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ABSTRACT 

MEGAN ENDRESS 

BENFORD' S LAW AND HUMANLY GENERA TED PRICES IN AUCTION HOUSES 
AND BUYOUT SYSTEMS OF VIRTUAL WORLDS 

MAY 2014 

The purpose of this study was to analyze the buyout, or "buy now," prices in auction houses of 

virtual environments, such as World ofWarcraft and Guild Wars 2. Human players interact with an auction 

house user interface in order to buy or se11 in-game items, purchasable with in-game currency. Players 

wishing to sell items can post their items on the auction house for set lengths of time, as well as set a 

starting bid amount and/or an amount in which other players can instantly buy the item. Since the 

establishment ofBenford's Law, it has been supported that data generated by humans typically does not 

follow Benford's Law, proving to be a beneficial tool in detecting fraudulent accounting data. However, 

this study shows that the leading significant digits of these buyout prices in virtual environments created by 

humans follow Benford's Law by utilizing Kuiper's goodness of fit Vn test, a modified Kolmogorov-

Smirnov test. 
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CHAPTER I 

INTRODUCTION 

A teacher wrote the numbers one through nine on a sheet of paper, cut them separately, placed 

them in a bowl, held the bowl up high, and asked a student to pull out one number. She asked the class, 

"What is the probability that the student pulled a two?" Intuitively, the class replied in unison, "One-ninth." 

Students learn in elementary school about probability and learn in elementary statistics about the uniform 

distribution, such as this case. Imagine now the surface areas of every river in the United States, but only 

think of the first digit of each area. Does each of those nine digits also have an equal one-ninth probability 

of showing? To one's surprise, the leading digits of these areas would not follow a uniform distribution, but 

a special logarithmic distribution known as Benford's Law. 

In fact, stock market prices, city populations, the numbers appearing in Readers Digest and street 

addresses from people mentioned in American Men of Science are a few among some of the data collected 

by Frank Benford when he established "The Law of Anomalous Numbers", or Benford's Law as it is more 

commonly known as today. He credited this phenomenon to anomalous numbers that appear to have no 

known relation. By his definition, numbers that follow some common relation deviate the most from this 

distribution law. Benford noted that the distribution of the first occurring digits of his gathered data, 

followed closely to the logarithmic distribution found by previous founder, Simon Newcomb, the first 

person documented to have mentioned the existence of the phenomenon. More importantly, what 

Newcomb and Benford found is an intriguing principal that has fascinated statisticians, economists, 

physicists and others over the last century. What makes this law so interesting is how it breaks intuition that 

the leading significant digits of multi-digit numbers should have an equal, probable chance of occurring, 

P(l) = P(2) = P(3) = ··· = P(9) = 0.11 . 
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The phenomenon of Benford' s Law is typically seen in naturally occurring data sets, such as the 

ones listed above. In these cases, the leading significant digits occur in decreasing frequency, from one to 

nine. 

Many scholars have shown the applications and usefullness of Benford 's Law. Consequently, 

Mark N igrini showed in The Use of Benford 's Law as an A id in A nayltical Prodecures how the Jaw can be 

used to help auditors detect accounting fraud. Nigrini wrote that since original numbers are naturally 

occuring and should conform to Benford's Law, intintionally forged numbers would be noticably different 

in distribution and henceforth detectable in an audit. On the contrary, David Giles considered the case of 

eBay closing prices of professional football games and found thai these prices, while humanly created and 

bidded on, showed to follow Benford's Law. 

Similar to Giles studies, this thesis focused on auction houses of virtual gaming worlds to 

determine if the buyout, or "buy now," prices also followed Benford's Law. We considered two large, 

popularly played massively multi-player online roleplay games (MMORPG), Blizzard Entertainment's 

World of Warcraft and Arena Net's Guild Wars 2. In these MMORPGs, human players interact within a 

virtual environment through a player's character, controling movement and appearance, earning experience 

points for completing tasks and objectives in order to advance in levels, which dictat.es what the player can 

do and where they ca.n go. While the development of their character is the primary goal, players also 

socialize with characters of other human players and non-playing characters (npc). A common feature of 

