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ABSTRACT 

JENNIFER ANDERSON 

MODELING AUTOIMMUNE DISEASE WITH DIFFERENTIAL EQUATIONS 

AUGUST 2018 

 
In this project, I will build a mathematical model of a developed autoimmune process 

considering cell autoimmunity that plays the main role in any autoimmune disorder using 

a system of three non-linear differential equations. As model variables, I will use the 

concentration of target cells not bearing dam- age, concentration of cytotoxic T- 

lymphocytes against given cells, and the con- centration of the tissue-specific antigen 

formed because of the destruction of the target cells. All concentrations will be expressed 

in the moles per liter. We will investigate the model over the time interval [0, T] given 

either by months or days analytically as well as numerically. 
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CHAPTER I 

INTRODUCTION 

The immune system is a highly complex system composed of other systems that 

function together to keep the human body safe from foreign pathogens. An important part 

of the process is the recognition of what is foreign and what is self. An autoimmune 

disease is the result of a breakdown in that process, causing the immune system to see its 

own cells as invaders and as a result mistakenly attacks itself. 

For the first half of the 20th century, scientists believed that it was not possible for 

the immune system to attack itself based on the theory of German immunologist and 

Nobel Laureate, Paul Ehrlich. His theory, that the immune system was incapable of 

attacking itself, was known as horror autotoxicus. But in 1951, Noel Rose was 

completing post doc work at the State University of New York at Buffalo and noticed a 

shocking result from injecting thyroglobulin originally from rabbit thyroids back into 

rabbits - the rabbit thyroids were inflamed. Almost all of the rabbits’ immune systems 

had begun to destroy their own thyroid tissue. Rose had proof of what was a 

revolutionary idea at the time, autoimmune disease [8]. 

By 1957, the concept of autoimmune disease was accepted. However, be- cause 

of this early struggle to be recognized, research in autoimmune disease lagged behind 

during the prolific period of medical discoveries of the early 20th century. 
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Today, autoimmune disease is recognized and according to the National Institute 

of Health (NIH) there are as many as 23.5 million people in the US affected by 

autoimmune disease with an annual direct cost of 100 billion dollars [1]. Furthermore, the 

prevalence of these diseases is on the rise. However, NIH research funding for 

autoimmune disease pales in comparison to that of cancer or heart disease and stroke. 

Table 1.1 

Comparison of Research Funding 

 

 

 

 

 

The NIH Autoimmune Diseases Research Plan states, Research discoveries of the 

last decade have made autoimmune research one of the most promising areas of new 

discovery. 

In this paper, I provide an overview of how the immune system works (Chapter 2). 

I also provide an over view of mathematical tools used to model biological processes 

(Chapter 3) as well as consider some models that have been presented (Chapter 4). Finally, 

I investigate one model thoroughly (Chapter 5) and consider conclusions that can be 

drawn (Chapter 6). 
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CHAPTER II 

THE HUMAN IMMUNE SYSTEM 

The Immune System 

The immune system is responsible for protecting the body from foreign sub- 

stances, or pathogens. It is a complex system comprised of smaller systems that interact 

with one another and protect the body in an efficient and complete manner. 

The first line of defense of the immune system is a barrier to keep unwanted 

pathogens out of the body. The skin is the most obvious component of the immune 

system’s barrier. However, the human body also has many square feet of mucous 

membranes that help keep pathogens out of the inner workings of our body. If a bacteria, 

virus, or other pathogen gets past this first layer of defense, then the innate immune 

system and the adaptive immune system go to work. The innate response is quick and 

non-specific and involves phagocytes. One type of phagocyte, macrophages, find 

pathogens and destroy them by engulfing and eating them. After eating the pathogens, the 

macrophage presents the broken up peptides of the pathogen on their cell surface and 

become anti- gen presenting cells (APC). The macrophages also release a protein known 

as interlukin-1 which signals for the production of T-cells and B-cells to fight the foreign 

cells and antigens. This begins the adaptive immune process. 

The adaptive system takes a little more time and involves the recognition of 

specific antigens. Most cells in the body have proteins on the surface called the major 
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histocompatibility complex (MHC). These MHC, like fingerprints, are different for each 

individual. It is these MHC proteins on the bodies’ cells that allow the immune system to 

distinguish between itself and foreign cells. Cells that are foreign have antigens on their 

surface. B lymphocytes can bind to antigens in the body to attack the foreign invaders. 

This is called the humoral response. T lymphocytes are able to attack foreign invaders 

only after the antigens have been processed and presented on the cell membrane with the 

MHC proteins. This is known as the cell mediated response. 

Humoral Response 

The humoral response fights pathogens while they are still in the fluids of the 

body. B-cells, which are created and mature in the bone marrow, are a key component of 

the humoral response. Because of the way the B cells develop, they each recognize 

different and specific kinds of pathogens that could invade the body. So when pathogens 

enter the blood stream, the B- cells ”bump” into the pathogen and use their B-cell 

receptors to determine if the pathogen is a match for the B cells specific antibody formula. 

If it is a match, then the B cell begins to proliferate and make antibodies to fight the 

pathogen. These antibodies bind to the pathogen to neutralize it and/or signal for 

phagocytes to ingest and destroy the pathogen. 

Cell Mediated Response 

T-cells, which are created in the bone marrow and mature in the Thymus, are a 

key component of the cell mediated response. Similar to the B cells, the T cells develop 

in such a way that they respond to specific different kinds of pathogens. However, while 



5 
 

the B-cells attack pathogens that are in the blood, T-cells target pathogens that have 

already infected cells. Cytotoxic T-cells at- tach to cells that have been infected with a 

pathogen that matches their specific antibody strand and cause the cell to commit suicide, 

killing the cell and the pathogen that has infected the cell. 

If you consider how many different types of antigens are possible and there- fore 

how many different T-cells and B-cells there are, it is pretty amazing that the correct B-

cell or T-cell finds a pathogen that matches with its specific anti- gen. But this is where 

the immune system shows one of its best ways of being efficient. The lymphatic system 

sends lymph from the tissue of the body to the lymph nodes. This lymph includes the 

pathogens. T and B-cells travel among the lymph nodes looking for matching antigens. 

So the antigens and T and B-cells are collected in the lymph nodes, making it likely to run 

into each other. 

Autoimmune Disease 

The immune system is quite efficient and capable of protecting us against foreign 

invaders. But in some cases the immune system fails to recognize and tolerate the self-

antigens. ”This failure results in the activation of autoreactive T cells and the production 

of autoantibodies by B cells, causing inflammation and organ damage” [10, p. 1171].  

“The normal consequence of an adaptive immune response against a foreign antigen is the 

clearance of the antigen from the body When an adaptive immune response develops 

against self-antigens; however, it is usually impossible for immune effector mechanisms 

to eliminate the antigen completely, and so a sustained response occurs. The consequence 
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is that the effector pathways of immunity cause chronic inflammatory injury to tissues, 

which may prove lethal” [7]. 

    Figure 2.1. The Immune Response [10] 
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There are over 80 different illnesses caused by autoimmunity.  A few of the most 

common autoimmune diseases are rheumatoid arthritis, celiac, lupus, and psoriasis (see 

Table 2.1). These autoimmune diseases have much in common and yet they are also quite 

diverse. They vary based on the type of immune response, the mechanism by which the 

tissue or organ is damaged, and which tissue or organ is being attacked [7]. But because 

there are also many general similarities it is beneficial to study them as a group. 

There are still many unknowns regarding the cause of an autoimmunity reaction. 

Theories involve genetic as well as environmental factors. However: 

Nearly all autoimmune illnesses have as their basis a self-sustaining autoimmune 

reaction directed against some component of the organism, and the course of this 

reaction is practically independent of the cause of the loss of tolerance of 

tolerance to the corresponding antigen [12, p. 152]. 
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           Table 2.1 

Common Autoimmune Diseases 
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CHAPTER III 

USING MATHEMATICAL MODELS FOR BIOLOGICAL DISCOVERY 

As previously stated, the immune system is a complex system. By “system,” we 

mean it has multiple interacting components and a boundary [5]. Further, when we call 

the system complex, we mean that the “overall behavior of the system cannot be 

intuitively understood in terms of the individual components or interactions...That is, 

behavior can be drastically altered by seemingly in- significant changes in features” [5, p. 

5]. 

In recent years, there have been many scientific and technological discoveries that 

allow us to study the cellular and molecular processes. However, it is still difficult and 

expensive to conduct laboratory research on cellular and molecular processes. For this 

reason mathematical modeling is used to gain a better understanding of the processes and 

dynamics of a system. Mathematical models can be used to predict a system’s dynamics 

under different conditions to help guide experimental design: 

Although model simulations will never replace laboratory experiments, a 

model can be used to probe system behavior in ways that would not be possible in 

the laboratory. Model simulations can be carried out quickly (often in seconds) 

and incur no real cost. Model behavior can be explored in conditions that could 

never be achieved in a laboratory. Every aspect of model behavior can be 

observed at all-time points. Furthermore, model analysis yields insights into why a 

system behaves the way it does, thus providing links between net- work structure 

and behavior [5, p. 6]. 
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Ordinary differential equations are an extremely useful tool for modeling 

biological processes. If we can construct a model that accurately represents the cellular or 

molecular biological processes, then we can use general theorems and analytical methods 

to examine the systems behavior and interpret the results in biological terms. 

