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ABSTRACT 

BOGDAN CATALIN OBARSE 

USING DATA MINING TECHNIQUES TO IDENTIFY "THE BEST" 
OPERATIONAL PATTERNS FOR ENROLLMENT MODELING 

AUGUST2009 

For any Educational Institution it is very important to know the number of new 

students and the number of returning students. Based on these numbers, there could be 

conducted predictions of the budget that the institution will have for the next year. 

This research will utilize pre-existing historical data from Texas Woman's 

University containing readily available and easily measured factors, which most 

institutions of higher learning will have available, and will split the existing data in all the 

sub sets possible. Running a chi square analysis on each set obtained, the program will be 

able to show us which splitting way is better for obtaining the most consistent patterns, 

using the provided data. The results will be compared with the results obtained running a 

linear regression analysis on the same data sets. 

The study will introduce an extraneous hidden-time variable related to 

partitioning ways possible. 

The program can be used in the future on any University data sets, providing the 

most holding combination of variables that will hold over the years. 
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CHAPTER! 

INTRODUCTION 

The notion of a viable model to predict a dichotomous variable such as whether a 

student will enroll or not enroll at a specific university entails either an explicit or 

implicit fundamental supposition that there are underlying patterns that will be useful and 

reliable for accurate forecasting of the variable of interest. Yet, any theoretical model that 

explains the variability or pattern that underlines the variable of interest is dependent on 

observable data a researcher has available. In general, the patterns that the model captures 

will provide accurate predictions if these patterns are sustained in future data related to 

the variable of interest. In other words, fitting a model on observed or historical data that 

has underlying patterns to explain the variable of interest will be useful for accurate 

prediction, if those underlying patterns in future data mimic or hold to the patterns from 

which the model was built. For many researchers, available data needed for modeling 

purposes comes from snap shots of data coming from the time of interest. For example, 

institutions of higher education studying the dichotomous variable of retention will have 

snap shots of fall census data, spring census data, and summer census data from which to 

explore and use to make reports and/or for modeling. This study will create a data mining 

program that is used as a pre-modeling technique to explore a multitude of partitioning 

and stratification combinations on snap shots of observed historical data to determine 

which combination generates the "best" sustained patterns for the dichotomous variable 
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of interest. In addition, we will derive and specify the underlying statistical decision rule 

that determines the "best" partitioning patterns within our data mining program. Thus, 

this study will provide a pre-modeling tool that determines the most reliable or best, as 

defined by our decision rule, partitioning patterns that can be used for predictive 

modeling. 

In this research we will illustrate a pre-modeling technique on snap shots of data 

by utilizing pre-existing historical data from Texas Woman's University (TWU) 

containing readily available and easily measured factors or variables, which most 

institutions of higher learning will also have available. To implement this pre-modeling 

technique we will write a computer program that will efficiently explore the variable of 

interest contained in the snapshots of historical data. Through our derived decision rule, 

the program will iterate through a multitude of partitions and stratifications of these 

combined snapshots of historical data to determine the partition and stratification method 

that yields the most consistent or "best" historical patterns for predictive modeling. Thus, 

regardless of the model used for prediction, we will illustrate using TWU data that 

attention to partitioning and stratification patterns of the data can enhance prediction. 

In Chapter-II, we will review the literature on predictive modeling concerning 

higher education data. Chapter-III will introduce the idea of partioning snap shots of 

historical data and provide a simple example to illustrate that partitioning snap shots of 

data can alter the historical patterns on the dichotomous variable of interest. Chapter-III 
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will also introduce appropriate definitions and notation needed to derive our decision 

rule. In Chapter-IV, we will define and illustrate how the decision rule works. Using this 

decision rule our program will provide the best historical enrollment patterns found from 

TWU snap shots of data. Chapter-V will model the top three historical patterns 

determined by our program and compare their predictive accuracy on data that was not 

used to make the model. Finally, Chapter-VI will provide our conclusions and a 

discussion of possible future research. 
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CHAPTER II 

LITERATURE REVIEW 

Many researchers in higher education have an interest in understanding their 

student population. To facilitate their understanding, institutions will likely explore the 

data they collect to determine viable patterns that can lend to more insights to the 

students they serve. In this regard, the institution may be interested in predictive 

modeling, especially when it comes to predicting enrollment since funding for public 

universities may depend on the total credit hour production their enrolled students 

generate. To predict re-enrollment at an institution of higher education requires two 

fundamental components: student information data from the past and a mathematical 

model for prediction. Regardless of the issue that may concern those involved with an 

institution of higher education, in general, an interest in using data to facilitate 

understanding of their student clientele through reporting or to generate predictive 

modeling is common. In this chapter, we will review various uses of student information 

data and note that the literature in higher education lacks a data mining technique that 

explicitly uses a statistical decision rule to determine historical consistency of snap shots 

of data. 

Any institutions geographical location, employees, size, and services certainly 

contribute to the general culture of that institution and help to define its unique 

atmosphere. Thus, it stands to reason that variable selection and data gathering needed to 
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understand an institutions clientele might vary across institutions. In this regard, a paper · 

by the consulting group Noel Levitz (2002) addressed this issue making a note that, while 

no two institutions are ever alike in the exact data, they hold many data needs in 

common. Noel Levitz makes the point that by tracking these data and derivatives that 

apply to each situation, they have literally seen more than Max(P) enrollment managers 

making changes necessary to sustain a competitive edge. In a study by Goenner and 

Snaith (2004 ), they note that theory should dictate this choice of variables in modeling. 

However, they acknowledge that often in social science there are several theories that 

may suggest the inclusion or exclusion of certain variables as controls. The result of this 

is that researchers may use different variables in their analysis and come to different 

results with respect to predicted effects and their statistical significance. Nonetheless, 

Goenner and Snaith (2004), note that empirical analysis requires researchers to choose 

which variables to use as control in their models. The implication is that having necessary 

data to determine significant variables can facilitate understanding of their clientele and 

such data may be useful in modeling so that an institution can be competitive in their 

management of enrollment. 

For an institution to understand their student clientele, variables and the 

accompanying data are needed so that empirical analysis and reporting can be used to 

facilitate administrative decisions regarding the clientele the institution typically attracts. 

Before beginning to build a model or gain information from data, it is important to 
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perform an exploratory data analysis (EDA). EDA is a set of procedures aimed at 

understanding the data and the relationships among the variables (Refaat 2006; Hoaglin, 

Mosteller, Tukey and John Wilder 1985; Valleman, Hoaglin 1977). In this regard, to 

identify appropriate variables and patterns that may be useful or considered significant, 

from a statistical standpoint, generally involves programming skills to mine the data or 

statistical modeling skills to use the data for predictive modeling. For example, William 

N. Anderson (2005), makes a deliberate point to mention that before conducting a 

research study, people involved must first seek assistance from colleagues from their 

institutional research officer or from the faculty members in mathematics, statistics or 

operations research department to assure those involved have the right skill set to address 

the problem. A study made by Goenner and Pauls (2006) found that statistically 

significant variables such as geographic and demographic data based on the student' s zip 

code provide predictors for enrollment. Nonetheless, all the aforementioned studies do 

not address a variable ' s significance in relation to how the data is partitioned. 

When it comes to prediction, there are many theoretical models that an institution 

can use in order to aid their prediction. The types of model that can be used are 

predicated on the variable of interest. For example, William N. Anderson (2002) used 

Linear Regression to Predict the Number of Students in a Freshman Class. In general, a 

linear regression model is appropriate, assuming appropriate assumptions have been met, 

to model a qualitative variable. Another example of linear regression involved modeling 
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undergraduate graduation rates (Hamrick 1964). However, when it comes to the 

enrollment of an individual, the variable is qualitative (i.e. categorical) with a 

dichotomous outcome such as enroll or not enroll. For a dichotomous variable, logistic 

regression is often used as a model. For instance, enrollment prediction is quite 

frequently modeled utilizing logistic regression (Ahluwalia 2006; Goenner and Pauls 

2006; Morley 2000). Predicting retention in institutes of higher education is another 

example of where logistic regression was used (Astin 1997; Hamrick, Schuh and Shelley 

2004; Hurtado, Saenz, Santos and Cabrera 2007). Yet another example is predicting 

success in college where the outcome is completion versus non-completion of a 

bachelor's degree (Geiser and Santelices 2007; Trusty and Niles 2003). In addition, 

logistic regression has been used to model success in particular courses (Belcheir 2002; 

Perkhounkova, Noble, and Sawyer 2005). In general, those models specify the parameter 

estimates obtained from using significant variables from modeling observed data, but 

their data are not made by combining snap shots. 

In the literature there are qualitative variables of interest that may not be 

dichotomous in nature. Many researchers may be interested in predicting the outcome of 

a variable with three or more categories, known as polychotomous. For instance, the 

variable 'type of service use' is an outcome variable that is often measured in health 

services research. Types of health services utilization can include medical provider visit, 

hospital outpatient visit, emergency room visit, hospital inpatient stay, and home health 
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care visit (Hedeker 2003). Researchers in the medical sciences also make extensive use 

of polychotomous logistic regression modeling when assessing risk of disease (Dubin and 

Pasternack 1986; Lawrence et al. 2006; O'Shea et al. 1999). Social science is yet another 

field of research in which this statistical analysis is performed. For instance, Koivusilta, 

Arja, and Andres (2003) utilized polychotomous logistic regression analysis to assess the 

associations between health behaviors and health in adolescence and attained educational 

level in adulthood. Another example from the social sciences assesses the relationship 

between perceived life satisfaction and substance abuse in adolescents (Zullig et al. 

2001 ). Similar to the dichotomous modeling techniques mentioned above, these 

polychotomous modeling techniques were applied to a certain subset of data and did not 

address expanding the discussion to a combination of snapshots of data. 