World of Warcraft and Guild Wars 2 is the auction house. Here, players interact with an :iuction house user 

interface (UI) to buy or sell in-game items, purchasable with in-game currency. This boosts the already 

existing virtual economy within the gaming evnironment (Castronova 173). Players wishing to sell items 

can post their items on the auction house for set lengths of time, as well as set a starting bid amount or even 

an amount where other players can instantly buy them, similar to eBay's "buy now" option . 
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The purpose of this study was to consider the prices of items being sold at the "buy now" option 

and the leading significant digits to determine if these listed prices followed Benford's Law. We were not 

concerned if the auctions were actually bought or not, nor were we considering any negotiated prices or 

bidding; we were only concerned with the price at which they were listed for immediate purchase. This was 

accomplished by utilizing Kuiper's goodness of fit Vn test to determine if the distribution of the sample 

prices differs from Benford's distribution. There is a variety of statistical tests that could be administered 

here to determine if a data set conforms to Benford' s Law. However, we discuss the limitations of other 

such tests in chapter III. 
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CHAPTER II 

REVIEW OF LITERATURE 

Before the introduction of handheld electronic calculators in the 1970s, logarithmic tables 

simplified large, arduous calculations. Logarithmic tables reduced multiplication and division problems 

into a matter of addition and subtraction through logarithms with base ten. Numbers were written in 

exponential form bx = y, and converted to logarithmic form, logb(y) = x, where xis the value found in 

the logarithmic table and y could be found using the anti-logarithm table. Someone using these techniques 

also had to identity the characteristic, or location of the decimal point, and the mantissa, the fractional part 

of the logarithm that is found in the table. For example, to find the logarithm of 150, through some 

manipulation we get log10 150 = log10 (10 2 
· 1.5) = log10 (10 2

) + log10 (1.5) ~ 2 + 0.176091, where 

the characteristic is 2 and the mantissa is 0.176091. These documents were heavily used because this was 

the widely used method for over four hundred years to calculate surveying, navigation, chemistry, 

engineering and much more (Johnston "Slide Rule"). 

In 1881 astronomer Simon Newcomb wrote a short article for the American Journal of 

Mathematics where he noted that the first pages in loga~ithmic tables wore out faster and appeared to have 

higher use on the first pages versus the last pages which showed little wear and tear. He concluded that the 

first digit was one more often and the frequency decreased up to nine and identified this property as "the 

Law of Fr~quency." Since naturally occurring numbers are considered ratios of quantities, Newcomb said 

th.at in order to consider the probability of choosing a number with the first significant digit d, one must 

pick two numbers and determine the probability of their ratio (Newcomb 39-40). 

He proposed that the probability distribution of the mantissa, the fractional parts of the logarithm, 

will approach ·a uniform distribution around a circle as t~e number of d increases. "The.law of probability 
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of the occurrence of numbers is such that all mantissa of their logarithms are equally probable." That is to 

say, the digits one through nine could be arranged around a circle where each leading digit d has an equal 

one-ninth chance of occurring. However, as we pass nine and place more sequential numbers around the 

circle (i.e., ten, eleven, and twelve) we have more digits with a leading significant digit of one. This would 

raise our previous probability of digit one occurring and lower the previous probabilities of the other eight 

digits, until we reach twenty and the same would occur for raising the probability for the digit two and 

lowering the others, and so on until we begin to approach a circular uniform distribution (Newcomb 39-40). 

We then took the first 100,000 numbers, from 1 to 100,000, and considered the accumulative 

probabilities of the leading digit d, as seen in the following line plots. For instance, with just 1, the 

probability of showing a number with the leading digit of one is¾- When we have 1 and 2, the probability 

of showing a number with the leading digit of one is;- This line plot shows in each case that as the total 

sample size n increases, the probabilities of digit d occurring as the leading significant digit converges to 

11%. However as n gets larger and larger, the average for each digit's probability will correspond to the 

logarithmic frequency established by Newcomb (see figure 1). 

~:_:_ ~r· -- -- r-~ ----J-. ii~ -~--i:1~ -~ 
0 --,--~---- ,--------,---- ---------.-~---.-----.­

c 

AccumuWIW! ProbabUhi~ of Oigh SewP.>tl Occprrlng 

Acr.umulalivP. Prllb3biitios of Digit ffVP. fk:o;ning 

Ar.ctu11ukldve Probabiftti~s of Digit Eh;lttt Occ,mlng 

Figure 1. Accumulative Probabilities of Digit d 
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Together on a linear scale, the probabilities follow a logarithmic distribution (see equation 2.1 and 

table 1, where dis the leading significant digit of interest and d' is the second number). 

log(d) (d + 1) 
P(d) = log(d + 1) - log(lO) - log(l) = log -d-

(2.1) 

Table 1 

Probabilities of Occurrence for the First Two Sig,1?ficant Digits ~fa Natural Number 

d P(d) P(d) 

0 0.1197 
0.301 0.1139 

2 0.176 0.1088 

3 0.125 0.1043 

4 0.097 0.1003 
5 0.079 0.0967 
6 0.067 0.0934 

7 0.058 0.0904 
8 0.051 0.0876 

9 0.046 0.085 

Source: Newcomb, Simon. "Note on the Frequency of Use of the Different Digits in Natural Numbers." 