 

Analysis of Linear Systems 

 

 

Consider the system 

 
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 + 𝑏𝑦 

 

 
𝑑𝑦

𝑑𝑡
= 𝑐𝑥 + 𝑑𝑦 

(3.1) 
 

where a, b, c, and d are constants. 

 
Definition 3.1.1. An equilibrium point is a point where there is no change in the x or y 

value of the system, that is  
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 + 𝑏𝑦 . Steady state and singular point are synonyms. 

Definition 3.1.2. If all the trajectories of a system are moving towards an equilibrium 

point, it is stable. 

Definition 3.1.3. If all the trajectories of a system are moving away from an equilibrium 

point, it is unstable and called a source. 
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Definition 3.1.4. If some of the trajectories of a system are moving toward and some are 

moving away from an equilibrium point, it is called a saddle. 

This system can also be written in matrix form as 

 

𝑑

𝑑𝑡
 [
𝑥
𝑦] =  [

𝑎 𝑏
𝑐 𝑑
] [
𝑥
𝑦] 

 

The eigenvalues of the coefficient matrix can be used to determine the behavior of the 

system. The eigenvalues of the coefficient matrix are found from det(a − λI)X = 0. As a 

result, we get 

(a − λ)(d − λ) − bc = 0 

 

or 

λ2 − (a + d)λ + (ad − bc) = 0 

 

Using the quadratic equation, we see that the eigenvalues are 

 

𝜆 =
(𝑎 + 𝑑) ± √(𝑎 + 𝑑)2 − 4(𝑎𝑑 − 𝑏𝑐)

2
 

 

 

Definition 3.1.5. The sum of the diagonal entries of a matrix is known as the trace, trA. 

Definition 3.1.6.  The determinant of a 2x2 matrix, [
𝑎 𝑏
𝑐 𝑑
] is ad – bc.  

Using these definitions, we can see that the eigenvalues are actually, 
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λ =
(𝑎 + 𝑑) ± √(𝑡𝑟𝐴)2 − 4𝑑𝑒𝑡𝐴

2
 

Definition 3.1.7. The discriminant, D, of a quadratic equation is the value under the radical 

of the quadratic formula, D = b2 − 4ac. It allows us to deduce properties of the roots 

without actually computing them. 

The discriminant of our eigenvalue is (trA)2 − 4detA. Therefore: 

• if D > 0, the eigenvalues are Real 

• if D < 0, the eigenvalues are Imaginary 

• if D = 0, there are two eigenvalues of the same value. 

 

Now, using the eigenvalues, we can determine the behavior of the system of linear 

ordinary differential equations. 

• If both eigenvalues are real and positive, then the equilibrium point 

(0,0) is  a solution is a source. 

• If both eigenvalues are real and negative, then the equilibrium point is 

a sink. 

• If the eigenvalues are real and opposite signs, then the equilibrium 

point is a saddle. 

• If the trA > 0 and D < 0, then the equilibrium point is a spiral source. 

• If the trA < 0 and D < 0, then the equilibrium point is a spiral sink. 

• If the trA = 0 and D < 0, then the equilibrium point is a center. 

 

Thus, we can discern much about the behavior of the system by considering the trace and 

the determinant. 
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Linearization of Nonlinear Models 

Most models used for biological systems are nonlinear and have many variables 

and parameters. These systems are far too complex to solve explicitly to achieve detailed 

global analysis. Instead, we will determine the qualitative behavior of the system at 

specific points and then use that information to estimate the global behavior. The specific 

points that we will use are called equilibrium points. We can approximate the local 

behavior around the equilibrium points as linear and then use the tools of linear analysis. 

By considering the approximated linear behavior at all the equilibrium points, we can get 

a fairly good picture of the global behavior. 

Theorem 3.2.1. Close to the steady state, the nonlinear model can be approximated by a 

linear one [3]. 

Equilibrium Points and Stability 

 

Jacobian Matrix 

 

We can use the Jacobian matrix and its eigenvalues to determine the behavior of 

the function at the equilibrium points. This is especially helpful when we have a system 

of more than 2 equations. 

Theorem 3.4.1. Let xt = f (x) be a nonlinear system of n first-order equations with an 

equilibrium solution and f a sufficiently smooth vector function. Let J be the Jacobian 

(the matrix of partial derivatives) evaluated at this equilibrium solution: 



14 
 

𝐽(𝑥2) =  

[
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑓1

 
𝜕𝑓1
𝜕𝑥2

 ⋯ 
𝜕𝑓2
𝜕𝑥𝑛

𝜕𝑓2
𝜕𝑥1

 
𝜕𝑓2
𝜕𝑥2

 ⋯ 
𝜕𝑓2
𝜕𝑥𝑛

 ⋮       ⋱
𝜕𝑓𝑛
𝜕𝑥1

 
𝜕𝑓2
𝜕𝑥2

 ⋯ 
𝜕𝑓𝑛
𝜕𝑥𝑛 ]

 
 
 
 
 
 
 

 

 

Let {λ1, λ2, ..., λn} be the n (real or complex, possibly repeated) eigenvalues of the 

Jacobian matrix.// 

1. If the real part of the eigenvalue ℝ(𝜆𝑖) < 0  for all i, then the equilibrium is 

stable 

 
2. If the real part of the eigenvalue ℝ(𝜆𝑖) < 0 for at least one i and 

ℝ(𝜆𝑖) >  0 for at least one j, then the equilibrium is a saddle 

3. If the real part of the eigenvalue ℝ(𝜆𝑖) > 0 for all i, then the 

equilibrium is unstable. 

4. If any of the eigenvalues are complex, then the stable or unstable 

equilibria is a spiral; if all of the eigenvalues are real, it is a node. 

5. If a pair of complex conjugate eigenvalues, λi, λi satisfy ℝ(𝜆𝑖) =  0, 

then the equilibrium is a linear center in the plane containing the 

corresponding eigenvectors [13]. 

Phase Plane and Vector Field 

We continue our analysis by considering a graphical approach to gain a better 

understanding of how the system is behaving. The right hand side of (3.1) tells us how the 
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system is changing at each point (
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
). 

Definition 3.5.1. The phase plane is the xy plane where x and y are two variables in the 

system [13]. 

Definition 3.5.2. For each point (x, y) in the phase plane, we can assign a vector, (
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
) 

to describe the change. The collection of these vectors is the vector field [13]. Direction 

Field is a synonym for vector field. 

 

Using the Vector Field, we can sketch the possible solution curves depending on 

the initial condition. It shows the concentrations at the initial state and converging to the 

steady state. This can be extremely helpful for analysis. Using these methods, “The 

qualitative behavior of a system of equations can be understood without solving the 

equation explicitly” [14]. 

Bifurcation Analysis 

Definition 3.6.1. When a change in the value of a parameter changes the qualitative 

behavior of the solution, it is called a bifurcation. 

Saddle node, transcritical, pitchfork, and hopf are different types of bifurcation. It 

is important to know when and how a bifurcation occurs for under- standing a 

mathematical model [14]. 
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Common Models 

Verhulst 

In modeling biological processes, we need to be able to model the growth and 

decay of cells. Exponential growth, however, is not an appropriate model since there will 

be a point at which the growth will no longer have enough resources to continue at a high 

population level. For this reason, we alter the logistical growth equation and get what is 

referred to as the Verhulst equation [14] 

𝑁′ = 𝑟𝑁,                                             (Exponential Growth) 

𝑁′ = 𝑟𝑁 (1 − 
𝑁

𝐾
),                              (Verhulst Equation) 

 

Figure 3.1 shows the direction field for a Verhulst Model. Notice that any initial condition 

with an x value below 5, will move up to 5. And any x value above 5, will move down to 

5. In this example, 5 is the critical point where growth will no longer occur. 
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Figure 3.1. Direction Field of Verhulst Model 

Lotka-Volterra 

The Lotka-Voltera also often referred to as predator-prey model is a well-known 

system for modeling two competing populations. The populations tend to oscillate as each 

species inhibits the other’s growth. The Lotka-Volterra equations are 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 −  𝛽𝑥𝑦 

𝑑𝑦

𝑑𝑡
=  𝜎𝑥𝑦 −  γy 

These equations have been heavily studies and modified for different purposes or to 

include more realistic prey growth rates through the years [3]. 
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Law of Mass Action 

Reaction kinetics, which rely on the law of mass action are crucial for modeling many 

physiological processes including modeling populations. The law of mass action is originally from 

chemistry and states that “the rate of molecular collisions of two chemical species in a dilute gas or 

solution is proportional to the product of the two concentrations” [3].
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CHAPTER IV 

IMMUNE SYSTEM MODELS 

The first mathematical models of immunological processes and phenomena were 

developed in the 1970s. G.I. Bell published papers about a model of clonal selection and 

antibody production in three parts in the Journal of Theoretical Biology. In addition, Olga 

Smirnova published papers in Russian of a model of immune reactions ([11], [12]). 

In the past 10 years, there has been an increase in the number of papers published 

about modeling immunological processes. One of the most cited immunology papers has 

been S. Gordon and P. Taylor’s “Monocyte and Macrophage heterogeneity” from 2005 [4]. 