For any study which specifies significant variables or indicators, the reliability of 

the variables usefulness as a predictor or as a viable indicator to help administrators 

understand student enrollment will be validated if the pattern from which its significance 

was determined generally holds for future data. In the context of modeling for prediction, 

this means that parameter estimates for the predictive model, from the historical data, will 

generally imitate the patterns or parameter estimates you would e_xpect to get with the 

current data after the results of reenrollment are actually known. This particular nuance 

with the historical patterns towards variable patterns for prediction or reporting is rarely 

mentioned in the literature. In addition, none of the studies we have seen in the literature 
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explicitly address the importance of partitioning their data sets prior to model building in 

order to facilitate better patterns. Rather they typically specify parameter estimates from 

modeling a single set of data. 

In one study, Marshall and Oliver (1979) proposed a forecasting model, on a set 

of current students, based on the reenrollment patterns of certain historical first-time 

students. These sets of first time students were found by finding the historical semester 

data from which the students of interest first entered the University. The unmentioned 

importance of modeling the enrollment patterns of first-time students is that you 

implicitly create mutually exclusive partitioning of the historical snap shots of data so 

that a student of interest will only belong to a single historical set, which will help avoid 

over prediction. No less important in Marshall and Oliver's paper is the unaddressed 

discussion about modeling different mutually exclusive partitions of the historical data to 

possibly yield better predictions. 

In this study we will develop a data mining technique to uncover relevant patterns 

in the snap shots of data prior to model building. After the academic data from students 

has been cleaned up and in a proper format through the use of data mining, the 

exploratory data analysis conducted in this study will provide a method to determine a 

partitioning of the data which provide historically viable holding patterns for modeling 

the dichotomous outcome of interest. In the next chapter we will introduce the notation 

necessary to help explain how you can partition data into various mutually exclusive sets 
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and show, through an example, that partitioning the historical snap shots of data does 

make a difference in the observed patterns. 
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CHAPTER III 

DA TA EXPLORATION 

To gain understanding of a certain topic of interest, a conceptualization of the 

problem itself and the factors or variables that can influence the phenomenon is essential. 

From conceptualizing the problem and identifying the appropriate factors of interest, 

administrators or many businesses these days have the capability to store and retrieve 

data concerning these factors to better understand the clientele they serve or intend to 

serve. In a predictive modeling paper by Thomas, Dawes and Reznik (2001 ), they make 

the point that an institution needs to have "good data in a usable form." Having good data 

can involve cleaning data entry errors and also keeping appropriate variables or fields 

within the database that can help understand the topic of interest. In predictive modeling 

or for any kind of reporting, a conceptualized variable or factor is not usable if the field 

within the database, which stores its values, is not well occupied. Nonetheless, good data 

in and of itself is not inherently informative, it still has to be explored or mined 

appropriately in order to determine usable or reliable patterns that will facilitate modeling 

or even simple reporting. For example, Marshall and Oliver (1979, p. 196) modeled the 

"very stable behavior in student attendance." Implicit in this statement is that historical 

patterns were explored and the patterns that exhibited consiste:11cy, presumably over time, 

were deemed worthy for use in predictive modeling. In our study we will explore patterns 

of data that is formed by composite snap shots. Composite snap shots of data, as defined 
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below, is a combination of snap shots of data frozen at specific moments of time, In this 

chapter we will introduce necessary mathematical notation that will facilitate our 

discussion and to help illustrate that partitioning composite snap shots of data into 

mutually exclusive sets is an important consideration (i.e. matters) when it comes to 

finding stable or reliable patterns over time that can be used for reporting or modeling. 

Definition 1. Let St represent a snapshot of data at some time T = t. Without loss of 

generality suppose T = 1, 2, .... ,/ corresponds to points of time with corresponding 

snapshots of data S 1, S2, ... , S /· Then a composite snapshot of data is the set P = S 1 u S2 

l 

U ···U S1 = LJ Si. 
i=l 

The idea of composite snap shots is very common with higher education data and 

can be found in many other situations. Our particular example will illustrate how we 

make a composite data sets using snap shots of semester data and explore that data in 

order to understanding reenrollment patterns. Thus, we will explore patterns from the 

data related to the dichotomous state of whether a set of students reenrolls or does not 

reenroll into a semester of interest. Using notation we will let P = { 1, 2, ... , N} represent 

the set of indices for the finite population of potential reenrolling students of size N The 

set P represents the total number of unique individuals we expect from our composite 
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data sets. For each individual k E P, the variable of interest or the dependent variable is 

defined as 

{
1 , Student reenrolls at TWU 

Yk = 
0 , Student does not reenroll at TWU 

(3.1) 

Suppose the administration wants to understand the patterns of Yk for the current 

academic year of students to help determine who will return the following academic' s 

year Fall semester. An academic year for an institution of higher education begins in the 

Fall semester, continues into the Spring Semester, and ends after the summer semester 

prior to the following fall semester, which begins a new academic year. For example, the 

current academic year consists of the following semesters: Fall 2008, Spring 2009, and 

Summer 2009. It's worth noting that because the Fall semester and Spring semester, for 

example, of the same academic year occur at different calendar years, we will not use a 

calendar year to refer to an academic year in this paper. We will assume it is understood 

that when we refer to, for example, the Fall Semester and Spring semester from the same 

academic year that the reader realizes those semesters do not occur under the same 

calendar year. In our example, we consider students that attend the fall or spring of the 

same academic year. The composite of those snap shots of data give us a set of 

individuals, where the individuals are listed only once. Figure 1 illustrates the idea of a 
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composite data set formed by the combination of two snap shots of data from the same 

academic year. 

Figure 1. Composite Set. 

Using mathematical notation, we will define how to obtain a composite data set 

from the snap shots of data represented by Figure 1. Suppose that you have data from the 

Fall and Spring semesters of the same academic year labeled as FA and SP respectively. 

Using set notation to facilitate this discussion, our composite data set is defined as P = 

FA u SP, where P is a set of size N consisting of the set of indices for students coming 

from the union of FA and SP data sets. It is worth noting that the way we defined P as 

the union of multiple sets, from a mathematical stand point, each unique student receives 

a single index. This means that although there may be students who happen to be in the 

intersection of the fall and spring snap shots of data (i.e. students that were enrolled in the 

fall as well as the spring semesters) only a single index is assigned to each of them. 
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Having one index for each unique student in the set P is particularly important for 

predicting. For example, suppose the researcher wants to predict if those students from 

the current academic year FA and SP semester will reenroll the next Fall semester, which 

is the beginning of the following academic year. A mistake the researcher could make is 

to predict the reenrollment of FA students and then predict the reenrollment of SP 

students, since many students will be listed in both data sets. In other words, an 

intersection exists between the sets FA and SP which means FA and SP are not mutually 

exclusive since FA n SP* 0. Consequently, over prediction will be a problem. Thus, 

the researcher should consider making a prediction on sets of students that are mutually 

exclusive and together form a partition, see definition below, of the set P. 

Definition 2. Let k EAi, a partition of the set P consists of sets Ai, A2, ... , Ak such that P 

k 
= A 1 u A2 u ···U Ak = LJ Ai where Ai n AJ = 0 for i -:t:- j. 

i=l 

From Definition 1, the composite of I snap shots of data P = S 1 u S2 u · · ·U SI is 

composed of sets for which an intercept is possible. In other words, for any two sets Si 

and SJ for which i * j the possibility exists that Sin SJ * 0, for any three sets Si, SJ, Sk 

for which i * j * k, the possibility exists that Sin s1 n Sk * 0 , and for four sets up to I 
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sets a similar argument of possible intercepts existing can be made. So, given a 

composite of l snap shots of data P = S1u S2 u ···U s1 and the knowledge that possible 

intersections exists, we can now count the maximum number of mutually exclusive sets 

that can be formed from S 1, S2, ... , S /· To illustrate our discussion on counting these sets 

we will periodically refer to Figure 3, which contains only l = 3 snap shots of data: S1 = 

snap shots, the maximum number of subsets that do not contain an intersection is 

(!J /! 
1 ~ (l-1)! u ' 

which we will denote as ~ 1. For example, in Figure 3, where l = 3, we can see that the 

maximum number of subsets that individually are not composed of an intersection is 3C1 

= 3, these subsets are A 1, A 2, and A 3. Again, for l sets of snap shots, the maximum 

number of only pair wise intersections is 

(
/) /! 
2 = (l-2)! 2! ' 

which we will denote as ~ 2• For example, in Figure 3, where l = 3, we can see that the 

maximum number of only pair wise subsets is 3C2 = 3. These subsets are A4, A5, and A6. 
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Next, for / sets of snap shots, the maximum number of subsets that are composed by the 

intersections of exactly three sets is 

(/J /! 
3 - (l-3)! 3!' 

which we will denote as iC,3• For example, in Figure 3 we can see that the maximum 

number of subsets that are composed by the intersections of exactly three sets is 3C3 = 1. 