American Journal of Mathematics. 4.1 (1881): 40. Web. 7 Mar. 2014. 

In 1938 physicist Frank Benford authenticated Newcomb's claim by assessing naturally occurring 

sets of data and tabulated data, such as city populations, river surface areas, atomic weights, and molecular 

weights, to show if their distribution was similar to a logarithmic distribution (see table 2) . The twenty 

different fields of collected data varied from arbitrary numbers of information to proper mathematical 

calculations (Benford 553). It is unclear whether Benford had prior knowledge ofNewcomb's work on the 

subject; however, Benford noticeably worked more in depth with empirical data to establish its validity and 

provide further information and examples. 

6 



Table 2 

Percentage of Times the Natural Numbers 1 to 9 are Used as First Digits in Numbers, as Determined by 

20, 229 Observations 

0. First Digit ::; 
Title e Count 

0 
l 2 3 4 5 6 7 8 9 

A Rivers , Area 31.0 16.4 10.7 11.3 7.2 8.6 5.5 4.2 5.l 335 

B Population 33.9 20.4 14.2 8.1 7.2 6.2 4.1 3.7 2.2 3259 

C Constants 41.3 14.4 4.8 8.6 l0.6 5.8 l.0 2.9 10.6 104 

D Newspapers 30.0 18.0 12.0 10.0 8.0 6.0 6.0 5.0 5.0 100 

E Spec . Heat 24.0 18.4 16.2 14.6 10.6 4.1 3.2 4.8 4.1 1389 

F Pressure 29.6 18.3 12.8 9.8 8.3 6.4 5.7 4.4 4.7 703 

G H.P. Lost 30.0 18.4 11.9 10.8 8.1 7.0 5. l 5.1 3.6 690 

H Mo!. Wgt. 26.7 25.2 15.4 10.8 6.7 5.1 4.1 2.8 3.2 1800 

I Drainage 27.l 23.9 13.8 12.6 8.2 5.0 5.0 2.5 1.9 159 

.1 AtomicWgt. 47.2 18.7 5.5 4.4 6.6 4.4 3.3 4.4 5.5 91 

K n- 1,v·n ... 25.7 20.3 9.7 6.8 6.6 6.8 7.2 8.0 8.9 5000 

L Design 26.8 14.8 14.3 7.5 8.3 8.4 7.0 7.3 5.6 560 

M Digest 33.4 18.5 12.4 7.5 7.1 6.5 5.5 4.9 4.2 308 

N Cost Data 32.4 18.8 IO.I 10.l 9.8 5.5 4.7 5.5 3.1 741 

0 X-Ray Volts 27.9 17.5 14.4 9.0 8.1 7.4 5.1 5.8 4.8 707 

p Am League 32.7 17.6 12.6 9.8 7.4 6.4 4.9 5.6 3.0 1458 

Q Black Body 31.0 17.3 14.l 8.7 6.6 7.0 5.2 4.7 5.4 1165 

R Addresses 28.9 19.2 12.6 8.8 8.5 6.4 5.6 5.0 5.0 342 

s ,z 1,n 2 ..• n' 25.3 16.0 12.0 10.0 8.5 8.8 6.8 71 5.5 900 

T Death Rate 27.0 18.6 15.7 9.4 6.7 6.5 7.2 4.8 4.1 418 

Average 30.6 18.5 12.4 9.4 8.0 6.4 5.1 4.9 4.7 IOI I 

Probable Error ±0.8 ± 0.4 ± 0.4 ± 0.3 ± 0.2 ± 0.2 ±02 ±0.2 ±0.3 --

Source: Benford, Frank. "The Law of Anomalous Numbers." Proceedings of the American Philosophical 

Society. 78.4 (1938): 553. Web. 7 Mar. 2014. 

Through his findings, he was able to come to a general overview that the more inherently random 

the numbers appeared to be, the closer they would follow Newcomb's principal and that the more tabulated 

data veered the most. He came to rename the principal "the Law of Anomalous Numbers" because the 

groups that he found to follow this principal appeared anomalous, having no apparent relation until 

examined in whole (Benford 551 ). However, over time Benford's Law of Anomalous Numbers would 

become more popularly known as "Benford's Law." 

