is higher as it has to account for both backbone and side-chain conformational changes 

that occur upon binding. For such interactions, if a docking program does not incorporate 

flexibility into the calculations, the probability of generating false-positives is high. As 

ECR is based on studying static structures it may not be an effective post-filter in such 

cases. This might be one reason why ECR failed to identify native-like poses in all three 

targets selected. Calculations are currently underway that address ECR’s sensitivity to 

conformational changes (unpublished results). 

 Furthermore, ECR consistently clustered AbAg and Enzyme-Inhibitor interfaces 

near FunCs and away from other FLIPs using either residue energetics or conservation 

features. As a result, our docking analysis of these sub-categories was inconclusive. Even 

though the distribution of interfaces belonging to these sub-categories were internally 

consistent, in that they clustered together, they generally were in the FunC region. It is 

possible that these sub-categories were not properly operationally defined to start with or 

that we did not identify the features important to these categories. For example, the  

antigen binding site on an antibody has loop conformations called Complementarity 

Determining Regions (CDRs). The conformations of these loops are determined by a few 

key residues within each loop or in interacting loops. These residues are conserved while 

the surrounding residues tend to vary14 . With this type of multiple instance of conserved 

and variable regions, it may be that AbAg appear to lack overall geometric centrality 

when in actuality they have multiple tiny ‘central’ regions. 
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AbAg interactions are not driven by natural selection of mutants over 

evolutionary time periods but rather a result of stochastic V(D)J recombination within the 

lifespan of the organism 15, 16. Similarly, infectious organisms often produce enzyme 

inhibitors to hamper a host’s native functions. While, the infecting organism may have a 

selective pressure to enhance inhibitor binding, the host organism actually has selective 

pressures to evade inhibitor binding.  These alternative pressures on such interfaces may 

also produce more FunC-like geometric patterns.  

The size of the interface itself could be a factor in FLIP/FunC prediction of AbAg 

and Enzyme-Inhibitor complexes. Smaller interface sizes would mean fewer residues and 

overall lower correlation values for the features chosen for our K-means clustering 

analysis, which is probably another reason these sub-categories were difficult to 

distinguish from the FunCs. 

The CAPRI-like docking analysis included two Enzyme-Inhibitor complexes. Our 

low success with this sub-category, coupled with the proteins not being in their final 

bound conformations, likely made it more difficult to predict them. Further analysis in  

this area could be to identify unbound components of the proteins in FLIPlite (which is 

dominated by bound PPI) and perform docking studies on them. A comparison could then 

be made between the two sets to see if the lack of success in our CAPRI-like docking 

analysis was due to issues with improper definitions of sub-categories or flexibility 

within the interface.  

ECR currently is based on analyzing coordinate files from PDB representing 

static structures. Proteins however are dynamic and HEX failed to generate native-like 
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solutions for all three CAPRI targets chosen. This could either be because of protein 

flexibility and dynamics or just because it is a challenging sub-category. While we could 

use docking algorithms that are better suited for certain proteins, for example         

GLIDE 17, 18 , a flexible docking algorithm for proteins that undergo large conformational 

changes upon binding; Rosetta Antibody 19 , for antibody interactions; and autodock 20 , 

for small ligand interactions such as enzyme-inhibitor interactions. We could also 

simulate backbone and side-chain movements using molecular dynamics simulation 

experiments to generate additional native-like low energy conformations that can be used 

as starting conformations for docking.  

In summary, our ECR model shows the importance of energy in interface 

formation. It also shows that, even though sequence conservation is observed in proteins, 

it may not be sufficient for a FLIP/FunC discrimination. In combination, the use of 

energy features outperforms the use of sequence conservation features. Using ECR as a 

post-filter to docking reduces the number of false positives in bound docking. In studies 

with unbound components however, the benefit of using ECR was unclear. The inclusion 

of more molecular modeling methods during the modeling of the interfaces may improve 

predictions.  
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Abstract 

 CAPRI (Critical Assessment of Prediction of Interactions) is a community-wide 

experiment that aims to evaluate methods that model multi-component molecular 

interactions, including proteins and nucleic acids1. While a number of methods are being 

used and developed to predict these interactions, their success remains limited especially 

when predicting interactions between unbound components. The success of ECR and its 

ability to improve bound docking runs led us to assess ECR’s success on unbound 

structures (structures that could undergo conformational change upon binding). Here we 

use unbound docking targets from previous CAPRI analyses to evaluate the efficiency of 

ECR in predicting protein interactions complexes. HEX was unsuccessful in generating 

any native-like docking poses for the targets selected. As a result, ECR was not able to 

identify any native-like poses either. 