This is the subset A 7. Following this pattern for the general case when we have / snap 

shots of data that compose P = S1u S2 u ···U St, the maximum number of mutually 

exclusive subsets, created from considering all possible intersections is 

Max(P) = ±(~J = 21 
-1 

i=l 
1 

(3.2) 

An important observation of these Max(P) subsets, is that these subsets are mutually 

exclusive and together form a partition of P. For example, in Figure 2, we see that Ai n 

A_j = 0, for i-::t:-j, and P = A1u A2 u A3 u A4 u A5 u A6 u A7. In general, for a 

composite of I snap shots of data P = S1 u S2 u ···U St, we can rewrite Pas partition of 

Max(P) mutually exclusive sets 

P = Aiu A2 u ··· u Amax(P)· (3.3) 
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Figure 2. Mutually Exclusive sets 

Equation 3.3 represents a partition of P = S1u S2 u ···U S1 that would contain the 

maximum number of subsets. However, there are many ways to partition a composite 

data set P that will have k < Max(P) subsets that are mutually exclusive. In general, an 

alternative partition of the set P is constructed by considering the possible ass·ociations of 

the mutually exclusive subsets Ab i = I , 2, ... , Max(P). To make a Max(P)-1 partition we 

can simply associate any two subsets Ai and A1, i =t:- j , for example, P = (A 1 u A2) u A3 •·· 

= Amax(P)· Notice that P = At u A; u ·· · u A~ax-(P)- I satisfies Definition 2 since A; n 

A; = 0 for i =t:- j. Similarly, we can create combinations of associations, A;, created 

from two or more subsets of A 1, A2, ... Amax-(P), to create partitions of P, which can 
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contain anywhere from 1 to Max(P) - l subsets.· However, in this paper, we generally 

restrict an association to one of the following conditions: i) A;~ s1 or ii) For any 

sequence length k s max(P) of consecutive snap shots St , St+ i, ... , St+k, A;= St u St+ 1 u 

···U St+2 only if St n St+ 1 n ·•·n St+k =t 0. The one exception to condition (i) and (ii) is 

the partition created by the following association: P = (A1u A2 u A3 ··· u Amax(P)) = 

In Figure 2 we illustrate two methods of partitioning P = FA u SP using the 

following mutually exclusive subsets: 1) Fall-Main = FA and Spring_Subset = SP - FA 

(or SP n (FA n SP)'); 2) Fall_Subset = FA - SP (or FA n (FA n SP)') and Spring­

Main = SP. Method 1 creates the following partition P = Fall-Main u Spring_Subset 

and Method 2 creates the partition P = Fall_Subset u Spring-Main. Notice that P = FA 

u SP satisfies the definition of a composite data set, Definition 1, but does not satisfy the 

Definition 2 of a partitioned data set until we rewrite P using either Method 1 or Method 

2 above. 
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Method-I Method-2 

( 
Fall Main 

-
Subset 

Figure 3. Basic Partitioning of Academic Year Data 

Based on basic methods of partitioning from Figure 2, we will illustrate using a 

simple example that partitioning can play an important role in finding consistent patterns 

of reenrollment. Table 1 illustrates patterns of enrollment for two years using several 

methods of partitioning for each year. To· illustrate our earlier notation, let'P1 represent 

the set of indices for the finite population of potential reenrolling students from academic 

Year 1 of size N 1 = 25 5 and let P 2 represent the set of indices for the finite population of 

potential reenrolling students from academic Year 2 of size N2 = 254. It is worth noting 

that in our actual data exploration we found that most students in the fall semester will 

also reenroll the following Spring semester. Hence the intersection, which we now 

denote as Intersection = FA n SP, see Figure 2, will be a larger subset of P than 

Fall_ Subset or Spring_ Subset. Although this example is contrived and does not illustrate 
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actual observed data, we see in Table 1 under Method 3 that the intersection for both 

Year 1 and Year 2 data constitute the largest subsets of P1 and P2 respectively. This 

phenomenon that the fall and spring data, coming from the same academic year, we 

believe, is common for most institutions of higher education. Also, notice that in Table 1, 

for the respective years, the total number of students, the total number of returning (y= 1) 

students, and the total number of students that do not return (y = 0) is exactly the same 

for each method of partitioning. To better see the patterns of reenrollment given by the 

different partitioning methods P1 and P2 in Table 1, we will present a table that shows 

the reenrollment patterns of Table 1 in terms of percentages. 
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Table 1 

Re-enrollment Patterns of P =FA uSP by Partition 

Year-1 Year-2 

Not 
No. Return Not Return No. Return Return 

Method Partition Students (y = 1) (y = O) Students (y = 1) (y = O) 

Method 1 Fall Main 175 135 40 175 134 41 

Spring subset 80 70 10 79 69 10 
Total (N) 255 205 so 254 203 51 

Method 2 Fall subset 75 60 15 75 64 11 

Spring Main 180 145 35 179 139 40 
Total (N) 255 205 so 254 203 51 
Method 3 Fall subset 75 60 15 75 64 11 

Intersection 100 75 25 100 70 30 

Spring subset 80 70 10 79 69 10 
Total (N) 255 205 so 254 203 51 

Recall that our objective is to explore historical data in order to find patterns that 

exhibited consistency over time. In Table 2 we see an example of two years worth of 

historical reenrollment patterns presented by different partitioning methods in terms of 

percentages. In this context Table 2 shows that for Year 1 under partition Method 1 that 

77.1 % of the 175 students in Fall_Main returned while 87.5% of the 80 students in spring 

subset returned. Notice that in Year 2 similar reenrollment percentage patterns emerge: 

76.1% of the Fall Main returned while 87.3% of the Spring Subset returned. From - -

Year 1 to Year 2 the reenrollment percent patterns in Fall_ Main were off by only .5%. 
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Similarly, the reenrollment percent patterns in Spring_Subset were off by only 0.2% from 

Year 1 to Year 2. Analyzing the data from this perspective, we see the most consistent 

enrollment patterns from Year 1 to Year 2 are found under partition Method 1 which 

shows less variation in enrollment patterns from year to year in terms of percentages. 

From Table 2 we see that the cumulative absolute value of the differences in enrollment 

percentages by partition Method 1 from Year 1 to Year 2 is only 1 .4%. Partition Method 

2 is a distant second in terms of enrollment consistency by having a cumulative absolute 

value of the differences in enrollment percentages from Year 1 to Year 2 of 16.4%. This 

example illustrates that partitioning matters when trying to find consistent historical 

enrollment patterns. 

Table 2 · 

The Percent of Enroll and Not Enroll by Partitioning Method 

% Return (y = 1) % Not Return (y = 0) 
Method Partition Year 1 Year2 %off Year 1 Year2 %off 
Method 1 Fall Main 77.10% 76.60% 0.50% 22.90% 23.40% -0.50% 

Spring subset 87.50% 87.30% 0.20% 12.50% 12.70% -0.20% 
Total off (Absolute Value) 0.70% 0.70% 
Method 2 Fall subset 80% 85.30% -5.30% 20% 14.70% 5.30% 

Spring Main 80.60% 77.70% 2.90% 19.40% 22.30% -2.90% 
Total off (Absolute Value) 8.20% 8.20% 
Method 3 Fall subset 80% 85.30% -5.30% 20% 14.70% 5.30% 

Intersection 75% 70% 5% 25% 30% -5% 
Spring subset 87.50% 87.30% 0.20% 12.50% 12.70% -0.20% 

Total off (Absolute Value) 10.50% 10.50% 
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For institutions of higher education there is typically useful information that is 

known concerning their students. For now we have introduced the idea of partitioning a 

set P that adheres to Definition 2 in order to find consistent patterns for a single 

dependent variable,yk, as defined by Equation 3.1. Yet, for each individual k E Pa set of 

p independent variables 

(3.4) 

will exist that can facilitate understanding of the dependent variable, Yk· These 

independent variables can also facilitate partitioning and bring about an interesting 

consideration a researcher has to address when making certain types of partitioning on 

snap shots of data. Recall snap shots of data make up the set P. For example, we 

introduced the set P = FA u SP. These snap shots of data are made at different times and 

hence the information contained in xk for each k E P can change. So, for a set such as 

Intercept = FA n SP, should we just use the latest information in xk? For example, a 

student in FA may be classified as a sophomore in FA, but in the same academic year and 

subsequent semester SP they may be classified as a junior. In other words, should we tag 

or assign to the individuals in FA n SP, the information xk, contained in FA or SP? For 

categorical variables such as classification, the answer depends on whether stratification 

using that variable on the set we named Intercept facilitates finding more consistent 

patterns of Yk using the information from Xk from either snap shot FA or snap shot SP. 

24 



As mentioned previously, good data in and of itself is not inherently informative. 

It still has to be explored or mined appropriately in order to determine usable or reliable 

patterns that will facilitate modeling or even simple reporting. Thus, our discussion 

concerning partitioning and stratification of data in order to find consistent patterns of y k, 

has introduced the importance of a data mining process that constitutes a "pre-modeling" 

technique. This type of discussion is not explicitly found in the literature. Yet, this pre­

modeling technique will allow us the ability to know which sets A;, i = 1, ... ,k, as defined 

by Definition 2, form a partition of P for which, as Marshall and Oliver (1979, p. 196) 

state, provide "very stable behavior in student attendance" that can be modeled in order 

to obtain a good prediction. 

To implement this pre-modeling technique will require considering many 

combinations of sets that form a partition of the set P. To efficiently consider many 

partitions of the set P, we will develop a data mining algorithm that can be applied to any 

composite data set composed of snap shots of data in order to identify significant 

patterns. In Chapter IV we will specify the statistical decision rule that will determine the 

most consistent patterns of Yk by selecting the appropriate subsets Ab i= 1, ... ,k, that form 

a partition of P. 
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CHAPTER IV 

DECISION RULE 

In Chapter III we discussed the different ways that we can partition the data. In 

fact, the more snapshots of data that defines the composite data set P, then the more ways 

the set P can be partitioned. Having ( M ax(P) x (k) ), where k is the number of levels 

in a categorical variable, there are over Max(P) of possible combinations to make a 

partition. The need for a computer algorithm becomes imperative in order to explore 

these possibilities. In this chapter we discuss how our computer algorithm will explore 

various partitioning methods and specify the decision rule we will create in order to 

determine the "best" partition that shows consistent historical patterns on y k· 

We are interested in knowing if there are significant reenrollments patterns from 

students attending TWU during the Fall and Spring semester of the same academic year. 

