Effects of Repetitive Transcranial Magnetic Stimulation on Cortical Excitability in Patients with Chronic Pain – A Scoping Review Samantha DeWees, BS, SPT | Laurah Mitchell, BS, SPT | Sharon Wang-Price, PT, PhD, OCS, FAAOMPT # Introduction ### Background - rTMS is a non-invasive brain stimulation which has been shown to produce analgesic effects in patients with chronic pain. - It is unclear whether rTMS has an effect on cortical excitability in patients with chronic rTMS. ## Purpose • To examine the current information available regarding the usage and the effects of rTMS on cortical excitability in those with chronic musculoskeletal conditions. # Methods Use of the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) to guide this scoping review. ## **Search Strategy** - Electronic databases: PubMed, CINAHL, Scopus - Search string: "brain stimulation" OR "repetitive transcranial magnetic stimulation") AND ("cortical excitability" OR "brain excitability") AND (pain) - Inclusion criteria: Randomized controlled or clinical trials, musculoskeletal conditions, human subjects, in English ## **Quality Assessment** Physiotherapy Evidence Database (PEDro) scale (0-10) | | Dall'Agnol et al. (2014) PEDro Score = 9 | Mhalla et al. (2011) PEDro Score = 8 | |---------------------|--|---| | Study
Population | Chronic myofascial pain syndrome Active rTMS (n = 12) Sham rTMS (n = 12) | Fibromyalgia Active rTMS (n = 16) Sham rTMS (n = 14) | | rTMS | Stimulation site: M1 Dosage: 10 Hz, 16 series of 10s stimulation pulses (a total of 1,600 pulses), inter-stimulation interval: 26s EMG recording site: left first dorsal interosseous muscle | Stimulation site: M1 Dosage: 10 Hz, 15 series of 10s pulses (a total of 1,500 pulses), inter- stimulation interval: 50s EMG recording site: left first dorsal interosseous muscle | | Results | rTMS had greater increase of MEPs value by 52% than sham rTMS rTMS had a greater decrease of ICF values by 24% than sham rTMS No difference in SICI values No difference in CSP | No significant difference in MEPs rTMS had a greater increase of ICF values than sham rTMS rTMS had a greater increase of SICI value than sham rTMS Did not collect CSP | Cortical Excitability Parameters – MEP: motor evoked potential, ICF: intracortical facilitation, SICI: short-intracortical inhibition, CSF: cortical silent period. # Discussion & Conclusion #### Discussion - Limited, moderate-quality, inconclusive evidence for effects of rTMS on cortical excitability - Conflicting results could be due to different assessment settings for cortical excitability parameters or that MEPs were not collected from the painful area. #### Conclusion • Further research should assess cortical excitability corresponding to the painful area (i.e., EMG recording site) for examining the effects of rTMS on cortical excitability.