

Effects of Repetitive Transcranial Magnetic Stimulation on Cortical Excitability in Patients with Chronic Pain – A Scoping Review

Samantha DeWees, BS, SPT | Laurah Mitchell, BS, SPT | Sharon Wang-Price, PT, PhD, OCS, FAAOMPT

Introduction

Background

- rTMS is a non-invasive brain stimulation which has been shown to produce analgesic effects in patients with chronic pain.
- It is unclear whether rTMS has an effect on cortical excitability in patients with chronic rTMS.

Purpose

• To examine the current information available regarding the usage and the effects of rTMS on cortical excitability in those with chronic musculoskeletal conditions.

Methods

 Use of the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) to guide this scoping review.

Search Strategy

- Electronic databases: PubMed, CINAHL, Scopus
- Search string: "brain stimulation" OR "repetitive transcranial magnetic stimulation") AND
 ("cortical excitability" OR "brain excitability")
 AND (pain)
- Inclusion criteria: Randomized controlled or clinical trials, musculoskeletal conditions, human subjects, in English

Quality Assessment

 Physiotherapy Evidence Database (PEDro) scale (0-10)

	Dall'Agnol et al. (2014) PEDro Score = 9	Mhalla et al. (2011) PEDro Score = 8
Study Population	 Chronic myofascial pain syndrome Active rTMS (n = 12) Sham rTMS (n = 12) 	 Fibromyalgia Active rTMS (n = 16) Sham rTMS (n = 14)
rTMS	 Stimulation site: M1 Dosage: 10 Hz, 16 series of 10s stimulation pulses (a total of 1,600 pulses), inter-stimulation interval: 26s EMG recording site: left first dorsal interosseous muscle 	 Stimulation site: M1 Dosage: 10 Hz, 15 series of 10s pulses (a total of 1,500 pulses), inter- stimulation interval: 50s EMG recording site: left first dorsal interosseous muscle
Results	 rTMS had greater increase of MEPs value by 52% than sham rTMS rTMS had a greater decrease of ICF values by 24% than sham rTMS No difference in SICI values No difference in CSP 	 No significant difference in MEPs rTMS had a greater increase of ICF values than sham rTMS rTMS had a greater increase of SICI value than sham rTMS Did not collect CSP

Cortical Excitability Parameters – MEP: motor evoked potential, ICF: intracortical facilitation, SICI: short-intracortical inhibition, CSF: cortical silent period.

Discussion & Conclusion

Discussion

- Limited, moderate-quality, inconclusive evidence for effects of rTMS on cortical excitability
- Conflicting results could be due to different assessment settings for cortical excitability parameters or that MEPs were not collected from the painful area.

Conclusion

• Further research should assess cortical excitability corresponding to the painful area (i.e., EMG recording site) for examining the effects of rTMS on cortical excitability.