In particular we would like to facilitate finding reenrollment patterns on the set of 

students indexed by the set P = FA u SP by determining an appropriate partition of P 

geared towards finding consistent historical enrollment patterns. Thus, our computer 

algorithm will be limited to the historical composite data sets P = FA u SP, but our 

discussion can easily be extended to include more snap shots of data that form a 

composite. Although we are using only two snapshots of data to form our composite data 

set, it is worth noting that exploratory analysis on TWU historical data found that for any 
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fall semester of interest, a majority of the undergraduate reenrolling students come from 

the previous academic year fall and spring semesters: P = FA u SP. For example, in 

Table 3, we see that for fall 2001 through fall 2003 the proportion of total re-enrollment 

coming from the set P is consistently around 90%. For graduate students the proportion 

of total re-enrollment coming from P is generally over 65%. The phenomenon that a 

majority of reenrolling students come from P would likely be the situation for most 

institutions of higher education 

Table 3 

Undergraduate Reenrollment 

Fall Total Enroll Percent (%) 

Status Student Level Reenroll 2001 2002 2003 2001 2002 2003 

From Previous Academic 
year FA or SP semester: 

Continue Undergraduate From P = FA u SP 2,813 2,992 3,343 89% 89% 90% 

From P': Other 336 359 375 11 % 11 % 10% 

Total 3,149 3,351 3, 718 100% 100% 100% 

To illustrate how our computer algorithm will work, let's consider the mutually 

exclusive sets created from P =FA u SP. According to Equation 3 .1 , the number of 

mutually exclusive subsets we can create is Max(P) = 22- 1 = 3, which are defined in 

Table 4 below. From Table 4, the set A 1 is a subset of students that attend only in the 

Fall Semester, A2 is the subset of students that attending in both semesters FA and SP 
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semesters, and A3 is the set of students that attended only in the Spring Semester. Given 

AI, A2, and A3 we can combine these sets in different ways in order to obtain a partition 

of P, see Table 5. Then for each subset that is part of the partition of P, we will use our 

computer algorithm to explore the historical reenrollment patterns of that set. 

Table 4 

Max(P) = 3 Mutually Exclusive Subsets of P = FA uSP 

Subset Previously labeled 

k4I = FA n (FA n SP)' IFall_Subset 

k42 = FA n SP llntersection 

A3 = SP n (FA n SP)' Spring_ Subset 

Table 5 

Partitioning Methods for P = FA u SP 

Method Partition of P 

1 lA1u A2 u A3 
2 (AIU A2) u A3 
3 k4Iu (A2 u A3) 
4 (AIU A2 u A3) 

In Table 5, each of the partitions contains the same mutually exclusive sets. 

However, the associations of those mutually exclusive sets differ. For example, Method 

1 contains three sets that define the partition of P: Ai, A2, and A3. Method 2 and Method 
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3 contain two sets that create the partition. For partition Method 2 the two sets that 

define the partition of Pare A; = (A 1 u A2) and A; = A3. For partition Method 3, the sets 

that define the partition of P are Ai* = A 1 and A; = (A 2 u A 3). Whereas, Method 4 

contains only one set: A; = (A 1 u A2 u A 3). Now, for each method and each subset of 

the partition; our program will explore the enrollment patterns of that subset. The 

combination of the enrollment patterns of the subsets that defines the partition method 

will be examined in order to determine which partition method shows the most reliable 

historical patterns on y k· 

Table 6 

Variation in Partitioning 

Return Next Fall 
(y=l) 

Year 1 Year2 

Method Partition Year 1 Year2 (rate) (rate) 

Fall Main 7 11 

Method 1 (Alu A2) 91 90 -7.70% -12.20% 

Spring Subset 2 5 

l-43 9 10 -22.20% -55.50% 

The program must choose between all the ways of partitioning P presented in 

Table 5. The example presented in Table 6 represents one way of partitioning P, but the 
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logical discussion that follows concerning identifying this partition's historical 

consistency of enrollment can be applied to any of the partitioning methods. Historical 

consistency relates to the variation that will be introduced by each partitioning method. 

The partitioning method that introduces the least amount of variation will be deemed the 

"best" method of partitioning. To get an idea of the partitioning variability that occurs, 

see Table 6. In Table 6 we can see that out of91 students in the set Fall_Main = (A 1u 

A2), 7 or 7.7% of them returned the following fall semester. Ifwe expect to find 

consistent historical patterns then we can assume that the following year, in this case 

Year 2, approximately 7.7% of the students in the subset Fall_Main = (A 1u A2) for Year 

2 will reenroll the following fall. As you can see, this information is known, because we 

are dealing with historical observations. As it turns out, in Year 2, out of 90 students in 

the subset Fall_Main = (A 1u A2), 11 or 12.2% of them returned the following fall 

semester. Thus, from Year 1 to Year 2 we see variability in the reenrollment rate for the 

subset Fall_ Main= (A 1 u A2). Similarly, from Year 1 to Year 2 we see variability in the 

reenrollment for the subset Spring_Subset = A3. In particular, out of 9 students in 

Spring_Subset = A3, 2 or (22.2%) reenrolled into the following fall , whereas in Year 2, 

out of 10 students in Spring_Subset = A3, 5 or (55 .5%) reenrolled into the following fall. 

Thus, our program needs a way to evaluate historical pattern created by partitioning in 

order to determine its consistency and compare this partitioning methods consistency to 
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other partitioning methods consistency. To do this we will use a variation of the chi­

squared statistic to determine which partitioning method shows the least amount of 

variation or the most consistent historical patterns. 

The typical chi-squared statistic, denoted as x2, is calculated by the following 

formula 

%2 = L ( Observed count ( 0) - Expected count (E) )
2 

Expected count (E) 
(4.1) 

where observed, denoted as 0, represents an observed cell count and "expected", 

denoted as E, represents the expected count for the same cell (2009, Moore, McCabe, 

Craig). According to Moore, McCabe, and Craig, the expected (E) cell count is 

calculated by 

E = Row Total x Column Total 

Table Total 
(4.2) 

To illustrate this we will present an alternative form of the Table 6 information, for Year 

1 data only, see Table 7. Notice that under the observed column in Table 3, the 

information for Year 1 data is exactly the same as Year 1 data in Table 6, but presented in 

a different format. For each cell in the observed potion of this table there corresponds an 

expected cell value for the corresponding row and column heading. Thus, for example, 84 
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students are in the cell corresponding to the students in the subset Fall Main and no­

return heading under observe. Using Equation 4.2, the corresponding expected cell count 

for Fall Main and no-return is 

E= 91 x 91 = 82.81. 
100 

The rest of the expected cell counts are calculated in the exact same way. However, in 

our research we will propose using the chi-statistic, Equation 4.1 , but with an alternative 

to the expected count represented by Equation 4.2, in order to determine the historical 

variation of a partitioning method. 

Table 7 

Observed and Expected Number of Students for Year 1 

Academic Year 1 

Observed Expected 

Partition no-return yes-return Total Partition no-return yes-return 

Fall Main Fall_Main 

(AluA2) 84 7 91 (AluA2) 82.81 8.19 
Spring subset Spring subset 

lA3 7 2 9 IA3 8.19 0.81 
Total 91 9 100 

To illustrate how we will specify an alternative expected value than Equation 4.2 

we will refer to the data in Table 8. otice that Table 8 considers two consecutive 
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academic years of historical patterns. To discern the two years of academic information 

we will use appropriate notation. Let P 1 = FA 1 u SP 1 represent the set of students from 

academic Year 1 of size N 1, in Table 8 N 1 =100. For any partition method there exists k 

~ Max(P) mutually exclusive associations A;, A; , ... , AZ. In Table 9, the composite set 

is P = FA u SP, therefore Max(P) = 3, and these mutually exclusive sets are listed in 

Table 4. In addition, the partition of consideration is Table 9 is P = (A 1 u A2) u A3, 

* * Method 2 from Table 5, where k= 2 such that A1 = (Aiu A2) and A2 = A3. Now, for any 

mut~ally exclusive association A; of size N 11 ~ N1 from academic Year 1 there exists R 1 

students who reenroll and R{ that do not reenroll into the following fall semester. For 

* example, the association A1 = (A 1 u A 2) in Table 8 has NI} = 100, R 1 = 7 and R{ = 84. 