The frequencies from his data he found closely mimicked Newcomb's logarithmic distribution, but 

he also noticed that this distribution law only applied to large numbers of three or more digits. Benford 

went further to state that while sets with numbers comprised of three or more digits created a logarithmic 
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series, sets with numbers comprised of single or double digits only created a geometric series (Benford 

563). He compared his observed and computed frequencies (see table 3) and noticed his observed 

frequencies were comparable to the expected frequencies. 

Table 3 

Observed and Computed Frequencies 

Natural Number Observed Logarithm Observed -
Prob. 

Error of 
Number Interval Frequency Interval Computed 

Mean 

1 1 to 2 0.306 0.301 + 0.005 ± 0.008 
2 2to 3 0.185 0.176 + 0.009 ± 0.004 
3 3 to 4 0.124 0.125 - 0.001 ± 0.004 
4 4 to 5 0.094 0.097 - 0.003 ± 0.003 
5 5 to 6 0.08 0.079 + 0.001 ± 0.002 
6 6to 7 0.064 0.067 - 0.003 ± 0.002 
7 7 to 8 0.051 0.058 - 0.007 ± 0.002 
8 8 to 9 0.049 0.051 - 0.002 ± 0.002 
9 9 to 10 0.047 0.046 + 0.001 ± 0.003 

Source: Benford, Frank. "The Law of Anomalous Numbers." Proceedings of the American Philosophical 

Society. 78.4 (1938): 554. Web. 7 Mar. 2014. 

Many scholars have aimed to show instances where Benford' s Law applies. An important property 

of the law came through Theodore Hill when he proved Benford's Law is scale invariant, P(kx) = 

f(k)P(x), where k is some constant (Hill "A Statistical Derivation" 354-363). Also noticeably, Mark 

Nigrini wrote multiple articles about the applications ofBenford's Law and how it can be used in an 

analytical process to detect accounting fraud . Ideally, genuine data, such as stock market prices and even 

accounting data can be expected to follow Benford' s Law because they contain anomalous numbers. 

Therefore, anyone attempting to influence the data for personal gain would not be considering such 

distributions and would create any ideal number that seems to best fit their current situation of fraud. Such 

fraudulent input or alteration to data is easy to detect by looking at the posterior distribution to see if it 

deviated from Benford's distribution (Nigrini and Mittermaier 52-67). 

Additionally, Hsu, Kubovy and Hill conducted similar experiments asking individuals to create 

unique four, five and six digit numbers, respectfully, and discovered no Benford relationship. In all three, 
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as well as with Nigrini's work, results indicate that humans do not make well for random number generators 

nor are they decent at creating data conforming to Benford's Law (Hsli 57-67; Kubovy 359-364; Hill 

"Random Number-Guessing" 967-971). 

While others strove to show that numbers randomly created by humans did not follow Benford's 

Law, Bruce Burns worked to show the contrary. He believed that human thought followed a Benford 

distribution but attributed the lack of relationship to manner in which the random information was 

requested or given. Burns suggests that when asked to create numbers based on something meaningful, as 

opposed to entirely arbitrary, people are more likely to follow Benford's law. He showed this was possible 

through two studies with psychology students, asking for numerical answers for nine questions. In both 

cases, findings were close to Benford's Law (Burns "Sensitivity to Statistical Regularities"). 

Likewise, David Giles considered the closing prices of winning bids of eBay auctions for 

professional football games to see if human influence on bid prices would conform or defy the principal. 

For analytical purposes, he excluded college football game tickets, all Dutch auctions, and auctions won 

through the "buy-it-now" option. Giles utilized Kuiper's test because he claimed his data had distributional 

circularity, making traditional testing for Benford's Law less desirable. This test was also ideal to him 

because it is invariant for cyclic transformations, while the Kolmogorov-Smirnov test or Chi-Square 

Goodness of Fit test are not (Giles "Benford's Law" 157-167) 

Kuiper's test has a crucial property that distinguishes it from the Kolmogorov-Smirnov. It is rather 

fitting for observations that lie around a circle because "If the observations are points on a circle, the value 

of VN does not depend on the choice of origin for measuring x (Stephens 309)." Therefore, Kuiper's test is 

a suitable test when cyclic data is the topic at hand. 
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For example, consider the probability that an individual is born in a certain month. The months are 

initially thought of as linearly distributed, where January is strictly at the beginning of the year and 

December is strictly at the end of the year (see figure 2). 

Januan· I . feb. 

I 
lbrch. 

I 
April 

I 
Ju.ne 

I 
Aug. 

I 
SepL 

I 
Oct. 