Introduction  

  
The structure of a Protein-Protein complex can provide details about its biological 

role2. Structural information obtained from techniques such as NMR and X-ray 

crystallography is deposited in the Protein Data Bank (PDB) 3. However, PDB has a 

relative dearth of large complexes4 and the structures available may not always represent 

the biological assembly of the complex5. In the absence of accurate three-dimensional 

protein interaction data, computational methods can be used to generate structures.  

Protein-protein docking is one such computational technique that addresses the 
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problem of deriving three-dimensional structures of complexes, starting from the atomic 

positions of the individual components6, 7. Docking can provide insights into molecular 

functions of proteins based on properties such as the affinity and specificity of 

interaction8. Docking methods developed in the recent past are successful in generating 

near-native conformations. Unfortunately, they also generate a large number of non-near 

native structures for every successful prediction (false positives) 9. As docking algorithms 

have improved to overcome these and other drawbacks, tools to blindly assess and 

compare their predictive capacity have become necessary9. 

The Critical Assessment of Protein Interactions (CAPRI) is a community wide 

experiment designed to assess the reliability of docking in structure prediction. Each 

prediction round has 1-7 experimentally determined quaternary structures. The 

coordinates of these structures are not provided to participants and blind predictions are 

therefore submitted by participants and assessed by judges9. In Chapter 4, we showed 

docking analysis on bound conformations of proteins (conformations already in an 

oligomeric form) to validate ECR’s ability to identify native-like structures. Bound 

docking involves dissociating the components of a known complex and reassembling the 

complex by docking. Unbound docking is similar, but involves assembling the known 

complex from known structures of the isolated, “unbound”, component proteins. It is not 

generally likely that the isolated proteins will have exactly the same structure as their 

final complexed conformations. Fully unbound CAPRI targets are generally desirable, as 

the crystal structure of bound targets may occur in a highly specific conformation that  
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may not sufficiently represent the unbound target. However, as fully unbound protein 

targets are not abundant, mixed “bound/unbound” targets are also sometimes assessed 9. 

As the ability of our ECR method to identify native-like structures in interactions 

involving an unbound component has not been determined, we identified potential target 

structures from previous CAPRI experiments. We actively avoided protein-nucleotide 

interactions in order to concentrate on protein:protein interactions (PPI). Interactions 

requiring homology modeling or molecular dynamics simulation were also avoided, as 

such studies are much more computationally expensive. Given these restrictions, we 

narrowed the list of 53 CAPRI targets to 3 potential test cases. These cases involved a 

regulator (Target 30), and two enzyme-inhibitors (Target 40 and 41). Since ECR 

previously had trouble identifying AbAg (Antibody-Antigen) and Enzyme-Inhibitor 

interactions, targets involving such interactions have the potential to be challenging 

cases. Additionally, our Docking/ECR studies (Chapter 4) were performed on bound 

conformations of proteins; interfaces involving movement or conformational 

rearrangement (as in unbound components) had the potential to prove to be even more 

problematic. Regardless, we chose to proceed, as even if our predictions were inaccurate, 

they would provide information that would enable us to build a better methodology. 

 

 

 



	
   189 

Results 

	
  
Target 30: Rnd1-GTP in complex with plexin B1. 

The unbound structures provided by CAPRI were PDBid 2cls, chain A 

(Rho-related GTP binding protein) and, PDBid 2r2o, chain B (plexin-B1 protein). The 

complex to be predicted was PDBid 2rex (identified after the Target 20 round had 

completed). All structures are shown in Figure A1a, b, and c.  

Poses generated by HEX were analyzed by ECR (Figure A1.2). Only solution 913 

from HEX was identified in the FLIP cluster (Figure A1.1d, A1.2). This structure had a 

root mean square deviation (RMSD) of 48.31 Å to the known structure (where native-like 

is defined to be ≤ 5 Å). In addition, no solution matched any symmetry-transformed 

conformations of 2rex. Neither HEX nor HEX+ECR were able to identify a native-like 

pose. 

Target 40: Double headed inhibitor API-A bound to two trypsin molecules. 

The structures provided were the bound form of a protease inhibitor, PDBid 3e8l, 

chain C in the bound form and unbound bovine trypsin PDBid 1bty. The structure to 

predict was the C:B interaction of 3e8l. The question being posed was could the unbound 

structure of trypsin be used to identify the bound form of trypsin with an inhibitor. All 

structures are shown in Figure A1.3a, b, and c.  
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When the poses generated by HEX were analyzed by ECR (Figure A1.4), we 

were able to identify many poses in the FLIP region from a second clustering analysis. 