Frameworks of Immunology Models 

Mathematical models of autoimmunity can be categorized in several ways. One 

way is to consider whether the model is focused on molecular, cellular, or tissue level. 

Most of the models at the molecular level involve non-spatial ordinary differential 

equations (ODEs). While the models that work at the cellular level are usually simple 

ODEs and are made of fewer equations than those at the molecular level. As a result, the 

cellular level models with fewer equations are easier to investigate using analytical tools 

[4]. An excellent paper investigating autoimmunity at the cellular level was “The role of 

tunable activation thresholds in the dynamics of autoimmunity” in the Journal of 

Theoretical Biology in 2012 [2]. 
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Another way to group mathematical models of autoimmunity is by what part of 

the process they are modeling. For example, is the model addressing the start of the 

disease or the self-sustaining autoimmune reaction? 

Modeling Tolerance, Flare-Ups, and Dormancy 

In 2007, Shingo Iwami et al. published a paper [6] with a simple mathematical 

model for autoimmune disease based on the personal immune response function and the 

target cell growth function. Iwami et al. showed how these functions explain tolerance, 

repeated flare-ups, and dormancy and how their model captures the overall essence of 

autoimmune disease. Their model is 

{

𝑇′ = 𝑔(𝑇) −  𝛽𝑇𝐶

𝐷′ =  𝛽𝑇𝐶 −  𝛼𝐷

𝐶′ = 𝑓(𝐷) −  𝛾𝐶
                                                            (4.1) 

where T is the population size of the target cells, D is the damaged cells (anti- gens), and 

C is the immune cells. These target cells, damaged cells, and immune cells die at the rate 

of µ, α, and γ respectively and β represents the efficacy of damage resulting when immune 

cells attack target cells. g(T) is: 

𝑔1(𝑇) =  𝜆 −  𝜇𝑇 or 

𝑔2(𝑇) =  𝜆 −  𝜇𝑇 + 𝑝𝑇 (1 − 
𝑇

𝐿
) 

where λ is the rate at which new target cells are produced and µ is the death rate of target 

cells. In g2, p is the maximum proliferation rate and L is the target cell population density 

where p shuts off and f (D) is: 
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𝑓1(𝐷) = 𝑘𝐷 or 

𝑓2(𝐷) =  
𝑚𝐷2

ℎ2 + 𝐷2
 

 
 

where k is the magnitude of activation of immune response form the antigen presenting 

cells (APG) which means that kD is the proliferation rate of immune cells by APCs at time 

t. In f2, m is the maximum proliferation rate of immune cells by APCs and h is the 

number of damaged cells at which proliferation of immune cells is half the maximum, m 

[6]. 

A Model of Inflammatory Bowel Disease 

In 2016, Anna Park and Il Hyo Jung published a paper [9] with a mathematical 

model of inflammatory bowel disease (IBD) using ordinary differential equations to show 

the relationship between T-cells and cytokines in the immune system. 

Their model is: 

 

{
 
 

 
 
𝑑𝑁

𝑑𝑡
= 𝑏𝑁 (1 − 

𝑁

𝐾
) − (𝛾𝑆 + 𝑐)𝑁 − 𝜇1𝑁

𝑑𝑇

𝑑𝑡
= 𝛼1𝛾𝑆𝑁 + 𝛼2𝑐𝑁 − 𝜇2𝑇

𝑑𝑆

𝑑𝑡
=  𝜔𝑇 −  𝛽𝑁𝑆 − 𝜇3𝑆

              (4.2) 

 
 where the three variables are the concentration of Naive T-cells N(t), the con- centration 

of Helper T-cells, T(t) and the cytokines secreted by the helper T- cells, S(t) and all 

parameters are assumed to be positive. The parameters are: b, growth rate of Naive T-
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cells; K, Carrying capacity: γ, the loss of N from encounters with S; c, rate of production for 

T differentiation; α1 the rate of proliferation and differentiation into N by S; α2 the rate of 

proliferation and differentiation into N by c; ω, the rate of S production from T; β, the loss 

of S from encounters with N; µ1 the rate of excretion and elimination of N; µ2 the death 

rate for T;µ3 the death rate for S [9]. 
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CHAPTER V 

A MODEL OF CELLULAR AUTOIMMUNITY 

As explained in Section 2.2 on autoimmune disease, there are still a variety of 

competing theories as to how autoimmune diseases develop. But once developed, most 

autoimmune diseases involve a self-sustaining autoimmune reaction directed against 

some tissue or organ of the individual. This model is of this final stage of the 

autoimmune process. Because of its role in long-term autoimmune diseases, cellular 

autoimmunity is considered. The model consists of three differential equations 

representing the concentration of healthy tissue cells that will be targeted, x; the 

concentration of T lymphocytes, y; and the concentration of the tissue specific antigen, z. 

This model is from “Environmental Radiation Effects on Mammals: A Dy- 

namical Modeling Approach” by Olga Smirnova and incorporates the Verhulst equation 

(see section 3.7.1), Lotka Volterra equation (3.7.2), and the Law of Mass Action (3.7.3). 

{
 
 

 
 
𝑑𝑥

𝑑𝑡
=  𝜇𝑥 − 𝑣𝑥2 −  𝛽𝑥𝑦

𝑑𝑦

𝑑𝑡
=  𝜓𝑧𝑦 −  𝛽𝑥𝑦 −  𝛼𝑦

𝑑𝑧

𝑑𝑡
=  𝜎𝛽𝑥𝑦 −  𝛾𝑧

     (5.1) 
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Table 5.1 

Description of parameter for the model 
 

Description of Parameter Notation 

µ multiplicity rate of the tissue cells 

vx2
 the rate of natural death of the tissue cells. 

βxy represents the mutual annihilation of tissue cells and T lymphocyte cells 

σβxy the rate of production of tissue specific autoantigen and is proportional to βxy 

ψz the antigen concentration 

α the death rate of T lymphocytes 

γ the rate the antigen is removed from the organism 
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The µx − νx2 portion of the 
𝑑𝑥

𝑑𝑡
 is from the Verhulst equation and gives a limit to 

the growth of the system. The −βxy in the 
𝑑𝑥

𝑑𝑡
 and 

𝑑𝑦

𝑑𝑡
  equations is from the Lotka Volterra 

equation. It is a result of the competition between the tissue cells and T-cells. 

In her book [12], Olga Smirnova investigated the system by reducing it to 2 

equations. I summarize Smirnova’s approach below and then do my own investigation of 

the 3d system. 

Reducing the 3D system to 2D 

The time required for the antigen to reach equilibrium is measured in days. 

However, the time of the autoimmune process and tissue growth are measured in months. 

Therefore, we can conclude that 
𝑑𝑧

𝑑𝑡
 is “fast” and can be replaced by its stationary solution, 

𝑧 =  
𝜎𝛽

𝛾
𝑥𝑦, which is acquired after setting dz equal to zero and solving for z. 

Now inserting this new expression for z into the second equation of the system 

(5.1) Smirnova created a new system with only 2 equations. 

𝑑𝑥

𝑑𝑡
=  𝜇𝑥 −  𝑣𝑥2 −  𝛽𝑥𝑦 

𝑑𝑦

𝑑𝑡
=  
𝜓𝜎𝛽

𝛾
𝑥𝑦2 −  𝛽𝑥𝑦 −  𝛼𝑦 
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Next, Smirnova inserted the dimensionless variables and parameters 

𝜉 =  
𝑣

𝜇
𝑥  𝜂 =  

𝛽

𝛾
 𝜏 =  𝜇𝑡 

𝑎 =  
𝜓𝜎𝜇

𝛾𝑣
 𝑏 =  

𝛽𝛾

𝜓𝜎𝜇
  𝑐 =  

𝑎𝛾𝑣

𝜇2𝜓𝜎
 

And now the new system of differential equations is 

𝑑𝜉

𝑑𝜏
=  𝜉(1 −  𝜉 −  𝜂) 

 
𝑑𝜂

𝑑𝜏
= 𝑎𝜂(𝜉𝜂 − 𝑏𝜉 − 𝑐) 

 
Smirnova [12] used qualitative theory of differential equations, oscillation theory, 

and bifurcation theory to investigate the system. Below is a phase plane of that system. 

The dimensionless variable representing the tissue cell concentration, ξ, is graphed on the 

horizontal axis. And the dimensionless variable representing the killer T cell 

concentration, η, is graphed on the vertical axis. 

Smirnova [12] found that “the trivial singular point (ξ1 = 0, η1 = 0) is always 

unstable (a saddle). The singular point 2 with coordinates ξ2 = 1 and η2 = 0 is always 

stable (a node). It corresponds to a steady state of the healthy organism in which the target 

tissue has normal size and is not damaged. The singular points 3 and 4 are in the positive 

quadrant when b < 1 − 2
√

c. The point 3 is always unstable (a saddle), and the point 4 is 

either a node or a focus.  When c < (1/a − b) (1 − 1/a), the point 4 becomes unstable” [12, 

p. 154]. 
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Figure 5.1 Phase Plane of Smirnova’s system 

 
Investigating the 3D Nonlinear System 

While I am using the model from Smirnova [12], I analytically investigated the 

dynamics of this system as a 3D system instead of reducing it to a 2D system. This is a 

system of three nonlinear differential equations with seven positive parameters. The 

seven positive parameters (µ, ν, β, ψ, σ, γ, α) depend on the patient. 