I 
~o-r. December 

I I 

Figure 2. Linear Model of Calendar Months 

Yet, the months can also be thought of as being organized around a circle, where January ahd 

December are next to each other (see figure 3), as December comes right before January (Giles, "Testing 

for a Santa Clause" 422). 

Oct. 

Figure 3. Calendar Months Organized Around A Circle 

Similarly in Benford data, numbers are thought ofin a linear pattern, ranging on the number scale 

of-oo < x < oo, where there is a distinguishable difference between one and nine (see figure 4). 

◄ 
-00 

1 2 3 ~ 5 6 7 8 9 

.Figure 4. Number Line 

00 

However, for money data, although digits one and nine are on opposite ends of the number line, 

their leading significant digits can be thought of as being organized around a circle just as Newcomb 
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proposed. As far as Benford rules are concerned, prices $0 .10, $1. 00 and $10. 00 are relatively the same 

because they all have the same first digit of one. 

For instance, when the prices $0.90 and $1.00 are considered, their first digits one and nine are not 

psychologically considered at opposite ends of the spectrum, rather two contingent discrete numbers where 

the first price might have undercut the second price by ten cents. 

Equivalently, when the prices $0.99 and $1.00 are considered and their second digits are taken into 

consideration, a similar psychological occurrence is seen, where they are considered as two continuous 

discrete numbers where one undercut the other by a penny (see figure 5). Therefore, through this 

phenomenon one might expect to see a larger concentration of the digit nine than is forecasted by Benford's 

distribution. 

so.so 

u------ S0.20/Sl.00 
S0.19/Sl.99 

~·:::~ 
' \,~ 

1', 
l 

l 
,/ 

S0.99 
;?\ 

~/ 

/ 

so.9s 

S0.70 

Figure 5. Prices Organized Around a Circle 

Accordingly, Giles used Kuiper's test, a customized version of the Kolmogorov-Smirnov test, 

which is more suitable to meet the needs of such circular data, to determine if the eBay data conformed. 

Similar to Bums, Giles found that the winning eBay prices showed to conform to Benford's Law (Giles, 

"Benford's Law" 157-161). 
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CHAPTER III 

RESEARCH METHOD 

Because both MMORPG's have such a large player base, servers are needed to host the vast 

amounts of data transferred between each player and the virtual environment. Guild Wars 2 hosts more than 

460,000 players (O'Brien). Similarly, World of Warcraft hosts over 7.7 million players in the US alone 

(Karmali). To help alleviate the large amounts of active players, multiple servers are utilized to host each 

game's virtual environment. Guild Wars 2 refers to their different servers as "Worlds" while World of 

Warcraft refers to theirs as "Realms." Worlds in Guild Wars 2 are all the same type, where players can 

freely and openly participate in Player versus Environment (PvE), interacting and engaging in combat 

against computer NPCs, as well as Player versus Player (PvP), interacting and engaging in combat against 

other human players and role-playing (RP) with other characters and NPCs through the game where they 

act out some role or idea in game through the persona of their character. Meanwhile, in World of Warcraft, 

there are four different combinations of the types ofrealms that players can choose to play on. 

Data showing posted auction house prices for every currently posted item is made freely available 

through an Application Programming Interface, API, per the gaming company's website (i.e. ArenaNet and 

Blizzard). The files containing all the information are obtained in JavaScript Object Notation format, 

JSON. Because auction house information is not static, JSON files are continuously updated every hour 

from each server of each game. The JSON files for Guild Wars 2 are available in a single file , 

encompassing data from all worlds, while JSON files for World of Warcraft has to be pulled individually 

for each named realm. Since there are different player compositions among server types and between the 

two games, for the intent of collecting a more accurate portrayal of auction house prices, data was pulled 

from several servers of each five server types from World of Warcraft and the one available from Guild 

W~rs 2. The servers from World of Warcraft that were selected were chosen from high and low player 
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populations so that they would have a combined player population total that was similar to other total 

player populations from each group ( e.g. PvE, PvP, etc ... ). However, it is important to note that the total 

player population of PvP-RP servers is substantially lower than the other four realm types due to the limited 

number of servers of this type. When data was pulled, there were only six PvP-RP servers; consequently, 

data was pulled from all six to be as consistent as possible. At the time of pulling, data was pulled from the 

following servers and had the approximate player populations, given in table 4. For this study, data for 

World of Warcraft was only pulled from US servers because the player populations on Oceanic and 

Brazilian servers were low ("US Realm Pop"). There was no selection option available for gathering data 

from Guild Wars 2 as only one pull file was available. 