An important calculation we need from academic Year 1 patterns is the enrollment 

proportion for returning and non-returning students from association A;. In academic 

Year 1, the proportion of students from A; that reenroll is 

PRi, = ~ 
l j 

(4.3) 

and the proportion of students from A; that do not reenroll is 
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R' 
P - l R' ---. 

l N1; 
(4.4) 

In Table 8, academic Year 1 association A; = (A 1u A2) has PR = 2_ = 0.077 (or 7.7% 
I 91 

84 
reenrollment) and p R' = - = .923 ( or 92.3% non-reenrollment). For academic Year 2, 

1 91 

let P2= F A2 u SP2 represent the set of students of size N2, in Table 8 N2 = 100. Also 

the corresponding mutually exclusive association to academic Year 1, the association A; 

of size N21 ~ N2 from academic Year 2 contains R2 students who reenroll and R~ that do 

* not reenroll into the following fall semester. For example, the association A1 = (A 1 u A2) 

in Table 8 has R2 = 11 and R~ = 79. If we expect to find consistent reenrollment patterns 

from academic Year 1 to academic Year 2, then we expect association A; for academic 

Year 2 to have a reenrollment proportion similar to p Ri from academic Year 1 and to 

also have a non-reenrollment proportion similar to p Rf from academic Year 1. Thus, for 

any consecutive pair of academic years with association A;, we will use Equation 4.3 to 

define our expected value of returning students for the most current historical academic 

year, in this case academic Year 2, as 
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(4.5) 

and using Equation 4.4 our expected value of non-returning students is 

(4.6) 

From Table 8, association A.*= (A 1u A2) for academic Year 2 has an expected 

reenrollment of ER
2 

= N21 (pR
1

) = 90(0.077) = 6.93 and an expected non-reenrollment 

Table 8 

Historical Enrollment Patterns Under Partition P = (A 1 u A :i) u A 3 

Academic Year 1 Academic Year 2 

Total no-return tyes-return Total no-return yes-return 

Partition (N) (Row%) Row%) [Partitiqn (N) (Expected) (Expected) 

Fall Main 84 7 tFall Main 79 11 

* * = (Al u A2) A1 = (Alu A2) 91 -92.30% -7.70% A1 90 -83.07 -6.93 

Spring Subset 7 2 ~pring Subset 5 5 

* * A2 9 -77.80% -22.20% A2 10 -7.78 -7.78 

rrotal 100 91 9 Total 100 84 16 

Our main goal is to find a way to evaluate historical patterns created by 

partitioning. For any partition method there exists k ~ Max(P) mutually exclusive 

.. * * *h dfinth .. hd * * * associations A1 , A2 , ... , Ak t at e e e part1t10n met o : P = A1 u A2 u •··U ~. To 
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. * 
evaluate the historical consistency of the patterns found in A j, j E { 1, 2, ... , k} , for any 

consecutive pair of academic years, we will use Equation 4.5 and 4.6 to obtain the 

following chi-squared statistic 

(4.7) 

Notice that the numerator of Equation 4.6 takes the actual historical reenrollment in Year 

2 and squares the distance that value is from the expected reenrollment you would get 

using the previous year's enrollment proportion. Thus, the more consistency we have in 

actual enrollment proportions from Year 1 to Year 2, the smaller the chi-squared value in 

Equation 4.6. For example, if Year 2 actual reenrollment proportion, p R
2 

= !!1_ is 
N2J' 

R' 
equivalent to Equation 4.3 and if Year 2 actual non-reenrollment proportion, p R2. = - 2-

N2J 

is equivalent to Equation 4.4, then Equation 4.6 will be zero, which indicates perfect 

* 
reenrollment consistency for association A J, or no variation in reenrollment patterns 

from academic Year 1 to academic Year 2. To evaluate a partition method P = At u A; u 

* 
· · ·U Ak for historical consistency on reenrollment patterns of Yb we will use Equation 4.6 

to calculate the following chi-squared value 
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(4.8) 

For example, using Equation 4.6 the association At= (A 1 u A2) from Table 8 will 

generate chi-squared value 

2 {I I- 6.93)
2 

(79-83.07)
2 

X = ---- + ---- = 2.59. A; 6.93 83.07 

In addition, the association A;= A3 from Table 8 will generate a chi-squared value 

2 = ( 5- 7.78)
2 

+ ( 5- 7.78)
2 

XA2* ---- = 1.99. 
7.78 7.78 

Thus, using Equation 4.7, the historical consistency of the partition method presented in 

Table 8 is 

x1 = 2.59 + I.99 = 4.58. 

Now, suppose we have competing partition methods P1 , P2,·•·, Pn, then for each partition 

method, using Equation 4.7, we can calculate corresponding chi-squared values x~ , x~ 
l r2 

, ... , x; Our decision rule on which partition method is best will be determined by 
n 

B P . . _ M. ( 2 2 2 ) est artition - m XR , Xp, , ... , Xp . 
1 2 n 

(4.9) 
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In our study we examme three years of historical enrollment patterns for 

composite snap shot P = FA u SP. The Academic years of data we will explore for 

historical consistency onyk, as determined by Equation 4.7, are academic Year 1 = {Fall 

2001, Spring 2002}, academic Year 2 = {Fall 2002, Spring 2003}, and academic Year 3 

= {Fall 2003, Spring 2004}. Having three years of historical patterns to examine is a 

simple extension of the discussion we had for two academic years of historical patterns 

presented in Table 8. In general, for any consecutive pair of academic years with 

association A;, for some partition method, we will calculate a chi-squared statistic 

presented by Equation 4.6. To determine the overall value of or Equation 4.6 will require 

adding the corresponding values of Equation 4.6 for each consecutive pair of academic 

years. For example, suppose we are considering the association A;, for some partition 

method, over three years of historical patterns. First, we will explore the historical 

patterns from academic Year 1 to academic Year 2 for association A; and determine the 

appropriate chi-squared value represented by Equation 4.6, which we will denote as 

X~Z)A;. Similarly, we explore the historical patterns from academic Year 2 to academic 

Year 3 for the same association A; and determine the appropriate chi-squared value 

represented by Equation 4.6, which we will denote as x2 *. The overall chi-squared 
(23)A1 
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value, Equation 4.6, over three years of historical patterns for association A; 1s x2• = 
Ai 

xi
2

)A; + xt
2
J)A;. Once X~; is obtained then all the subsequent calculations needed 

in order to determine the best partition follow. Notice that this logical procedure can 

easily be extended for historical patterns extended beyond three years of historical 

patterns. Table 9 shows the results of Equation 4.7 from using three years of historical 

reenrollment patterns on composite data P = FA u SP for all the partition methods listed 

in Table 5. From Table 9 you can see that hat the decision rule would select partition 

Method 4 as the best then the second best partition method is Method 2. We now extend 

our discussion to include independent variables defined in Equation 3 .4 that will exist for 

the individuals in P = FA u SP and combine them into our program to obtain 

stratification within the association A; to possibly obtain even more consistent enrollment 

patterns. 

Table 9 

Chi-square Values for Different Partitioning Methods 

Partition Method Chi Square Best 

1 -A1uA2 uA3 284.0888 4 

2 - (A 1 u A2) u A3 268.958 2 

3 - A I u (A2 u A3) 282.2263 3 

4 - (A 1 u A2 u A3) 266.8814 1 

39 



For institutions of higher education there is typically useful information xk from 

Equation 3 .4 that is known concerning their students in the composite data set P = FA u 

SP. In our program we will also examine the historical enrollment patterns of the 

partition methods by stratifying them according to categorical variables within xk. In this 

study some of the variables we consider using for stratification are xk = [ agek, ethnicity k, 

GPAk]- The idea of stratification using categorical variables is important for our program 

since we will be able to produce frequency tables like Table 8. To integrate these 

categorical variables within the context of calculating the appropriate chi-squared values 

in order to determine is very straight forward. Suppose we are examining some partition 

P = A; u A; u •··U AZ and wish to stratify that partition according to a categorical 

variable with p categories. Then for any for any consecutive pair of academic years with 

association A;, we will calculate a chi-squared statistic presented by Equation 4.6 for 

each stratum. For example, for strata 1 under association A;, we will calculate the 

appropriate chi-squared value represented by Equation 4.6, which we will denote as 

x2 
* . Our program will do this for each of the p-strata and will generate the overall chi­

AJ(] ) 

squared value, Equation 4.6, for association A; by the following summation: 

x2 * + x2 * + • • • + x2 
* An interesting dilemma arises when you consider 

AJ(]) A1(2 ) AJ(p) 
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injecting strata into the associations that define the partition. If an association A~ has 
. J 

information xk from different time periods T = t, then the program will tag that set with 

the information from the different time periods and calculate separate chi-squared values, 

Equation 4.6, using the categorical variable for the each tagged time t . Table 11 , 

presents the chi-squared results of Equation 4. 7 for the partitions using categorical 

variables for stratification. The union of sets that were made at different times then the 

program needs to consider tagging the set. For example, partition Method 2 contains the 

mutually exclusive set A2 = FA n SP which contains xk information from the fall 

semester as well as xk information from the spring semester. However, since we 

associated that set with A 1 = FA n (FA n SP)' in Method 2, then we tagged A2 with the 

information xk contained during the time of the fall semester. Similarly, Method 4 

contains A 2 = FA n SP so Table 11 shows two results for that partitioning method, one 

when A 2 is tagged with spring information and the other when A 2 is tagged with fall 

information. One of the most interesting things to note from comparing the chi-squared 

values from Table 9 to Table 11 is that in every case, adding a variable to stratify the 

partition facilitates finding more consistent patterns of Yk· In other words, the chi-squared 

values, calculated using Equation 4.7, in Table 11 are smaller than those in Table 9. 
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Table 10 

Some Categorical Variables Used 

VARIABLE DEFINITION CODING 

CI (Doctorate Degree) 
C2 (Freshman) 
C3 (Junior) 

Class Class level C4 (Master) 
C5 (Post Baccalaureate) 
C6 (Sophomore) 
C7 (Senior) 
C8 (Sophomore) 
El (white, non-hispanic) 
E2 (black, non-hispanic) 

Ethnicity Ethnicity E3 (his panic) 
E4 (asian,. amer./pac. isl.) 
E5 (Amer. Indian/alaskan) 
E6 (international) 
E7 (other) 
LI (Undecided) 
L2 (Undergraduate) 

Level Class Level L3 (Post Baccalaureate) 
L4 (Graduate Nursing) 
L5 ( Graduate Master) 
L6 ( Graduate Doctorate) 
L 7 (Graduate Certificate) 
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Table 11 