{
 
 

 
 
𝑑𝑥

𝑑𝑡
=  𝜇𝑥 − 𝑣𝑥2 −  𝛽𝑥𝑦 = 𝐹(𝑥, 𝑦, 𝑧)

𝑑𝑦

𝑑𝑡
=  𝜓𝑧𝑦 −  𝛽𝑥𝑦 − 𝑎𝑦 = 𝐺(𝑥, 𝑦, 𝑧)

𝑑𝑧

𝑑𝑡
=  𝜎𝛽𝑥𝑦 −  𝛾𝑧 = 𝐻(𝑥, 𝑦, 𝑧)

     (5.2) 

Because this system is nonlinear it is difficult to determine its behavior. 

Therefore, we find the equilibrium points of the system and then linearize the system in the 

neighborhood of each equilibrium point to classify the behavior of the system. In order to 

find the equilibrium points, I set the three derivatives equal to zero. Now we have a 
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nonlinear algebraic system, solving which we can find all the equilibrium points of system 

(5.2). Our system is 

{
𝜇𝑥 − 𝑣𝑥2 −  𝛽𝑥𝑦 = 𝑥(𝜇 − 𝑣𝑥 −  𝛽𝑦) = 0

𝜓𝑧𝑦 −  𝛽𝑥𝑦 − 𝑎𝛾 = 𝑦(𝜓𝑧 −  𝛽𝑥 − 𝑎) = 0
𝜎𝛽𝑥𝑦 −  𝛾𝑧 = 0

     (5.3) 

Equilibrium Points 

 

First Equilibrium Point 

The first equilibrium point is easy to see from (5.3), x∗ = 0, y∗ = 0, and z∗ = 0, or 

(0, 0, 0). This equilibrium point represents values of 0 for the number of tissue cells, T-

cells, and antigen. Thus, it is trivial for biological interpretation as a patient would die 

before getting to this point. However, mathematically this equilibrium point is important 

because it affects the overall behavior of the system. 

Second Equilibrium Point 

The second equilibrium point is found by considering when y∗ = 0 z∗ = 0. Then 

µx − vx2 = 0 and x∗ = 
𝜇

𝜈
. So the second equilibrium point is  (

𝜇

𝜈
, 0, 0) 

Third and Fourth Equilibrium Points 

We can solve the third equation of (5.3) for z and get 

𝑧 =  
𝜎𝛽𝑥𝑦

𝛾
       (5.4) 

Now by substituting this value for z into a simplified version of the 

second equation of (5.3), we get 
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𝜓𝑧 −  𝛽𝑥 − 𝑎 = 0 

𝜓(
𝜎𝛽𝑥𝑦

𝛾
) −  𝛽𝑥 − 𝑎 = 0 

𝜓𝜎𝛽 −  𝛽𝑥𝛾 − 𝑎𝛾 = 0 

From the first equation of (5.3) we know that 

𝛽𝑥𝑦 =  𝜇𝑥 − 𝑣𝑥2 

So we continue 

𝜓𝜎(𝜇𝑥 − 𝑣𝑥2) −  𝛽𝑥𝛾 − 𝑎𝛾 = 0 

𝜓𝜎𝜇𝑥 −  𝜓𝜎𝑣𝑥2 −  𝛽𝑥𝛾 − 𝑎𝛾 = 0 

𝜓𝜎𝑣𝑥2 − (𝜓𝜎𝜇 −  𝛽𝛾)𝑥 + 𝑎𝛾 = 0 

 

After dividing by 𝜑𝜎 (𝜓𝜎 ≠ 0) and simplifying, we get, 

𝑣𝑥2 − (𝜇 − 
𝛽𝛾

𝜎𝜓
) 𝑥 + 

𝛼𝑦

𝜎𝜓
= 0    (5.5) 

This is a quadratic equation of variable x in the form ax2 + bx + c = 0 with the following 

coefficients: 

𝑎 = 𝑣 

𝑏 =  −(𝜇 − 
𝛽𝛾

𝜎𝜓
) 

𝑐 =  
𝑎𝛾

𝜓𝜎
 

We can use the quadratic formula to solve this quadratic equation and we know that the 

number of roots is determined by the discriminant, D. 

𝐷 =  𝑏2 − 4𝑎𝑐 =  (𝜇 − 
𝛽𝛾

𝜎𝜓
)
2

− 4
𝑣𝑎𝑦

𝜓𝜎
    (5.6) 
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If D > 0 there will be two real roots, if D = 0 there will be one real root, and if D < 0 

there will be 2 imaginary roots. We are not interested in the case of two imaginary roots 

since our model is restricted to the positive first quadrant. But we need to consider the 

two other cases that result from this quadratic equation. 

 

Table 5.2 

Possible Number of Equilibrium Points based on the Discriminant 
 

Equilibrium Points 

D < 0 D = 0 D > 0 

2 Equilibrium Points 3 Equilibrium Points 4 Equilibrium Points 

 
 

We continue by finding the third and fourth equilibrium points from our quadratic 

equation, (5.5). But first, let us consider what we know about these roots from Vieta’s 

Theorem. 

Theorem 5.2.1. For the roots, 𝑥1 and,𝑥2 of a quadratic equation, 𝑎𝑥2 + 𝑏𝑥 + 𝑐 =

0, we know that 𝑥1 + 𝑥2 = −
𝑏

𝑎
 and 𝑥1  ∙  𝑥2 = 

𝑐

𝑎
. 

Since we are investigating a system of cellular growth, we are only concerned 

with positive values for the roots. Using Vieta’s theorem and remembering that all the 

parameters are positive, we see that 

𝑥3
∗  ∙  𝑥4

∗ = 
𝑎𝛾

𝜐𝜓𝜎
> 0 
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𝑥3
∗ + 𝑥4

∗ = (𝜇 − 
𝛽𝛾

𝜎𝜓
)
1

𝑣
> 0 when 𝜇 >  

𝛽𝛾

𝜎𝜓
 

Thus, we can see that both roots are positive as long as 

𝜇 >  
𝛽𝛾

𝜎𝜓
.     (5.7) 

 

Now, we determine the actual roots using the quadratic formula, 

𝑥3
∗ = 

𝜇− 
𝛽𝛾

𝜎𝜓
+ √(𝜇− 

𝛽𝛾

𝜎𝜓
)2−4

𝑣𝑎𝛾

𝜓𝜎

2𝑣
    (5.8) 

And now we can substitute the new found values for x∗ back into the system (5.3) to find 

the corresponding values for y∗ and z∗. 

In order to do that, we solve the first equation of (5.3) for y and get 

𝜇 − 𝑣𝑥 −  𝛽𝛾 =  0 

𝑦 =  
𝜇−𝑣𝑥

𝛽
    (5.10) 

 

And now we substitute x∗ into this equation and get 

 

𝑌3,4
∗ = 

𝜇

𝛽
− 
𝑣

𝛽

(

 
 
 𝜇 −

𝛽𝛾
𝜎𝜓 ±

√(𝜇 − 
𝛽𝛾
𝜎𝜓)

2

− 4
𝑣𝑎𝛾
𝜓𝜎

2𝑣

)
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Thus, 

𝑦3
∗ = 

𝜇

𝛽
− 

1

2𝛽
 (
𝜇− 𝛽𝛾

𝜎𝜓
+ √(𝜇 − 

𝛽𝛾

𝜎𝜓
)
2

− 4
𝑣𝑎𝑦

𝜓𝜎
)     (5.11) 

𝑦4
∗ =  

𝜇

𝛽
− 

1

2𝛽
(
𝜇− 𝛽𝛾

𝜎𝜓
− √(𝜇 − 

𝛽𝛾

𝜎𝜓
)
2

− 4
𝑣𝑎𝛾

𝜓𝜎
)    (5.12) 

Similarly, we can use equation (5.4), which has already been solved for z and substitute 

x∗ and y∗ in. We get 

 

𝑧3
∗ = 

𝜎𝛽

𝛾

(

  
 

(

 
 𝜇− 

𝛽𝛾

𝜎𝜓
+ √(𝜇− 

𝛽𝛾

𝜎𝜓
)
2
−4

𝑣𝑎𝛾

𝜓𝜎

2𝑣

)

 
 
 ∙  (

𝜇

𝛽
− 

1

2𝛽
(
𝜇−𝛽𝛾

𝜎𝜓
+ √(𝜇 − 

𝛽𝛾

𝜎𝜓
)
2

− 4
𝑣𝑎𝛾

𝜓𝜎
))

)

  
 

 (5.13) 

 

𝑧4
∗ = 

𝜎𝛽

𝛾

(

  
 

(

 
 𝜇− 

𝛽𝛾

𝜎𝜓
+ √(𝜇− 

𝛽𝛾

𝜎𝜓
)
2
−4

𝑣𝑎𝛾

𝜓𝜎

2𝑣

)

 
 
 ∙  (

𝜇

𝛽
− 

1

2𝛽
(
𝜇−𝛽𝛾

𝜎𝜓
+ √(𝜇 − 

𝛽𝛾

𝜎𝜓
)
2

− 4
𝑣𝑎𝛾

𝜓𝜎
))

)

  
 

 (5.14) 

 