We identified solution 530 from HEX as the ECR solution (Figures A1.3d, A1.4). 

However, both the HEX best structure (solution 72, RMSD 7.91 Å) and ECR best 

structure (solution 530, RMSD 54.69 Å, Figure A1.4) failed to identify a native-like 

structure.  

Target 41: Colicin E9 dnase bomain in complex with IM2 protein. 

The structures provided were unbound colicin, PDBid 1fsj, chain B and the 

unbound immunity protein PDBid 1no8, chain A. The target structure was PDBid 2wpt. 

All structures are shown in Figures A1.5a, b and c. 

The poses generated by HEX were analyzed by ECR (Figure A1.6) and only 

solution 823 from HEX was identified in the FLIP cluster (Figures A1.5d, A1.6). This 

structure had an RMSD of 30.56 Å and also did not match any symmetry-transformed 

conformations of 2wpt. Once again HEX, and as a result ECR, failed to identify a native-

like structure.  

Discussion 

 The docking poses of all three targets, particularly the non-native poses, exhibited 

similar PCA distributions mostly occupying the negative PC1 region of quadrant 2. This 

pattern of distribution of non-native docking poses was also seen in our analysis of 

bound-bound interactions in Chapter 4. We take this to suggest that properties specific to 
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non-native docking poses, but neither FunC or FLIP structures, continue to be identified 

by ECR, even in the presence of unbound source structures. As non-native docking poses 

cluster nearer to the FunC cluster, we suggest this indicates that they are more similar in 

physical properties as well. It is possible that docking software like HEX emphasizes 

affinity over specificity and generates structures that may be stable complexes but not 

represent specific interactions necessary for function.  

 It is unclear how effective using ECR as a post-filter on docking poses with no 

native-like conformations would be, as we can not currently define what the most FLIP-

like but non-near native structure means, if it has any significance at all. HEX failed to 

generate any native-like poses and, as expected, ECR therefore also couldn’t identify any 

native-like poses. This lack of success could be because of the following reasons: 

1. Limited movement of interfacial residues. 

     HEX and ECR do well in bound-bound predictions (Chapter 4). However, it is 

possible this is due to limited movement of the interfacial residues. It remains to be 

seen whether ECR is sensitive to induced-fit conformational dynamics. 

Rearrangement of residues at the interface during PPI formation and the limited 

amount of conformational relaxation of residues by HEX could be introducing (and 

failing to relieve) shape/Van der Waals and electrostatic clashes. This in turn could 

lead to less favorable overall binding energies and result in rejection of otherwise 

native-like conformations that could have been identified using ECR. A potential 
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avenue for correcting this may be to identify if native-like, but poorly scoring ECR 

targets, have additional features that can be exploited for identification purposes.  

2. Lack of a well-defined FunC definition. 

     ECR identifies the pose producing the most positive PC1 as its FLIP solution. This 

definition of ECR’s FLIP solution is not particularly adept at identifying enzyme-

inhibitor complexes. In earlier work, we have observed such interfaces to have FunC-

like properties, which increases the likelihood of such poses being mistaken for false 

negatives. Future work needs to more rigorously/mathematically define FunC 

characteristics, as well as those of the more FunC-like FLIPs. 

Conclusion 

In summary, it remains to be seen whether ECR (trained on bound protein 

structures) is an effective post-filter for unbound docking. ECR’s effectiveness as a post-

filter is limited by the results of the docking program used. It may be useful to identify 

docking programs dedicated to particularly challenging sub-categories such as AbAg and 

enzyme-inhibitors that HEX (Chapter 4) and ECR had limited success in predicting 

(Chapter 2).   

Methods 

Identifying targets 

Three potential targets were identified from previous CAPRI experiments. 

Protein-nucleotide interactions were discounted to concentrate on PPIs and interactions 
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requiring homology modeling or molecular dynamics simulation were excluded to avoid 

expensive computation. The three docking targets identified were Target 30 (a regulatory 

protein interaction), Target 40 (an Enzyme-Inhibitor complex), and Target 41 (also an 

Enzyme-Inhibitor complex).  

Molecular docking  

The protein docking program HEX was used to generate poses for protein 

structures in FLIPlite. Shape and electrostatic contributions to the docking correlation 

were enabled. The program was set to generate 1000 poses at Euler rotational increments 

of 7 degrees and a twist of 2 degrees. Chain 1 of the dimer was always identified as the 

receptor, which was fixed, and chain 2 was identified as the ligand, which sampled 

conformational space around the receptor. For each docking pose generated, an all atom 

RMSD to the PDB structure was calculated.  