Partitions Using Stratifications by Categorical Variables 

Chi Square 
Using 

Partition Method Stratification Variable Stratification Best 
l-A 1uA2 uA3 

Year*Level 
A2 Tagged by Spring 250.1027 6 

1-A1uA2 uA3 
Year*Level 

A2 Tagged by Fall 243.9577 4 

2 - (A 1 u A 2) u A 3 Year*Level 200.1027 3 

3 -A 1u (A2 u A3) Year*Level 248.2425 5 

4 - (A 1u A2 u A3)-
Year*Level 

A2 Tagged by Spring 198.3771 2 

4-(A1uA2 uA3)-
Year*Level 

A2 Tagged by Fall 191.1046 1 

Although each partition method of P = FA u SP is composed of the same 

individuals, Table 11 shows that enrollment patterns differ when you partition the set and 

stratify the set in different ways. In Chapter V will illustrate that using the best partition 

of P = FA u SP, as defined by our decision rule 4.8, makes a difference in terms of the 

accuracy of predictions. Our contention is that modeling the best partitioning method, as 

defined by 4.8, for prediction will yield better predictive results than modeling other 

partitioning methods for prediction, even though all partition methods have the same 

individuals. 
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CHAPTER V 

DEVELOPMENT OF PREDICIVE MODELS 

Previously we mentioned that, good data in and of itself is not inherently 

informative. In this regard, Chapter IV discussed how our program can iteratively 

explore or mine composite data sets in order to obtain useful information on historical 

snap shots of data. Particularly, we have created a program that uses our derived decision 

rule, Equation 4.8, as a pre-modeling technique in order to determine information on 

potential usable and reliable patterns that will facilitate predictive modeling or even 

simple reporting. For predictive modeling to be effective, the coefficients that define the 

model need to be sustained in future data related to the variable of interest. Thus, since 

our program identifies the most consistent historical patterns of Yk by partitioning and 

stratifying the snap shots of data, then modeling the variable of interest using the best 

partitions, assuming these historical patterns persist, should produce the most accurate 

predictions on observed Yk. In this chapter we will construct an appropriate predictive 

model on the top three partitions determined in Chapter IV and compare how well they 

predict Yk on future data that was not used to make the model. 

For the dichotomous variable Yh a researcher could specify various models to aid 

them in their predictive endeavors. Our contention is that for any specified modeling 

technique on the random variable Yk where k E P, predictive accuracy will benefit by 
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using the best partition of P. To illustrate this, we will construct a model on random 

variable Yk using one historical academic year of data, P2002 = FA u SP. Now, historical 

academic year data P2002 = FA u SP will have observed values of Yh where Yk = l if 

student k reenrolled in Fall 2003 and Yk = 0 if student k did not reenroll in Fall 2003. In 

this regard, we can associate for each individual k E P2002 a set of p independent 

variables xk = { xlk, x2k, ... x pk}, to explain Yk· For each association A; from the partition 

* * * * P2002 = Aiu A2 u ···U Ak and fork E Ai, we will use SAS software to specify a logistic 

regression model of the form 

(5.1) 

where /Jo, p 1, ... , /Jp represent the coefficient values, which are determined through 

maximum likelihood estimation by SAS. For a more detailed discussion on logistic 

regression see Ahluwalia (2006) and Ingram (2008). 

Given a specified "best" partition for academic year P2002, we want to explore the 

* * * equivalent partitioning method, P2003 = A1 u A2 u ... u AJc, in the subsequent academic 

year 2003. In particular, for partitioning method, P2003 = Ai* u A; u ···U AZ, we want to 

predict the total number of students from each association~* 

45 



(5.2) 

From Equation 5.2, we will extend the discussion to the total reenrollment for partition 

* * * . . P2003 = A1 uA2 u ···UAk, which 1s 

Tp = T * +T * +··· +T *. 
2003 A1 A2 Ak 

(5.3) 

* * * * Given academic year 2003 partition P2003 = A1 u A2 u · ··U Ak, for each kE Ai 

using corresponding independent variables xk into Equation 5 .1, we can calculate the 

probability that an individual k will reenroll by using the following equation 

(5.4) 

Thus, our prediction for Equation 5 .2 is 

L P(yk =l). (5.5) 
* kEAi 
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Accordingly, using Equation 5.5, the total predicted number of re-enrolling students from 

P2003, under the appropriate partition, into the following Fall semester (Fall 2004), is 

k 

f Partition= L f A. · 
i=l I 

(5.6) 

Prediction for the best, Method-], partition: P = (Alu A 2 u A J_)-Tagged by Fall 

For the best partition, P = (A 1 uA2 uA3)-Tagged by Fall, identified in Chapter 

* IV, Equation 5.1 for association A1 = (A 1 uA2 uA3)-Tagged by Fall coming from P2002 

is 

Lk = -.3562+(-.351 *El (white, non-hispanic ))+ 

+(-.285*E2(black, non-hispanic ))+(-.1742*E3(bispanic))+ 

+(-.3 l 86*E4(asian, amer./pac. isl.))+(-.2639*E5(amer. indian/alaskan))+ 

+(-.106*E6(intemational))+(-.4094*C l(Docorate Degree))+ 

+(-.3024*C2(Freshman))+(.3457*C3(Junior))+(-.7094*C4(Master))+ (5.7) 

+(-.7773*C5(Post Baccalaureate))+(-l.1282*C7(Senior))+ 

+(-.1685*Ll(Undecided))+(l.2675*L2(Undergraduate))+ 

+(l .4166*L3(Post Baccalaureate ))+(-.00973*L4(Graduate Nursing))+ 

+( 1. 4663 *LS ( Graduate Master))+( 1. 6821 *L6( Graduate Doctorate)) 
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The SAS coefficient output for Equation 5.7 above is found in Table 21 Appendix 

C. In addition, practical interpretations of the beta coefficients in Equation 5. 7 can be 

obtained from the odds ratios table (see Table 22 from Appendix C). 

In order to assess the fit of our model we used a Hosmer and Lemeshow 

goodness-of-fit test, which tests the hypothesis that there are no differences between 

* observed response variable values, Yk, from the training data set Ai coming from P2002, 

and the estimated response values calculated by using model 5.7. Table 12 shows that we 

failed to reject the above hypothesis which indicates the model fits the data well. 

Table 12 

Hosmer and Lemeshow Goodness-of-Fit Test 

Hosmer and Lemeshow 
Goodness-of-Fit Test 

Chi-Square DF Pr > ChiSq 

1.5419 7 0.9808 

* Now using Equation 5.4 and 5.5, the predicted reenrollment from association A1 = (A 1 u 

A 2 uA3)-Tagged by Fall coming from P2003 = (A 1 uA2 uA3) is found in Table 13. In 

Using Equation 5.6, Table 13 shows the total predicted re-enrollment using this partition 

method P 2003 = (A 1 u A 2 u A 3), identified as the best partition Method 1, is f Method - I = 

48 



6,853. The actual reenrollment total, Equation 5.3, coming from P2003 = (A 1 u A2 u A3) 

is Tp
2003 

= 6,577. Thus, using partition Method 1 the prediction was off by 276. 

Table 13 

* Predicted Re-enrollment from A1 = (A 1 u A 2 u A ])-Tagged by Fall 

Fall 2004 REENROLLEMENT PREDICTION 

* Fall 2004 Predicted Fall 2004 Actual 

LEVEL A1 Re-enroll Re-enroll 

10%TO < 20% 882 171 201 

20%TO < 30% 466 104 62 

30%TO < 40% 2,216 81 l 786 

40%TO < 50% 798 360 331 

50%TO<60% 5,372 2,856 2,640 

60%TO < 70% 2,242 l ,442 1,448 

70%TO < 80% 1,539 1,110 1,109 

Total 13,515 6,853 6,5 77 

Next we will explore the predictive accuaracy of the second best partion method 

that was identified in Chapter IV. 
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Prediction for second best, Method 2, partition: P = ((Alu A 2 ) u A 1)-Tagged by Fall 

For the best partition, P = (A 1 uA2 )uA3-Tagged by Fall, identified in Chapter 

IV, Equation 4 .1 for association At = (A 1 u A 2) and A; = A 3 corning from P 2002 are 

L FM = -.9261 +(.0867*El(white, non-hispanic))+ 

+(.0965*E2(black, non-hispanic ))+(.2407*E3(hispanic ))+ 

+(.0878*E4(asian, arner./pac. isl.))+(.0652*E5(arner. indian/alaskan))+ 

+(.2907*E6(intemational))+(.2153*Cl(Docorate Degree))+ 

+(-. 4 205 *C2(Freshrnan) )+( .2293 *C3 (Junior) )+(-.0364 *C4(Master) )+ ( 5. 8) 

+( .3 044 *C5(Post Baccalaureate) )+(-1.19 52 * C7 (Senior))+ 

+(.0 180*Ll (Undecided))+(l .9091 *L2(Undergraduate ))+ 

+(.8759*L3(Post Baccala~eate))+(.0323*L4(Graduate Nursing))+ 

+(1.2711 *L5(Graduate Master))+(l.6227*L6(Graduate Doctorate)) 

Similarly, for Spring subset we will have: 

Lss = -1.2973+(.3988*El(white, non-hispanic))+ 

+(.5675*E2(black, non-hispanic))+(.3811 *E3(hispanic))+ 

+(.8082*E4(asian, amer./pac. isl.))+(-11.5675*E5(amer. indian/alaskan))+ 

+(-. 7167*C 1 (Docorate Degree ))+(-.1567*C2(Freshman))+ 

+(. 5 3 2 7* C3 (Junior) )+(-2. 0882 * C4(Master) )+ 

+(-.9975*C5(Post Baccalaureate ))+(-.2052*C7(Senior))+ 

+(-1.3572*L2(Undergraduate ))+(.1752*L4(Graduate ursing))+ 

+(. 7330*L5(Graduate Master)) 
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The SAS coefficient output for Equation 5.8 and 5.9 above is found in Table 24 

and Table 27 from Appendix C. In addition, practical interpretations of the beta 

coefficients in Equation 5.7 can be obtained from the odds ratios table (see Table 25 and 

Table 28 from Appendix C). 