Third equilibrium point 

We just found the third and fourth equilibrium points that occur when the 

Discriminant, D, is positive (D ¿ 0). However, if D = 0, then there will only be 1 real root 

from our quadratic equation (5.5), and therefore, only 3 equilibrium points (see Table 

5.2). Now, we find the equilibrium point that occurs when D = 0. 
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(𝜇 − 
𝛽𝛾

𝜎𝜓
)
2

− 4
𝑣𝑎𝛾

𝜓𝜎
= 0 

𝑥∗ = 
−𝑏

2𝑎
=  

1

2𝑣
(𝜇 − 

𝛽𝛾

𝜎𝜓
)

And now using this value for x∗, and equations (5.3) and (5.4), we find y∗ and z∗ 

𝛽𝑦∗ =  𝜇 − 𝑣𝑥∗ 

𝛽𝑦∗ =  𝜇 − 
𝑣

2𝑣
(𝜇 − 

𝛽𝛾

𝜓𝜎
) 

𝑦∗ = 
1

2
(
𝜇

𝛽
+ 

𝛾

𝜓𝜎
) 

𝑧∗ = 
𝜎𝛽𝑥𝑦

𝛾
 

𝑧∗ = 
𝜎𝛽

𝛾
(
1

2𝑣
(𝜇 − 

𝛽𝛾

𝜎𝜓
))(

1

2
(
𝜇

𝛽
+ 

𝛾

𝜓𝜎
)) 

𝑧∗ = 
1

4𝑣
(
𝜎𝜇2

𝛾
− 

𝛽2

𝜎𝜓2𝑣
)
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And the equilibrium point  

(𝑥3
∗, 𝑦3

∗, 𝑧3
∗) =  (

1

2𝑣
(𝜇 − 

𝛽𝛾

𝜎𝜓
) ,
1

2
 (
𝜇

𝛽
+ 

𝛾

𝜓𝜎
) ,
1

4𝑣
(
𝜎𝜇2

𝛾
− 

𝛽2𝛾

𝜎𝜓2𝑣
)) 

Table 5.3. 

 Equilibrium Points of System 5.2 

Equilibrium Points 

D < 0 D = 0 D > 0 

(0, 0, 0) (0, 0, 0) 

(
𝜇

𝜈
, 0,0) 

 
 
 

  (
1

2𝑣
 (𝜇 − 

𝛽𝛾

𝜎𝜓
) ,

1

2
(
𝜇

𝛽
+ 

𝛾

𝜓𝜎
) ,

1

4𝑣
 (
𝜎𝜇2

𝛾
− 

𝛽2𝛾

𝜎𝜓2𝑣
)) 

 

(0, 0, 0) 

(
𝜇

𝜈
, 0,0) 

 

 

(
𝜇

𝜈
, 0,0) 

 

  

  

(x3
∗, y3

∗, z3
∗) 

 
(x4

∗, y4
∗, z4

∗) 

 

Investigation of the Types of Equilibrium Points 

Having found all of the equilibrium points, we now linearize our system and 

investigate the behavior in the neighborhood of the equilibrium points and classify the 

behavior of the system. We use the Jacobian matrix to classify the behavior in the 

neighborhood of the equilibrium points 
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The Jacobian is 

 

𝐽(𝑥∗, 𝑦∗, 𝑧∗) =

[
 
 
 
 
𝜕𝐹

𝜕𝑥

𝜕𝐹

𝜕𝑦

𝜕𝐹

𝜕𝑧

𝜕𝐺

𝜕𝑥

𝜕𝐺

𝜕𝑦

𝜕𝐺

𝜕𝑧

𝜕𝐻

𝜕𝑥

𝜕𝐻

𝜕𝑦

𝜕𝐻

𝜕𝑧]
 
 
 
 

=  [

𝜇 − 2𝑣𝑥 −  𝛽𝑦 −𝛽𝑥 0
−𝛽𝑦 𝜓𝑧 −  𝛽𝑥 − 𝑎 𝜓𝑦
𝜎𝛽𝑦 𝜎𝛽𝑥 −𝛾

]    (5.15)

 

Investigating 1st Equilibrium Point (x1
∗,  y1

∗,  z1
∗) 

 

The Jacobian (5.9) at (0, 0, 0) is 

𝐽(0,0,0) = [
𝜇 0 0
0 −𝑎 0
0 0 −𝛾

] 

 

Thus, system (5.2) in the neighborhood of (0, 0, 0) has the following linearized form 

 

{
 
 

 
 
𝑑𝑥

𝑑𝑡
=  𝜇𝑥

𝑑𝑦

𝑑𝑡
=  −𝑎𝑦

𝑑𝑧

𝑑𝑡
= 𝑦𝛾𝑧

 

 

Because the Jacobian matrix is diagonal, we know that its eigenvalues are its diagonal entries. That is, 

𝜆1 =  𝜇, 𝜆2 = −𝑎, 𝜆3 = −𝛾. Since one eigenvalue is real and positive and the other two are real and 

negative, (0, 0, 0) is an unstable node for all parameter values. 
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Investigating 2nd Equilibrium Point (x2
∗,  y2

∗,  z2
∗) 

 

The Jacobian (5.9) at (
𝜇

𝑣
, 0, 0) is 

 

𝐽
(
𝜇

𝜈
,0,0)

 =  

[
 
 
 
 −𝜇

−𝛽𝜇

𝑣
0

0
−𝛽𝜇

𝑣
− 𝑎 0

0
𝜎𝛽𝜇

𝑣
−𝛾]
 
 
 
 

      (5.16) 

 

Thus, system (5.2) in the neighborhood of (
𝜇

𝜈
 , 0, 0) has the following linearized form 

 

{
 
 

 
 
𝑑𝑥

𝑑𝑡
=  −𝜇𝑥 − 

𝛽𝜇

𝑣
𝑦

𝑑𝑦

𝑑𝑡
=  (

−𝛽𝜇

𝑣
− 𝑎)𝑦

𝑑𝑧

𝑑𝑡
=  
𝜎𝛽𝜇

𝑣
𝑦 −  𝛾𝑧

 

 
We can find the characteristic equation of matrix (5.10), 

 

|𝐽
(
𝜇
𝜈
,0,0)

−  𝜆𝐼| = 0 

 

|
|

−𝜇 −  𝜆
−𝛽𝜇

𝜈
0

0
−𝛽𝜇

𝑣
− 𝑎 − 𝜆 0

0
𝜎𝛽𝜇

𝑣
−𝛾 −  𝜆

|
| = 0   (5.17) 

 

Evaluating the determinant, we obtain the characteristic equation in factorized form 

(−𝜇 −  𝜆)  ∙  (
−𝛽𝜇

𝑣
− 𝑎 −  𝜆)  ∙  (−𝛾 − 𝜆) = 0   (5.18) 

from which it follows that 𝜆1 = −𝜇 < 0, 𝜆2 = 
−𝛽𝜇

𝑣
− 𝑎 < 0, and 𝜆3 = −𝛾 < 0. Because all the 

eigenvalues are negative, (
𝜇

𝜈
, 0,0) is an asymptotically stable node. 
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Investigating 3rd of 3 Equilibrium Points (x3
∗,  y3

∗,  z3
∗) 

When D = 0 the resulting equilibrium point is 

(𝑥3
∗, 𝑦3

∗, 𝑧3
∗) =  (

1

2𝑣
(𝜇 − 

𝛽𝛾

𝜎𝜓
) ,

1

2
(
𝜇

𝛽
+ 

𝛾

𝜓𝜎
) ,

1

4
(
𝜎𝜇2

𝛾
− 

𝛽2𝛾

𝜎𝜓2𝑣
))      (5.19) 

We can simplify the Jacobian matrix (5.9). 

 

𝐽(𝑥∗,𝑦∗,𝑧∗) =  [

𝜇 − 2𝑣𝑥 −  𝛽𝑦 −𝛽𝑥 0
−𝛽𝑦 𝜓𝑧 −  𝛽𝑥 − 𝑎 𝜓𝑦
𝜎𝛽𝑦 𝜎𝛽𝑥 −𝛾

]  

 

Notice that the element in the second row and second column, j22, is the same as the 

second equation of (5.3) and since y ≠ 0, this term must be 0. This does not occur for the 

first and second equilibrium points. But it is true for the third equilibrium that occurs 

when the discriminant is zero and for the third and fourth equilibrium points that occur 

when the discriminant is positive. We can also simplify j11. Remember from the first 

equation of (5.3), we know that βy = µ − νx, and therefore 

j11 =µ − 2vx − βy 

=µ − 2νx − (µ − νx) 

= − νx 
 

Now, our simplified Jacobian is 

𝐽(𝑥∗,𝑦∗,𝑧∗) = [

−𝑣𝑥∗ −𝛽𝑥∗ 0
−𝛽𝑦∗ 0 𝜓𝑦∗

𝜎𝛽𝑦∗ 𝜎𝛽𝑥∗ −𝛾
]    (5.20) 
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By substituting in our values for 𝑥3
∗, 𝑦3

∗, 𝑧3
∗, we get the Jacobian at this point 

 

𝐽(𝑥3∗ ,𝑦3∗,𝑧3∗) = 

[
 
 
 
 
 
 
−1

2
 (𝜇 − 

𝛽𝛾

𝜎𝜓
)

