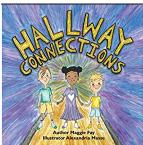


Using Picture Books to Support Computational Thinking


Presented by Sarah Veenhuyzen

Addressing

Flexibility, Adaptability, and Change

in the Computational Thinking Program in Spring Branch ISD

Thinking like a computer scientist!

COMPUTATIONAL THINKING

the thought processes involved in using algorithms to solve problems

The Four Pillars of Computational Thinking

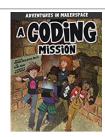
DECOMPOSITION	ALGORITHMS	PATTERN RECOGNITION	ABSTRACTION
DEFINITION Breaking a problem into manageable parts	DEFINITION A set of steps you can follow to complete a task	DEFINITION Finding similarities among things	DEFINITION Removing details or differences to make a solution work for multiple problems
KEY Part by Part	KEY A list of steps	KEY Match Patterns	KEY Pull out differences and make it simple

Thinking like a computer scientist!

Other Helpful Terms

SEQUENCE	BUG	DEBUG	PROGRAM
A particular order of steps or events	An error in a program	Find and fix errors (bugs) in a program	A set of instructions written in a language (code) that a computer understands

Getting Started!


Books and Materials

A Coding Mission

By Blake Hoena & Shannon McClintock Miller

Supplies

- Legos
- Printable
- Egg Cartons
- Plastic Eggs
- Red Construction paper
- Action figure/ game piece

Hallway Connections

By Maggie Fay & Alexandra Masse

Supplies

- Printable

Think Like a Coder

By Brian Aspinall & Deanna Pecaski McLennan

How to Code a Sandcastle By Josh Funk

Hello Ruby By Linda Liukas

Supplies

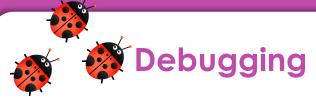
- Deck of cards
- Toy mouse
- Toy treats
- Printable

Supplies

- Printable
- Plastic Cups

Supplies

- Printables


A Coding Mission

By Shannon McClintock Miller & Blake Hoena

Everyone gets bugs!!!

EXTENSION: MAZE DEBUGGING

With a little practice everyone can get good at debugging, or correcting your mistakes. Find out the 4 simple steps it takes to squash a bug and some tips to debug even faster.

Option 1

Coding a Lego Maze

This activity will teach students to think from a point of reference different from their own. Students at every age will be challenged to write a program (as short as possible) to solve a specific maze.

Option 2

Egg Carton Unplugged

This activity will teach students to design an algorithm to capture all the egg prizes and avoid the hot lava rocks. You can make it more challenging by adding more obstacles in your maze!

We all communicate differently!

REAL-LIFE ALGORITHMS

Communication and Coding

Communication is key in coding, as it is elsewhere in school and life. The 2 unplugged activities (tasks that take place away from a computer) below will demonstrate to students why communication is such an important skill.

PreK - 4th Grade

Rosie's RunTime

(you need to download the game pieces)

5th - 8th Grade

Cody and Roby

(you need to download the game pieces)

Think Like a Coder

By Deanna Pecaski McLennan & Brian Aspinall

Break a problem down into easy to follow small steps!

<u>REAL-LIFE ALGORITHMS:</u>
PAPER ATRPLANES

Algorithms

At the root of all computer science is something called an algorithm. The word "algorithm" may sound like something complicated, but really it's just a list of instructions that someone can follow to achieve a result.

Grades PreK - 4th

Feed the Mouse

This game teaches students about algorithms by designing a path for a mouse.

Grades 5th - 8th

Happy Maps

This activity teaches students how to think ahead in order to plan a short route from a start location to a finish location.

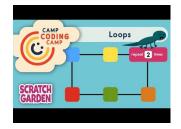
How to Code a Sandcastle By Josh Funk

Be Persistent...


Something wonderful is around the corner!

BUILDING A FOUNDATION

Let's Get Loopy


Loops are a fundamental concept in computer science. Here is an explanation on how they work, with the help of our favorite dessert.

Secret Handshake

In this lesson, students develop their own secret handshake sequences using 3 or more moves.

Grades PreK - Kindergarten

Cup Song Activity

Grades 1st - 4th

Can you recreate the sequence in the video below? Can you create your own song? You just need a cup and your imagination!

Getting Loopy

Grades 5th - 8th

Act out loops with the Iteration
Dance!
(you need to download the
dance moves.)

Computational thinking helps make light work of difficult problems

MONSTER CATALOG

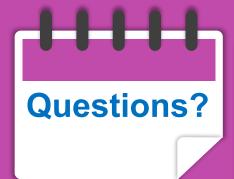
Computational Thinking

When children develop computational thinking skills they are able to articulate a problem and think logically. Watch this video to see how the author of *Hello Ruby* shares the topic of computational thinking in her book.

Activities For Students of All Ages

Hello Ruby Play

Learn about computers, programming and technology through these free, fun activities.



For Teachers

Love Letters for Computers

This page was made for the curious and creative teacher, to help them learn more about computer science.

Let me know how it goes! Feel free to reach out with any questions!

Sarah Veenhuyzen

(vane-how-zen)

Memorial Drive Elementary

sarah.veenhuyzen@springbranchisd.com

Twitter: @MDElibrary