In order to assess the fit of our model we used a Hosmer and Lemeshow 

goodness-of-fit test, which tests the hypothesis that there are no differences between 

observed response variable values, Yk, from the training data set At coming from P2002, 

and the estimated response values calculated by using model 5.8 and 5.9. Table 14 and 

Table 15 shows that we failed to reject the above hypothesis which indicates the model 

fits the data well. 

Table 14 

* 
Hosmer and Lemeshow Goodness-of Fit Test for A1 

Hosmer and Lemeshow 
Goodness-of-Fit Test 

Chi-Square DF Pr > ChiSq 

0.9028 7 0.9962 
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Table 15 

* Hosmer and Lemeshow Goodness-of-Fit Test for A2 

Hosmer and Lemeshow 
Goodness-of-Fit Test 

Chi-Square DF Pr > ChiSq 

5.1905 7 0.6367 

Now using Equation 5.4 and 5.5, the predicted reenrollment from association A; = (A 1 u 

Table 14. In using Equation 5.6, Table 16 shows the total predicted re-enrollment using 

this partition method P 2003 = (A 1 u A 2 ) u A 3, identified as the best partition, Method 2, is 

f Method-2 = 6,892. The actual reenrollment total, Equation 5.3 , coming from P2003 = 

(A 1 uA2)uA3 is To = 6,577. Thus, using partition Method 2 the prediction was off 
-'2003 

by 315. 
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Table 16 

. * * * Predicted Re enrollment from A1 = (A 1 u A 2 ) u A 3= A1 u Ai , where A 2 is Tagged by Fall 

2004 CONTINUING REENROLLEMENT PREDICTlON 

FalJ Main 2004 Fall Main Spri ng Subset Spring Subset 

* Predicted 2004 Actual 
A* 2004 Predicted 2004 Actual Re-

LEVEL A1 Re-enroll Re-enroll LEVEL 2 Re-enro ll enroll 

10%TO < 20% 10%TO < 20% 2,108 168 185 

20%TO < 30% 3 0 l 120% TO < 30% 626 87 77 

30%TO < 40% 146 4 1 47 30%TO < 40% 28 7 3 

40%TO < 50% 730 329 186 40%TO < 50% 2 l 0 

50%TO < 60% 1,668 783 742 50% TO < 60% l 0 0 

60%TO < 70% 3,561 2,100 1,983 60%TO < 70% 

70%TO < 80% 1,565 1,025 1,006 70% TO < 80% 

80%TO < 90% 2,866 2,181 2,184 80%TO < 90% 

90% TO < 100% 211 171 163 ~0%TO < 100% 

Total JO. 750 6.629 6.312 Total 2.765 263 265 

Next we will explore the predictive accuaracy of the second best partion method 

that was identified in Chapter IV. 
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Prediction for third best partition, Method 3: P = A1 u(A2_ uA1) - Tagged by Spring 

For the best partition, P = A1 u(A2 uA3) -Tagged by Spring, identified in 

Chapter IV, Equation 4.1 for association At= A 1 and A; = (A2 u A3) coming from P2002 

are 

LFs = 9.5025+(-.0161 *El(white, non-hispanic))+ 

+(-.0108*E2(black, non-hispanic))+(.1414*E3(hispanic))+ 

+(-.023*E4(asian, amer./pac. isl.))+(-.1474*E5(amer. indian/alaskan))+ 

+(.0865*E6(intemational))+(-10.3026*Cl(Docorate Degree))+ 

+(-.2135*C2(Freshman))+(.1271*C3(Junior))+(-10.4818*C4(Master))+ (5.10) 

+( .5 814 *C5(Post Baccalaureate))+(-. 5463 *C7 (Senior))+ 

+(-10.5183 *L 1 (Undecided))+(-8.6189*L2(Undergraduate ))+ 

+(-9.3578*L3(Post Baccalaureate ))+(-.00503 *L4(Graduate Nursing))+ 

+(1.9722*L5(Graduate Master))+(2.0018*L6(Graduate Doctorate)) 

Similarly, for Spring Main subset we will have: 

Lss = =-.5396+(-.2735*El(white, non-hispanic)) 

+(-.2078*E2(black, non-hispanic ))+(-.0354*E3(hispanic )) 

+(-.1125*E4(asian, amer./pac. isl)) 

+( .1280*E5 ( amer. Indian/alaskan)) 

+(l 0.8663*C 1 (Doctorate Degree ))+(-.5278*C2(Freshman)) 

+( -. 34 3 *C3 (Junior))+(-. 87 56 *C4(Master)) 

+(-.604*C5(Post Baccalaureate))+(-1.7012*C7(Senior)) 

+(-10.6609*Ll (Undecided))+(l .4506*L2(Undergraduate )) 

+9(.9302*L3(Post Baccalaureate))+(.3201 *L4(Graduate Nursing)) 

+(l .19*L5(Graduate Master))+(-9.6709*L6(Graduate Doctorate)) 
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The SAS coefficient output for Equation 5.10 and 5.11 above is found in Table 21 

from Appendix C. In addition, practical interpretations of the beta coefficients in 

Equation 5.10 and 5.11 can be obtained from the odds ratios table (see Table 21 and 

Table 22 from Appendix C). 

In order to assess the fit of our model we used a Hosmer and Lemeshow 

goodness-of-fit test, which tests the hypothesis that there are no differences between 

* observed response variable values, Yk, from the training data set Ai coming from P2002, 

and the estimated response values calculated by using model 5.10 and 5.11. Table 17 and 

Table 18 shows that we failed to reject the above hypothesis which indicates the model 

fits the data well. 

Table 17 

* 
Hosmer and Lemeshow Goodness-of-Fit Test for A1 

Hosmer and Lemeshow 
Goodness-of-Fit Test 

Chi-Square DF Pr > ChiSq 

2.9466 7 0.8899 
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Table 18 

Hosmer and Lemeshow Goodness-of-Fit Test for A; 

Hosmer and Lemeshow 
Goodness-of-Fit Test 

Chi-Square DF Pr > ChiSq 

5.1905 7 0.6367 

Now using Equation 5 .10 and 5 .11, the predicted reenrollment from association A; = 

A 1u (A2 u A))-Tagged by Spring coming from P2003 = A 1u (A2 u A)) is found in Table 

17 and Table 18. In Using Equation 5.10 and 5.11, Table 19 shows the total predicted re­

enrollment using this partition method P 2003 = A I u (A 2 u A}), identified as the best 

partition, Method 3, is f Method-3 = 6,937. The actual reenrollment total, Equation 5 .10 

and 5.11 , coming from P2003 = (A 1u A2 u A3) is Tp
2003 

= 6,577. Thus, using partition 

Method 3 the prediction was off by 360. 

56 



Table 19 

* * * Predicted Reenrollmentfrom A1 = A1u(A2 uAj)= At uA2 , where A2 is Tagged by 

Spring 

2004 CONTINUING REENROLLEMENT PREDICTION 

Fall Subset 2004 Fall Subset Spring Main Spring Main 

* Predicted 2004 Actual 
A* 2004 Predicted 2004 Actual 

LEVEL A1 Re-enroll Re-enroll LEVEL 2 Re-enroll Re-enroll 

l0%TO < 20% 3 l I l0% TO < 20% 21 0 5 

20%TO < 30% 563 153 139 120% TO < 30% 145 24 29 

30%TO < 40% 87 26 l6 30% TO < 40% 2,144 529 487 

:.t0%TO < 50% l 0 1 140% TO < 50% 2,909 1,389 l ,027 

50%TO < 60% 189 110 111 50% TO < 60% 7l8 3 1 l 274 

60%TO < 70% 1,003 666 677 60% TO < 70% 2, l87 1,245 1,245 

70% TO < 80% 2,173 1,585 l ,568 70% TO < 80% l ,2l7 789 756 

80%TO < 90% 3 2 l 80% TO < 90% 149 l06 l05 

90%TO < 100% - - - 190% TO < l 00% 2 2 2 

Total 4.022 2.543 2.514 Total 9.493 4.394 3.93 1 

Analizing the best three partitioning methods, as identified in Chapter IV we 

have observed that using the same prediction model, in our case the logistic regression, 

the closest prediction to the actual reenrollement was obtained with the best partion 

method, Method 1. More than that, the second best partition, Method 2, is predicting less 

accurate than Method 1, and the third best partion, Method 3, is less accurate than 

Method 2. In general we see that the order of the best historical patterns identified by our 

decison rule, are generating accurate prediction in the same order. Thus our program 
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provides a pre-modeling tool that can help identify the best patterns to model in order to 

obtain more accruate pedictions. 
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CHAPTER VI 

CONCLUSION 

The purpose of this paper was to illustrate that exploration of historical composite 

snap shots of data, Definition 1, is an important pre-modeling technique that can facilitate 

finding consistent patterns relevant to a dichotomous dependent variable of interest. 