−𝛽𝜇

2𝑣
+ 

𝛽2𝛾

2𝜎𝜓𝑣
0

−
𝛽

2
(
𝜇

𝛽
+ 

𝛾

𝜎𝜓
) 0

𝜓

2
(
𝜇

𝛽
+ 

𝛾

𝜎𝜓
)

𝜎𝜇

2
+ 
𝜎𝛽𝛾

2𝜎𝜓

𝜎𝛽𝜇𝜓 − 𝛽2𝛾

2𝜓𝑣
−𝛾

]
 
 
 
 
 
 

 

 

But we will use the simplified Jacobian with x∗, y∗ (5.13) to find the characteristic 

equation. 

|𝐽(𝑥3∗ ,𝑦3∗,𝑧3∗) −  𝜆𝐼| = 0 
 

|

−𝑣𝑥∗ −  𝜆 −𝛽𝑥∗ 0
−𝛽𝑦∗ −𝜆 𝜓𝑦∗

𝜎𝛽𝑦∗ 𝜎𝛽𝑥∗ −𝛾 −  𝜆
| = 0 

−λ(λ + νx∗)(λ + γ) − β2ψσy∗2 x∗ + (λ + γ) · β2x∗y∗ + (λ + νx∗) · ψσβx∗y∗ = 0 

−λ3 − λ2γ − λ2νx − λνxγ − β2ψσy∗2 x + β2x∗y∗λ + β2x∗y∗γ + λψσβx∗y∗ + 

νx∗ψσβx∗y∗ = 0 
 

 

λ3 + (γ + νx∗)λ2 − (β2x∗y∗ + ψσβx∗y∗ − νx∗γ)λ + β2ψσy∗2 x 

− γβ2x∗y∗ − νψσβx∗y∗ = 0 
(5.21) 

 

The characteristic equation is in the form, λ3 + aλ2 + bλ + c = 0. We will now evaluate the constant 

term, c. 

c = β2ψσy∗2 x∗ − γβ2x∗y∗ − νψσβx∗y∗ 

= x∗y∗ β(βψσy∗ − βγ − νψσx∗) 
(5.22) 
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Now, calculating the expression in the parenthesis, we see that 
 

=  𝜓𝜎𝛽𝑦∗ −  𝛽𝛾 −  𝜈𝜓𝜎𝑥2 
 

=  𝛽𝜓𝜎 (
𝜇

2𝛽
− 

𝛾

2𝜓𝜎
) −  𝛽𝛾 − 𝑣𝜓𝜎 (

𝜇

2𝑣
− 

𝛽𝛾

2𝑣𝜎𝜓
) 

 

= 
𝜓𝜎𝜇

2
+ 
𝛾𝛽

2
− 
𝜓𝜎𝜇

2
− 
𝛽𝛾

2
= 0

We can see that the constant term of (5.21) is zero. Thus, one of the eigenvalues will 

always be 0 (λ = 0) and it is not possible to find the type of this equilibrium point (5.19) 

using the linearization method and local analysis. 

Investigating 3rd and 4th Equilibrium Points (x3
∗,  y3

∗,  z3
∗) and (x4

∗,  y4
∗,  z4

∗) 

When the discriminant is positive, there will be two more equilibrium points that 

result from solving the quadratic equation. The Jacobian matrix for these two equilibrium 

points is the same type as (5.13). 

𝐽(𝑥3∗ ,𝑦3∗,𝑧3∗) = 𝐽(𝑥4∗ ,𝑦4∗,𝑧4∗) [

−𝑣𝑥∗ −𝛽𝑥∗ 0
−𝛽𝑦∗ 0 𝜓𝑦∗

𝜎𝛽𝑦∗ 𝜎𝛽𝑥∗ −𝛾
] 

And since the Jacobian matrix is the same type as (5.13), the characteristic 

polynomial will have the same type as (5.14) depending only on the values of the 

equilibrium point (x3
∗, y3

∗, z3
∗) or (x4

∗, y4
∗, z4

∗). However, the constant term will not be 0 

(c ≠ 0). 

λ3 + (γ + νx∗)λ2 − (β2x∗y∗ + ψσβx∗y∗ − νx∗γ)λ + β2ψσy∗2 x − γβ2x∗y∗ − νψσβx∗y∗ = 0 
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The constant term also depends on the equilibrium point. 

 

c = x∗y∗ β(βψσy∗ − βγ − νψσx∗) 
 

Here x∗  and y∗  represent x3
∗  and y3

∗  or x4
∗  and y4

∗.  We evaluated this term numerically in Chapter 6. 

Now, we know more information about this system and the possible equilibrium points as shown in 

Table 5.4. 

Table 5.4. 

 

 Equilibrium Points and their Classifications 

 

 Equilibrium Points Classification 

D < 0 D = 0 D > 0 
 

(0, 0, 0) (0, 0, 0) 
 

(
𝜇

𝜈
, 0, 0) 

 
 

(
1

2𝑣
 (𝜇 − 

𝛽𝛾

𝜎𝜓
) ,
1

2
(
𝜇

𝛽
+ 

𝛾

𝜓𝜎
) ,
1

4𝑣
(
𝜎𝜇2

𝛾
− 

𝛽2𝛾

𝜎𝜓2𝑣
)) 

(0, 0, 0) unstable node 

(
𝜇

𝜈
, 0, 0) 

 

(
𝜇

𝜈
, 0, 0) 

 

stable node 

  

(x3
∗, y3

∗, z3
∗) 

 

 
(x4

∗, y4
∗, z4

∗) 
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CHAPTER VI 

 

NUMERICAL ANALYSIS OF THE MODEL 

In Chapter 5, we found that our model could have two, three, or four equilibrium 

points depending on the parameters. Now, we demonstrate the behavior of the system 

(5.2) with parameter values for each of these cases. 

2 Equilibrium Points (Discriminant ¡ 0) 

Selecting, µ = 5, v = 1, β = 1, ψ = 1, α = 2, σ = 1, γ = 2, we see by formula (5.6) that the 

discriminant, 

 

𝐷 =  (𝜇 − 
𝛽𝛾

𝜎𝜓
)
2

− 4
𝑣𝑎𝛾

𝜓𝜎
 

𝐷 =  (5 − 
1 ∙ 2

1 ∙ 2
)
2

− 4 
1 ∙ 2 ∙ 2

1 ∙ 1
 

𝐷 =  −7 < 0 

 

The Jacobian at (0,0,0) is 

 

𝐽(0,0,0) = [
5 0 0
0 −2 0
0 0 −2

] 

 

The tr(J) = 1 and det J = 20. Because this is a diagonal matrix, we can see the 

characteristic equation is (5 − λ)(−2 − λ)(−2 − λ) and the eigenvalues are λ1 = 5, λ2 = 

−2, λ3 = −2. We have one real positive and 2 real negative eigenvalues. This confirms 
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what we found analytically in section 5.2.2, that (0, 0, 0) is an asymptotically unstable 

node. 

The Jacobian at (5, 0, 0) is 

𝐽(5,0,0)=  [
−5 −5 0
0 −7 0
0 5 2

] 

 

The tr(J) = −14, the det J = −70, and the characteristic equation is λ3 + 14λ2 + 59λ 

+ 70 = 0. Thus, we know the eigenvalues are λ1 = −5, λ2 = −7, λ3  =  −2.   All of the 

eigenvalues are real and negative, confirming what we found analytically in section 5.2.2, 

that (5, 0, 0) is an asymptotically stable node. Figures 6.1 - 6.3 show x(t), y(t), and z(t) as a 

function of time on the time interval (0, 10)
 
or (0, 20) for Figure 6.3

 
. Notice that for all of 

these initial conditions, the system goes to the stable point, (5, 0, 0). Figure 6.3 required 

more time to get there because of the aggressive autoimmune reaction that occurred early. 

The T-cells (green line) peaked to a maximum value of almost 24 before going to 0. And 

with the increase of the T-cells and antigens, the tissue cell went to 0. So, even though 

the system eventually made it to the equilibrium point, in reality a patient would have 

died because of the loss of the tissue cells before the system could get back to the healthy 

stable equilibrium point. Figure 6.1 represents a healthy individual without a self-

sustaining autoimmune reaction. Figure 6.4 gives a 3d view of the trajectories of this 

system with the three different initial conditions from Figures 6.1 - 6.3. The blue 

trajectory represents the initial conditions of Figure 6.1, the green trajectory represents 

the initial conditions of Figure 6.2, and the red trajectory represents the initial conditions 
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of Figure 6.3. Notice, in Figure 6.4 we can see all the trajectories in time approaching the 

stable equilibrium point (
𝜇

𝜈
, 0, 0) = (5, 0, 0). And finally Figure 6.6 is the 3d field plot of 

the system. 
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Figure 6.1. x(0) = 10, (blue) 

y(0) = 5 (green), z(0) = 1 (red) 

 
 
 
 
 
 
 

Figure 6.3. x(0) = 4 (blue) y(0) 

= 3 (green), z(0) = 8 (red) 

Figure 6.2. x(0) = 1 (blue) y(0) 

= 3 (green), z(0) = 1 (red) 
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Figure 6.4. 3d graph of the system trajectories Blue-Figure 6.1 initial conditions 

Green-Figure 6.2 initial conditions Red-Figure 6.3 initial conditions 

 
 
 
 

 
 

 

Figure 6.5. 3d field plot 
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3 Equilibrium Points (Discriminant = 0) 

Selecting, µ = 3.5, v = 1, β = 3, ψ = 1, α = 2, σ = 4, γ = 2, we see that the 

discriminant is 0 (D = 0) 

𝐷 =  (𝜇 − 
𝛽𝛾

𝜎𝜓
)
2

− 4
𝑣𝑎𝛾

𝜓𝜎
 

𝐷 =  (3.5 − 
3 ∙ 2

4 ∙ 1
)
2

− 4
1 ∙ 2 ∙ 2

1 ∙ 4
= 0 

 

The first equilibrium point is (x1
∗ , y1

∗ , z1
∗) = (0, 0, 0). We know from the analytical investigation 

that this is an asymptotically unstable node. The second equilibrium point is (x2
∗, y2

∗, z2
∗)  =  

(
𝜇

𝜈
, 0, 0)  =  (

3.5

1
, 0, 0)  =  (3.5, 0, 0). We know from the analytical investigation that this is an 

asymptotically stable node. 