Table 4 

World of Warcraft Realms and Player Population as of February and March, 2014 

Player Player 
Realm Name Po ulation Realm Name Po ulation 

PvERP PvPRP 

Cenarion Circle 70,660 Emerald Dream 136,659 

Earthen Ring 94,639 Lightninghoof 42,031 

F eathermoon 83,274 Maelstrom 42,451 

Moon Guard 151,607 Ravenholdt 38,234 

Steamwheedle Cartel 41,076 The Venture Co 30,729 

Wyrmrest Accord 134,473 Twisting Nether 43,048 

Total 575,729 Total 333,152 

PvE PvP 

Area 52 197,913 Blackrock 133,346 

Proudmoore 170,258 Sargeras 184,711 

Stormrage 213,485 Tichondrius 269,062 

Total 581,656 Total 587,119 

Source: n.p. US Realm Pop. Realm Pop, n.d. Web. I Mar 2014. <http://wow.realmpop.com/us.html>. 

Data was pulled every two hours on February 9ili, 2014 and March ls\ 2014 between noon, Central 

Standard Time, and midnight for each of the nineteen JSON pulls between World ofWarcraft and Guild 
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Wars 2. These two days were chosen partly because the only other known similar study, by Giles, was 

taken over about a week's span and obtained 1,161 "successful" eBay auctions (Giles, "Benford's Law" 

159). Due to continuously updating data and the large number of player inputs to auction house posts 

through these virtual environments, a week's span was not necessary in this case study~ thereupon two days 

felt sufficient. They were also chosen because the weekends are generally the busiest days for player 

participation because of work and school during the weekdays. In addition, the weekends are the busiest for 

social interaction and group assisted combat for PvE. Therefore the weekend presents optimal days to 

attempt to sell goods on the auction house. 

Once the data was pulled, each JSON files were converted to a Comma Separated Values format 

(CSV) for easier extraction of the initial significant digits, using a combination of a converter service at 

www.json-csv.com and the text import wizard in excel. For each file through excel, a new column was 

created for the first significant digit using the "=left(text, [num_chars])" command in order to extract only 

the first significant digit. In total, there were 14,479,583 auction house prices posted for sale over the 

entirety of the eighteen chosen World of Warcraft servers and the single Guild Wars 2 data file between the 

two days of pulling. 

In the study of eBay auction prices by Giles, Kuiper' s test was shown to be ideal with this 

particular type of data due to its circularity. He noted that Chi-Square and Kolmogorov-Smirnov Goodness 

of Fit Tests have been historically used in assessing Benford's Law. These tests, however, did not account 

well for the circularity that was present in his data set, nor ours (Giles, "Benford's Law'' 157-161). 

Kuiper's Vn test is a modified Kolmogorov-Smirnov test. What makes this test so unique to our 

data is that it is scale invariant (251-252). We use it to test if the significant digits in our set follow the same 

distribution as Benford's Law. Let F0(x) = log c:a). 
H0 : empirical CDF for sample size N, FN(x),follows the population distribution, F0 (x) 

Ha: empirical CDF for sample size N, FN(x), does not fallow the population distribution, F0 (x) 
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Kuiper's test statistic is the following: 

VN = DJ+ D; 

The two summed parts are the one-sided Kolmogorov-Smirnov statistics as follows: 

DJ = max[FN(x) - F0 (x)] 

D; = max[F0(x) - FN(x)] 

(3.1) 

(3.2) 

(3.3) 

Critical values are calculated for numbers larger than one hundred and the critical values at the 

10%, 5% and 1% significance levels are 1.620, 1.747 and 2.001 respectfully (Stephens 310). 

Furthermore, an additional property through Kuiper's test that is not met by a traditional 

Kolmogorov-Smirnov test is that the null distribution F0 (x) is invariant to the hypothesized distribution, 

Fn (x)(Kuiper 252). 

Initial descriptive statistics are assessed through excel by calculating the frequency in which each 

number appeared in the 14 million numbers, as well as a bar graph, to see if it appears approximately 

Benford, which are addressed in Chapter IV. 