Computational alanine scanning (CAS) 

The CAS method of Kortemme and Baker10, 11 was used to process all the 

interfaces in the FLIPdb. In brief, this method evaluates enthalpy and free energy of 

solvation terms over conformations arising from a rotamer library for both the existing 

and alanine substituted residues in a PPI (native Gly and Pro excluded). These terms are 

used to determine a pseudo-free energy change upon substitution (∆∆G)	
  11.  
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Interfacial geometry 

Interfacial residues were defined using the same interface definition as in the CAS 

method of Kortemme and Baker11. The geometric distribution of residues in each PPI 

were determined by calculating the displacement (∆r) of the Cα position from the mean 

of the Cα positions (termed the Center of Interface, CoI) using software written by the 

authors. A linear regression of the ∆∆G and ∆r data to a first-order polynomial 

(∆∆G=slope * ∆r + intercept) was calculated for each interface using software written by 

the authors as well as GNUPLOT12.  

Energetic and geometric features 

Calculations used in this work followed our previous protocol13, identifying 7 

features for each interface: the slope (slope_∆∆G), intercept (intcpt_∆∆G), net sum of all 

∆∆G changes (sum_∆∆G), mean ∆∆G for all interface residues (avg_∆∆G), total number 

of residues in the interface (#total), number of residues with ∆∆G larger than +1 kcal/mol 

(#hot), and the ratio of “hot” to total (frac_hot). 

Principal component analysis (PCA) 

Principal Component Analysis of the variation of CAS energetic and geometric 

feature data for all PPI was undertaken using JMP14. PCA determines a set of linearly-

uncoupled eigenvectors from normalized correlations between variables that 

progressively describe the largest sources of variance in a data set15.  



	
   195 

K-means clustering 

K-means clustering16 is a data analysis method that clusters observations into a 

specific number of clusters by attempting to find the point(s) that have the lowest mean 

variation from the other input data. When combined with PCA, the combination of 

features that allows input data to be clustered can be identified. In this work, we projected 

our energy versus distance data for the poses of the 3 proteins through a polynomial 

obtained from our earlier work on the training set13. ECR’s pick was the structure with 

the most positive PC1 in the FLIP region of our clustering analysis. 
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Figure A1.1. Docking solution for target 30. a) 2rex is the target structure. The source 
structures provided to predict the target were b) 2cls - chain A and c) 2r2o - chain B. 
HEX was used to dock 2cls:A and 2r2o:B. 1000 poses were generated and only one 
structure was identified in the FLIP cluster, d) solution 913 (RMSD 48.31)     
 
 
  
 
 
 
 
 
 
 
	
  



	
   199 

	
  
	
  
Figure A1.2. ECR Analysis of the docking poses of Target 30. Principal Component 
(PC) values for docking poses are shown plotted against those of the ECR training set (in 
gray) 13. Almost 100% poses had PC values in the FunC cluster (blue) while one pose was 
identified in the FLIP cluster (yellow). The PC values for the structure to be predicted, 
2rex, are plotted in orange and the PC values for the structure with the lowest RMSD 
generated by HEX is shown in cyan (RMSD 19.78 Å).  
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Figure A1.3. Docking solution for Target 40. a) 3e8l has three chains A, B, and C. The 
target interaction was 3e8l C:A. The structures used were b) PDBid 3e8l – chain C, and 
c) PDBid 1bty – chain A. d) The solution generated by HEX and identified by ECR as the 
solution, was pose 530 (RMSD 54.94Å).  
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Figure A1.4. ECR analysis of the docking poses of Target 40. PC values for docking 
poses are shown plotted against those of the ECR training set (in gray) 13. 78% of poses 
were identified in FunC region (blue) and in FLIP region (yellow). The PC values for the 
structure to be predicted, 3e8l (C:A) is shown in magenta and the PC values for the 
structure with the lowest RMSD as generated by HEX is shown in cyan (RMSD 7.91 Å)  
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Figure A1.5. Docking solution for Target 41. a) The target structure 2wpt has two chains 
A and B. The structures provided were b) PDBid 1fsj – chain B and c) PDBid 2no8 – 
chain A. d) The solution generated by HEX and identified by ECR as the solution was 
solution 823 (RMSD 30.56Å), shown in Figure 5.5d.  
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Figure A1.6. ECR analysis of the docking poses of Target 41. PC values for docking 
poses are shown plotted against those of the ECR training set (in gray) 13. Almost 100% 
of the poses were in the FunC cluster (blue) while two poses were identified in the FLIP 
cluster (yellow). The structure to be predicted, 2wpt, is shown in orange and the structure 
with the lowest RMSD, as generated by HEX (solution 464), is shown in cyan (RMSD 
8.8 Å).  
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