And the third equilibrium point is 

 

𝑥3
∗ = 

1

2𝑣
(𝜇 − 

𝛽𝛾

𝜎𝜓
) + 

1

2 ∙ 1
(3.5 − 

3 ∙ 2

4 ∙ 1
) = 1 

𝑦3
∗ = 

1

2
(
𝜇

𝛽
+ 

𝛾

𝜓𝜎
) =  

1

2
(
3.5

3
+ 

2

4 ∙ 1
) = 0.833̅̅̅̅  

(𝑥3
∗, 𝑦3

∗, 𝑧3
∗) =  (1, 0.833̅̅̅̅ , 5) 

 

The Jacobian (5.9) at (x3
∗, y3

∗, z3
∗) is 

𝐽(1,0.833̅̅̅̅ ,5) = [
−1 −3 0
−2.5 0 . 833̅̅̅̅

10 12 −2
] 

 
 

The tr(J) =  −3 and det J  =  75 and the characteristic equation is λ3 + 3λ2 −15.5λ 

=  0.  And so, we know the eigenvalues are λ1  =  0, λ2  ≈ 2.713, λ3  ≈ −5.713. There is 

one root that is 0, one positive real root, and one negative real root. As we established 
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ν 

analytically, one of the eigenvalues is zero so in order to classify this equilibrium 

point we need to do further analysis such as investigation of the Lyapunov function. 

Figures 6.6 - 6.8 show x(t), y(t), and z(t) as a function of time on the interval (0,10). 

Notice that for all of these initial conditions, the system goes to the stable node, (3.5, 0, 

0). Figures 6.7 and 6.8 represent a person experiencing an autoimmune reaction. The 

peak of the green line represents an increase in T- Lymphocytes. At the same time as the 

increase in T-Lymphocytes, there is a smaller increase in antigen levels and a decrease in 

tissue cells. While these figures will eventually get to the stable equilibrium point 

mathematically, this healthy condition would not be realized as the patient would die as a 

result of the loss of tissue cells. Notice also that the initial conditions of Figure 6.6 are 

just below the third unclassified equilibrium point while the initial conditions of Figure 

6.7 are above the same point. 

Figure 6.9 gives a 3d view of the three trajectories of this system with the initial 

conditions from figures 6.6 - 6.8. The blue trajectory represents the initial conditions of 

Figure 6.6, the green trajectory represents the initial conditions of Figure 6.7, and the red 

trajectory represents the initial conditions of Figure 6.8. In Figure 6.9, we see all the 

trajectories in time t[0, 1000] approaching the stable equilibrium point ( µ , 0, 0) = (3.5, 0, 

0). And finally, Figure 6.10 is the 3d field plot of the system. 
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Figure 6.6. x(0) = .8 (blue) 
 

y(0) = .5 (green), z(0) = 4.8 (red) 

below eq point (x3
∗, y3

∗, z3
∗) = (1, 0.83, 5) 

 

 

 
Figure 6.8. x(0) = 1 (blue) y(0) 

= 3 (green), z(0) = 1 (red) 

Figure 6.7. x(0) = 1.2 (blue) y(0) 

= 1 (green), z(0) = 5.2 (red) 

above eq point (x3
∗, y3

∗, z3
∗) = (1, 0.83, 5) 
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Figure 6.9. 3d graph of the system trajectories 

Blue-Figure 6.6 initial conditions 

Green-Figure 6.7 initial conditions 

Red-Figure 6.8 initial conditions 

 
 
 
 

 
 

 

Figure 6.10. 3d field plot 
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4 Equilibrium Points (Discriminant > 0) 

Selecting, µ = 5, v = 1, β = 1, ψ = 1, α = 1, σ = 1, γ = 2, we see by formula (5.6) 

that the discriminant, 

𝐷 =  (𝜇 − 
𝛽𝛾

𝜎𝜓
)
2

− 4
𝑣𝑎𝛾

𝜓𝜎
 

𝐷 =  (3.5 − 
3 ∙ 2

4 ∙ 1
)
2

− 4
1 ∙ 2 ∙ 2

1 ∙  4
 = 0 

The first equilibrium point is (x1
∗, y1

∗, z1
∗) = (0, 0, 0). We know from the analytical 

investigation that this is an asymptotically unstable node. The  second  equilibrium  point  

is (x2
∗, y2

∗, z2
∗)  =  ( 

𝜇

𝜈
, 0, 0)  =  (

3.5

1
  , 0, 0)  =  (5, 0, 0). We know from the analytical 

investigation that this is an asymptotically stable node. 

  The third equilibrium point is 

𝑥3
∗ = 

𝜇 − 
𝛽𝛾
𝜎𝜓 + 

√(𝜇 − 
𝛽𝛾
𝜎𝜓)

2

− 4
𝑣𝑎𝛾
𝜓𝜎

2𝑣
 

𝑥3
∗ = 

5 − 
1 ∙ 2
1 ∙ 1 + 

√(5 − 
1 ∙ 2
1 ∙ 1)

2

− 4 
1 ∙ 1 ∙ 2
1 ∙  1

2 ∙ 1
= 2 

𝑦3
∗ = 

𝜇

𝛽
− 

1

2𝛽
(
𝜇 −  𝛽𝛾

𝜎𝜓
+ √(𝜇 − 

𝛽𝛾

𝜎𝜓
)
2

− 4
𝑣𝑎𝛾

𝜓𝜎
 ) 

𝑦3
∗ =  

5

1
− 

1

2 ∙ 1
 (
5 − 1 ∙ 2

1 ∙ 1
+ √(5 − 

1 ∙ 2

1 ∙ 1
)
2

− 4
1 ∙ 1 ∙ 2

1 ∙ 1
) = 3 
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𝑧3
∗ = 

𝜎𝛽

𝛾

[
 
 
 
 
 

(

 
 
 𝜇 − 

𝛽𝛾
𝜎𝜓 + 

√(𝜇 − 
𝛽𝛾
𝜎𝜓)

2

− 4
𝑣𝑎𝛾
𝜓𝜎

2𝑣

)

 
 
 

 

∙  (
𝜇

𝛽
− 

1

2𝛽
(
𝜇 −  𝛽𝛾

𝜎𝜓
+ √(𝜇 − 

𝛽𝛾

𝜎𝜓
)
2

− 4
𝑣𝑎𝛾

𝜎𝜓
))

]
 
 
 
 
 

 

𝑧3
∗ = 

1 ∙ 1

2

[
 
 
 

(

 
5 − 

1 ∙ 2
1 ∙ 1 + 

√(5 − 
1 ∙ 2
1 ∙ 1)

2

− 4
11 ∙ 2
1 ∙ 1

2 ∙  1

)

  

∙  

(

 
5

1
− 

1

2 ∙ 1
(
5 − 1 ∙ 2

1 ∙ 1
+ √(5 − 

1 ∙ 2

1 ∙ 1
)
2

− 4
1 ∙ 1 ∙ 2

1 ∙ 1
)

)

 

]
 
 
 

= 3 

(𝑥3
∗, 𝑦3

∗, 𝑧3
∗) =  (2,3,3) 

 

Substituting these coordinates into (5.16) 

 

c = x∗y∗ β(βψσy∗ − βγ − νψσx∗) 

= 2 · 3 · 1 · (1 · 1 · 1 · 3 − 1 · 2 − 1 · 1 · 1 · 2) = −6     (6.1) 

And the Jacobian (5.9) at this point is 

𝐽(2,3,3) = [
−2 −2 0
−3 0 3
3 2 −2

] 

 

The tr(J) = −4 and det J = 6 and the characteristic equation is λ3 + 4λ2 − 8λ − 6 = 0. 

The constant term of the characteristic polynomial is -6 as we saw above in (6.1). Solving 

the characteristic equation for its zeros, we find the eigenvalues are 
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λ1 ≈ 1.8945, λ2 ≈ −5.2965 − 1 · 10−10 · i, and λ3 ≈ −.59795 − 1 · 10−10 · i.  Thus, it 

has 1 positive real root and 2 complex roots in which the real part is negative so it is an 

asymptotically unstable spiral. 