T(!) be thorough, we ran the data through several hypothesis tests to compare and evaluate findings 

at each level. 
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CHAPTER IV 

RESULTS 

The visual representation of the combined two days showed that the distribution of the auction 

house first significant digits looked extremely similar to the Benford's Law distribution, (see figure 1) . In 

fact, the data follow a Benford distribution rather nicely, and it appears that the major hypothesis of this 

study received prima facie support. 
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Figure 6. Distribution Comparison of Virtual Environment Auction Houses and Benford ' s Law 

It is clear from first visual that our auction house data is not a uniform distribution, so testing for 

uniformity was not necessary. It is also apparently not from a normal distribution, so testing for normality 

was also unnecessary. 
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felt sufficient. They were also chosen because the weekends are generally the busiest days for player 
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social interaction and group assisted combat for PvE. Therefore the weekend presents optimal days to 

attempt to sell goods on the auction house. 
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of Fit Tests have been historically used in assessing Benford's Law. These tests, however, did not account 
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H0 : empirical CDF for sample size N, FN(x),f ollows the population distribution, F0 (x) 

Ha: empirical CDF for sample size N, FN(x), does not fallow the population distribution, F0 (x) 
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The two summed pmts are the one-sided Kolmogorov-Smirnov statistics as follows: 

DJ = max[FN(x) - F0 (x)] 

DN = max[F0 (x) - FN(x)] 
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(3.2) 

(3.3) 

Critical values are calculated for numbers larger than one hundred and the critical values at the 

10%, 5% and 1% significance levels are 1.620, 1.747 and 2.001 respectfully (Stephens 310). 

Furthermore, an additional property through Kuiper's test that is not met by a traditional 

Kolmogorov-Smirnov test is that the null distribution F0 (x) is invariant to the hypothesized distribution, 

Fn (x )(Kuiper 252). 

Initial descriptive statistics are assessed through excel by calculating the frequency in which each 

number appeared in the 14 million numbers, as well as a bar graph, to see if it appears approximately 

Benford, which are addressed in Chapter IV. 

To be thorough, we ran the data through several hypothesis tests to compare and evaluate findings 

at each level. 
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CHAPTER.IV 

RESULTS 

The visual representation of the combined two days showed that the distribution of the auction 

house first significant digits looked extremely similar to the Benford ' s Law distribution, (see figure 1 ). In 

fact, the data fo ll ow a Benford distribution rather nicely, and it appears that the major hypothes is of this 

study received prima facie support. 
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It is clear from first visual that our auction house data is not a uniform distribution, so testing for 

uni form ity was not necessary. It is also apparently not from a normal distribution , so testing for normality 

was also unnecessary. 
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Chi-Square Goodness of Fit is used to determine how close the empirical proportions are to the 

theoretical proportions that we are interested in. The Chi-Squared distribution with k degrees of freedom is 

given by 

( 4.1) 

It is tested using the form, when using observed and empirical proportions 

2 _ I (observed - expected) 2 

X - 14,437,976 d 
expecte 

(4.2) 

A random variable x2 has (n - 1) degrees of freedom with at least two values of n; it is an 

appropriate test to use with nominal variables, and assumes that we are using a large sample size and that 

there is independence between all observations. When the test statistic returns a large value, the empirical 

and theoretical values are considered not close and therefore the model is not a good fit to the data. 

We first ran the chi-square goodness of fit test against the following null and alternative 

hypotheses. 

H
0

: The proportions from the auction houses follow the proportions from Ben[ ord's 

Ha: The proportions from the auction houses do not fallow the proportions from Ben[ ord's 

When we accessed the data, when a= 0.05, X2 (8) returns a value of 162,225.15. With such an 

extremely large value, we very quickly rejected the null hypothesis for this case that the proportions of the 

auction house data were similar to the proportions of Benford. 
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The Kolmogorov-Smirnov test is often referred to as the "K-S test" for short. It is used to establish 

the equality of one or two distributions, and is a non-parametric test and assumes nothing about the 

distribution of the data. The two-sample K-S test is more informative than the one-sample K-S test in that it 

is sensitive to location and shape difference of the observed data's cumulative distribution function for each 

observed distribution. 

After the Chi-Square Goodness of Fit test, we ran the K-S test on the data against the following 

null and alternative hypotheses: 

H0 : The auction house data fallows Ben[ ord' s distribution 

Ha: The auction house data does not follow Benford's distribution 

The K-S test concentrates on the largest deviation between the theoretical and empirical 

differences, given by the following, where F(x) is the theoretical cumulative distribution function and 

FN (x) is the empirical cumulative distribution function: 

D = max[F(x) - FN(x)] (4.3) 

Our sample size was extremely large, at 14,437,976; with sample sizes over fifty the critical value 

is calculate by 1)-;, where N is the sample size. When a= 0.05, this gave us a critical value of 0.000358. 

The K-S test returned a max value of 0.018311. This value, being greater than our critical value, 

required that we reject the null hypothesis that'the auction house data follows Benford's distribution. 