The fourth equilibrium point is 

𝑥4
∗ = 

𝜇 − 
𝛽𝛾
𝜎𝜓 − 

√(𝜇 − 
𝛽𝛾
𝜎𝜓)

2

− 4
𝑣𝑎𝛾
𝜓𝜎

𝑤𝑣
 

𝑥4
∗ = 

5 − 
1 ∙ 2
1 ∙ 1 − 

√(5 − 
1 ∙ 2
1 ∙ 1)

2

− 4
1 ∙ 1 ∙ 2
1 ∙ 1

2 ∙ 1
= 1 

𝑦4
∗ = 

𝜇

𝛽
− 

1

2𝛽
(
𝜇 −  𝛽𝛾

𝜎𝜓
− √(𝜇 − 

𝛽𝛾

𝜎𝜓
)
2

− 4
𝑣𝑎𝛾

𝜓𝜎
) 

𝑧4
∗ = 

𝜎𝛽

𝛾
 

[
 
 
 
 
 

(

 
 
 𝜇 − 

𝛽𝛾
𝜎𝜓 − 

√(𝜇 − 
𝛽𝛾
𝜎𝜓)

2

− 4
𝑣𝑎𝛾
𝜓𝜎

2𝑣
 

)

 
 
 

 

∙  (
𝜇

𝛽
− 

1

2𝛽
 (
𝜇 −  𝛽𝛾

𝜎𝜓
+ √(𝜇 − 

𝛽𝛾

𝜎𝜓
)
2

− 4
𝑣𝑎𝛾

𝜎𝜓
))

]
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𝑧4
∗ = 

1 ∙ 1

2
 

[
 
 
 

(

 
5 − 

1 ∙ 2
1 ∙ 1 − 

√(5 − 
1 ∙ 2
1 ∙ 1)

2

− 4
11 ∙ 2
1 ∙ 1

2 ∙ 1

)

  

∙  

(

 
5

1
− 

1

2 ∙ 1
 (
5 − 1 ∙ 2

1 ∙ 1
+ √(5 − 

1 ∙ 2

1 ∙ 1
)
2

− 4
1 ∙ 1 ∙ 2

1 ∙ 1
)

)

 

]
 
 
 

= 2 

(𝑥4
∗, 𝑦4

∗, 𝑧4
∗) =  (1,4,2) 

Substituting these coordinates into (5.16) 

c = x∗y∗ β(βψσy∗ − βγ − νψσx∗) 

= 1 · 4 · 1 · (1 · 1 · 1 · 4 − 1 · 2 − 1 · 1 · 1 · 1) = 4     (6.2) 

And the Jacobian (5.9) is 

𝐽(1,4,2) = [
−1 −1 0
−4 0 4
4 1 2

] 

The tr(J) = −3, the det J = −4, and the characteristic equation is λ3 + 3λ2 − 6λ + 4 

=  0.  The constant term of the characteristic polynomial is 4 as we saw above in (6.2). 

Solving the characteristic equation for its zeros, we find the eigenvalues are λ1  ≈  

−4.5223, λ2  ≈  .7612 − .5524 · i,  and λ3 ≈ .7612 + .5524 · i. It has 1 negative real root 

and 2 complex roots with positive real parts. Thus, we can classify this equilibrium point 

as an asymptotically unstable spiral. 

Figures 6.11 - 6.13 show x(t), y(t), and z(t) as a function of time on the interval 

(0,10). Notice that for all of these initial conditions, the system goes to the stable point, 

(5, 0, 0). However, the activity on the interval (0, 4) varies greatly depending on the initial 

conditions and is interesting. Figure 6.11 shows activity similar to Figure 6.3 (when there 
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were only 2 equilibrium points). Notice that the maximum of the T-Lymphocytes 

coincides with a level near or at 0 for the healthy tissue(x) and antigens (z). While the 

system mathematically recovers and moves toward the stable equilibrium point, in 

reality a person would die before getting back to the healthy equilibrium point because of 

the loss of healthy tissue. The initial conditions of Figure 6.11 are just below the third 

equilibrium point, while the initial conditions of 6.12 are just above it. The initial 

conditions of 6.13 are just below the 4th equilibrium point. The initial conditions of 6.14 

are just above the fourth equilibrium point. Notice in Figure 6.14 there is a peak in the t-

cells, but the population of tissue cells is able to recover before getting to zero. 

Figure 6.15 gives a 3d view of the three trajectories of this system with the initial 

conditions from figures 6.11 - 6.14. The blue trajectory represents the initial conditions of 

Figure 6.11, the green trajectory represents the initial conditions of Figure 6.12, the red 

trajectory represents the initial conditions of Figure 6.13, and the black trajectory 

represents the initial conditions of Figure 6.14. Figure 6.16 is a 3d field plot of the 

system. Table 6. 1 provides a summary of the results of the numerical analysis 
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Figure 6.11. x(0) = 2.1 (blue) 
 

y(0) = 3.1 (green), z(0) = 3.1 (red) 

above eq. point (x3
∗, y3

∗, z3
∗) = (2, 3, 3) 

Figure 6.12. x(0) = 1.9 (blue) 
 

y(0) = 2.9 (green), z(0) = 2.9 (red) 

below eq. point (x3
∗, y3

∗ , z3
∗) = (2, 3, 3) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.13. x(0) = .9(blue) 
 

y(0) = 3.9 (green), z(0) = 1.9 (red) 

below eq. point (x4
∗, y4

∗, z4
∗) = (1, 4, 2) 

Figure 6.14. x(0) = 1.1 (blue) 
 

y(0) = 4.1 (green), z(0) = 2.1 (red) 

above eq. point (x4
∗, y4

∗, z4
∗) = (1, 4, 2) 
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Figure 6.15. 3d graph of the system trajectories 

Blue-Figure 6.11 initial conditions 

Green-Figure 6.12 initial conditions 

Red-Figure 6.13 initial conditions 

Black-Figure 6.14 initial conditions 

 
 
 

 

 

Figure 6.16. 3d field plot 
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Table 6.1.  

Equilibrium Points and their Classification from Numerical Analysis 

 

Equilibrium Points Classification 

D < 0 D = 0 D > 0 
 

(0, 0, 0) (0, 0, 0) (0, 0, 0) unstable node 

(5, 0, 0) (3.5, 0, 0) (5, 0, 0) stable node 

  
 

(1, 0.833, 5) 
 

need more analysis 

  
(2, 3, 3) unstable spiral 

  
(1, 4, 2) unstable spiral 
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CHAPTER VII 

CONCLUSIONS 

I investigated a model of autoimmunity at the cellular level. During this 

investigation, I saw how the production of T lymphocyte cells and their mutual 

destruction of healthy tissue cells affect the concentration of healthy tissue cells. This 

model was focused on the self-sustaining autoimmune reaction involving T lymphocyte 

killer cells, antigens, and the healthy tissue cells that are being attacked. This model 

represents a part of the cell mediated response of the adaptive immune system. Further 

models can be created and investigated to consider the humoral response of the adaptive 

immune system or the cause of the autoimmune response. There are many unanswered 

questions in the study of immunology and autoimmune disease that can be answered with 

further mathematical study. 

Interpretation of the Equilibrium Points 

In the investigation of the system of nonlinear ODEs, we found situations that 

resulted in 2, 3, or 4 equilibrium points and used a Jacobian matrix to classify these 

equilibrium points. In this section, I consider the biological application of that 

classification. 

First Equilibrium Point 

 

The first equilibrium point was (0, 0, 0) and we found it to always be 

asymptotically unstable. This is trivial as it represents a case where the concentration of 

healthy tissue cells, T lymphocytes, and tissue specific antigens are all 0. 
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Second Equilibrium Point 

The second equilibrium point was (
𝜇

𝜈
, 0, 0) and we found that it is an 

asymptotically stable equilibrium point. This equilibrium point represents a healthy 

individual with a normal size of healthy tissue cell and minimal number of T lymphocytes 

or tissue specific antigens. This represents a healthy individual in which the self-

sustaining autoimmune reaction has not started and therefore cytotoxic T-cells are not 

reproducing. Medically our goal is to get all individuals to this equilibrium point. 

Third and Fourth Equilibrium Points 

The third and fourth equilibrium points resulted from the quadratic formula. After  

investigating  with  some  possible  parameter  values,  we found  that  x3
∗and  x4

∗
 are 

asymptotically unstable spirals. Based on our bifurcation analysis, these points are not 

always part of the system. They only occur when (𝜇 − 
𝛽𝛾

𝜎𝜓
)
2

− 4
𝑣𝑎𝛾

𝜎𝜓
> 0 and we are only 

concerned when both roots are positive which means that 𝜇 >  
𝛽𝛾

𝜎𝜓
. 

When the system tends towards these equilibrium points, it represents situations 

with a self-sustaining autoimmune reaction at varying levels. The system will eventually 

get to the stable node, (
𝜇

𝜈
, 0, 0) mathematically. However, biologically, the patient will not 

survive the loss of tissue cells. 

When (𝜇 
𝛽𝛾

𝜎𝜓
)
2

− 4
𝑣𝑎𝛾

𝜎𝜓
= 0. There are only 3 equilibrium points. However, 

because one of the eigenvalues will always be zero, we need to do further analysis in order 

to classify this equilibrium point. This model appears to be a good and accurate 
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representation of the features of the autoimmune reaction. This is a good model to 

continue to work with and to develop further for other theories of autoimmunity. 
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