Looking at the figure 5 above, we can see that the frequency of digit nine might influence the K-S test 

values. As previously mentioned, the K-S test does not account for circularity, and we know that digits one 

and nine can be thought of being arranged around a circle and would be right next to each other even 

though they are at opposite ends of the range. 
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. The Kuiper test is a modified version of the Kolmogorov-Smimov test, as it also tests an empirical 

distribution of observed data against an expected theoretical distribution to see how much they differ. What 

sets Kuiper's test apart from the K-S test though is that the Kuiper test is not dependent on the location of 

the origin. This test proves highly useful when observations lie on a circle. Its test statistic is similar to the 

K-S test, as it uses the maximum difference between the theoretical and empirical cumulative distribution 

functions, but also uses the maximum difference between the empirical and theoretical cumulative 

distribution functions. The test statistic is given by 

VN = DJ +DN, 

where the two summed parts of the one-sided Kolmogorov-Smimov statistics are 

DJ = max[FN(x) - F0 (x)] 

DN = max[F0 (x) - FN(x)] 

(4.4) 

(4 .5) 

(4.6) 

When we ran Kuiper's goodness of fit test, we produced results that made most sense given that 

the data and theoretic distributions appear so similar. We ran the Kuiper test on the data against the 

following null and alternative hypotheses: 

H0 : The auction house data fallows Ben[ ord' s distribution 

Ha: The auction house data does not fallow Ben[ ord' s distribution 

Calculating the Kuiper test statistic gave us 0.0313; at the a= 0,05 significance level, the critical 

value as 1.747. Since our test statistic was less than the critical value, we failed to reject the null hypothesis 

that the distribution of the auction house data follows closely to the distribution of Benford's Lavi, which is 

visibly supported by the graphs shown in figure 5 above. 

19 



The results of each hypothesis testing are given in table 5. 

Table 5 

Comparisons ~f Statistical Testing 

Test Critical Value, a= 0.05 Test n 
Statistic 

Chi-Square Goodness of 14,437,976 15.507 162,225.15 
Fit 

Kolmogorov-Smirnov 14,437,976 0.000358 0.018311 

Kuiper 14,437,976 1.747 0.0313 
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CHAPTER V 

CONCLUSION 

Benford described anomalous numbers as being "numbers that individually are without 

relationship, and when considered in large group are in good agreement with a distribution law" (Benford 

551 ). These auction house prices can be viewed as anomalous numbers because individually, they appear to 

have no relationship to one another. When viewed collectively, they present a trend that follows Benford's 

Law, opposite of what most would typically expect to see in mass data generated by humans. 

Our efforts to verify Benford's Law in auction house data in virtual environments of World of 

Warcraft and Guild Wars 2 were not shown successful using the typical tests, chi-square goodness of fit or 

Kolmogorov-Smimov. This could be due to the extremely large sample size used, as sufficiently large 

samples may reject null hypotheses for any departure in the data, no matter how slight. 

However, utilizing Kuiper's test to account for circularity in the data showed that Benford's Law 

cannot be rejected. The presence of Ben ford's Law is evident when visually accessing the distribution of 

the auction house data compared to the distribution of Ben ford's Law. This is similar to the c,ne analyzed 

by Giles, who showed in his work how the winning bids of eBay prices conformed to Benford 's Law. 

The higher amount of the digit nine in our data did pose a potential concern if it would affect the 

statistical test results. This could have played a role in the rejection of the null hypotheses in the chi-square 

test and the Kolmogorov-Smirnov test; however, it was not enough to negatively affect the Kuiper test. 

Additionally, we can attribute the higher amount of the digit nine to several factors: undercutting (a seller 

posting an item 0 ~ the auction house at a lower price than what is already posted), outside program add-ons 

or "mods" (e.g. Auctioneer or Auctionator), or embellishing a highly sought after item for mass profit. 

Identifying if an auction price is posted by use of an add-on or completely through human element presents 
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a challenge, as it is difficult to identify exactly how many players are using these add-ons. Even so, even if 

a player is actively using an add-on that assists with posting auction prices, the player has complete control 

over if they choose to use the add-on in game, or when they choose to use it. 

Implications for future research might include better psychological understanding of how video 

gamers think according to Benford's Law or why the presence of nine is higher in these cases. 

Additionally, research might extend to marketing analysis in these types of c·ases, to follow these trends in 

auctions for suggestions of price rigging. Extensive data collection could even possibly present a new law 

of conformity in association with auction house data that is similar to Benford's Law. 

We have shown here that auction house prices presented in World of Warcraft and Guild Wars 2 

appear to conform to Benford's Law, but perhaps further studies could be done to include other popular, 

mainstream MMORPGs to determine if their player based auction house data also conforms to Benford's 

Law. 
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