Using reenrollment, Equation 3 .1, as the dependent variable of interest ~nd composite 

data set made from fall and spring snap shots of data, see Figure 1, we have created an 

independent SAS program that can analyze various historical partitions as defined by 

Definition 2 of the composite snap shots of data. Our program can determine the best, as 

defined by Equation 4.8, historical patterns created form partitioning and stratification of 

the historical data. For each of the top three partitions we modeled the dependent 

variable using appropriate logistic regression models. Then for each partition using the 

respective logistic regression models we were able to obtain predicted total reenrollments 

on future data, which was not used to create the logistic models. The results indicated 

that predictive modeling on the best partition method determined from exploring 

historical data yielded superior predictions. These superior predictions occurred because 

the historical best patterns due to partitioning evidently were sustained in future data. In 

general, we illustrated that modeling the same data but with different partitions does 

make a difference in predicting a dependent variable of interest. 
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For future research we would like to investigate the sampling distribution of the 

chi-square value we specified in Equation 4.6. We note that the chi-squared statistic we 

specified for each partition, Equation 4.7, is similar to the Hosmer and Lemeshow 

statistic for goodness of fit found in Logistic regression. Our chi-squared statistic is 

trying to see which historical patterns, if you will, fit together most consistently. The 

main difference is that the Hosmer and Lemeshow statistic uses a fitted logistic 

regression model on current data to specify appropriate decide probability intervals that 

are used to determine an expected value (E) for chi-squared Equation 4.1 , whereas our 

chi-squared expected values are determined by historical patterns. 
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APPENDIX A 

List of Independent Variables 
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Table 20 

List of Independent Variables 

VARIABLE DEFINITION CODING 

(0) age value is missing 
AGEVAL Age categories (1) age <25 

(2) 25<=age<45 
(3) 45<=age 

Average score of 
(gmat score) if exists 

GPAVAL ( (gre _ q+gre _ v )/2) if gmat score ~s m~ss~ng 
GRE, SAT or GMAT ((sat_ v+sat_m)/2) if gmat score 1s m1ssmg 

and gre score is missing too 

GPAENTRY Average score 
(0) missing 
(1) gpaval<450 

categories 
(2) 450<=gpaval 

CUMGPA 
(0) missing 

Cumulative GP A ( 1) 2 <=gpa<3 
(2) 3<=gpa 
(0) missing 

GPA 
GP A categories (1) 2<=cumgpa<3 

(2) 3<=cumgpa 
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APPENDIXB 

SAS Code 
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SAS Code 

This is the code used to complete this analysis for computing the chi square. 

* Telling SAS where to find data* 

libname FALL 'c:\Thesis\Fall\DATA\'; 

libname SPRING 'c:\Thesis\Spring\DATA'; 

libname ALL_SEM 'c:\Thesis\AllSemesters'; 

libname year99 'c:\Thesis\AllSemesters\ Years\99'; 

libname year00 'c:\Thesis\AllSemesters\ Years\00'; 

libname year0l 'c:\Thesis\AllSemesters\ Years\01 '; 

libname year02 'c:\Thesis\AllSemesters\ Years\02'; 

libname year03 'c:\Thesis\AllSemesters\Years\03'; 

libname year04 'c:\Thesis\AllSemesters\ Years\04'; 

*Merging data sets to form one dataset with all years* 

* for spring00 *; 

data project.tmp; 

set project.sp_00; 

run· , 

proc sort data=project.tmp out=project.tmp2; 

by id_bog; 

run; 
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data project.tmp_id; 

set project.tmp2 (keep=id_bog term stu_level class); 

by id_bog; 

if first.id_ bog; 

run· 
' 

* Creating a unique ID in the new dataset* 

proc sort data=project.tmp _id out=project.tmp; 

by id_bog; 

run; 

data all_ sem.springID; 

set project.tmp; 

run· 
' 

*Deleting temporary files* 

proc _datasets library=project; 

delete tmp; 

delete tmp2; 

delete tmp _id; 

delete tmp _id_ springO 1; 

delete tmp_id_spring02; 

delete tmp _id_ spring03; 
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delete tmp_id_spring04; 

delete tmp_id_spring05; 

run-
' 

* Creating and appending data sets for fall semester* 

data FALL. tmp; 

set FALL.fa_99; 

run; 

proc sort data=F ALL.tmp out=F ALL.tmp2; 

by id_bog term; 

run-
' 

data FALL.tmp_id; 

set FALL.tmp2 (keep=id_bog term stu_level class); 

by id_bog; 

if first.id_ bog; 

run; 

*fall00*; 

data FALL.tmp; 

set FALL.fa_00; 

run; 

proc sort data=F ALL.tmp out=F ALL.tmp2; 

by id_bog; 
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run· 
' 

data F ALL.tmp _id_ fall00 ; 

set FALL. tmp2 (keep=id _ bog term stu _level class); 

by id_bog; 

if first.id_ bog; 

run; 

proc append base=FALL.tmp_id data=FALL.tmp_id_fall00; 

run; 

* Adding returning or not variable* 

* fa99* ; 

data ALL_ SEM.listed _ once; 

set ALL_ SEM.uniqueID; 

by id_bog; 

if first.id_ bog; 

drop stu _ level class term; 

run; 

data ALL_ SEM.tmp; 

set ALL_ SEM.uniqueID; 

by id_bog; 

if term='99/F A '; 
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lvl_99F A=stu _level; 

els _99F A =class; 

ret 99F A='NO'· 
- ' 

drop stu_level class term; 

run-
' 

data ALL_ SEM.listed _ once; 

merge ALL_SEM.listed_once ALL_SEM.tmp; 

by id_bog; 

run; 

*sp00*; 

data ALL_SEM.tmp; 

set ALL_ SEM.uniqueID; 

by id_bog; 

if term='00/SP'; 

Iv I_ 00S P=stu _ level; 

els_ 00SP=class; 

ret_ 00SP _ tmp='NO'; *default=NO* ; 

drop stu _ level class term; 

run· 
' 

data ALL_ SEM.listed _ once; 

merge ALL_ SEM.listed _ once ALL_ SEM. tmp; 

by id_bog; 
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run· 
' 

data ALL_ SEM.listed _ once; 

set ALL_ SEM.listed_ once; 

if ((ret_99FA='NO') and (ret_ 00SP _tmp='NO')) then ret_ 00SP='YES'; 

else ret_ 00SP';'=fet_ 00SP _ tmp; 

drop ret_ 00SP _ tmp; 

run· 
' 

*fa00*; 

data ALL __ SEM.tmp; 

set ALL_ SEM. uniqueID; 

by id_bog; 

if term='00/F A'; 

lvl_ 00F A=stu _level; 

cls_00FA=class; 

ret_00FA_tmp='NO'; *default=NO*; 

drop stu_ level class term; 

run· 
' 

data ALL_ SEM.listed _ once; 

merge ALL_SEM.listed_once ALL_SEM.tmp; 

by id_bog; 

run; 

data ALL_ SEM.listed _ once; 
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set ALL_ SEM.listed _ once; 

if (((ret_99FA='NO') or (ret_00SP='NO') or (ret_00SP='YES')) and 

(ret_ 00F A_ tmp='NO')) then ret 00FA='YES'; 

else ret_00FA=ret_00FA_tmp; 

drop ret_ 0OF A_ tmp; 

run; 

*Creating separate data sets for fall, fall main, spring main, spring* 

data year99. y99F A; 

set ALL_ SEM.listed _ once; 

ifret 99FA='NO'· 
- ' 

returning=0; 

ifret_00FA='YES' or ret_00SP='YES' then next_returning= l ; 

else next_returning=0; 

drop cls_00FA lvl_00FA ret_00FA cls_0ISP lvl_0ISP ret_0ISP; 

drop cls_0IFA lvl_0IFA ret_0lFA cls_02SP lvl_02SP ret_02SP; 

drop cls_02FA lvl_02FA ret_02FA cls_ 03SP lvl_03SP ret_03SP; 

drop cls_03FA lvl_03FA ret_03FA cls_04SP lvl_04SP ret_04SP; 

drop cls_04FA lvl_04FA ret_04FA cls_05SP lvl_05SP ret_05SP; 

drop cls_05FA lvl_05FA ret_05FA; 

run-, 
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data year99.y99SP; 

set ALL_ SEM.listed _ once; 

if ((ret_99F A=") and (ret_ 00SP='NO')); 

returning=0; 

ifret_00FA='YES' or ret_00SP='YES' then next_returning= l; 

else next_returning=0; 

drop els_00FA lvl_00FA ret_00FA els_0lSP lvl_0lSP ret_0lSP; 

drop els 0lFA lvl 0lFA ret 0lFA els 02SP lvl 02SP ret 02SP; - - - - - -

drop els_02FA lvl_02FA ret_02FA els_03SP lvl_03SP ret_03SP; 

drop els_03FA lvl_03FA ret_03FA cls_04SP lvl_04SP ret_04SP; 

drop els 04F A lvl 04F A ret 04FA els 05SP lvl 05SP ret 05SP; - - - - - -

drop els_05FA lvl_05FA ret_05FA; 

run· 
' 

data year99. y99r; 

set ALL_ SEM.listed _ once; 

if ((ret_99F A='NO') and (ret_ 00SP='YES')); 

returning= 1 ; 

ifret_00FA='YES' or ret_00SP='YES' then next_returning=l ; 

else next_returning=0; 

drop cls_00FA lvl_00FA ret_00FA cls_0ISP lvl_0ISP ret_0lSP; 

drop cls_0lFA lvl_0lFA ret_0lFA cls_02SP lvl_02SP ret_02SP· 
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drop cls_02FA lvl_02FA ret_02FA cls_03SP lvl_03SP ret_03SP; 

drop cls_03FA lvl_03FA ret_03FA cls_04SP lvl_04SP ret_04SP; 

drop cls_04FA lvl_04FA ret_04FA cls_05SP lvl_05SP ret_05SP; 

drop cls_05FA lvl_05FA ret_05FA; 

run· 
' 

data year99.tmp; 

set year99.y99SP; 

run; 

proc append base= year99. tmp data= year99. y99r; 

run; 

proc sort data=year99.tmp out=year99.y99SPm; 

by id_ bog returning; 

run· 
' 

data year99. y99SPm; 

set year99. y99SPm; 

by id_bog; 

if first.id_ bog; 

run; 

data year99. tmp; 

set year99. y99F A; 
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run-
' 

proc append base= year99. tmp data= year99. y99r; 

run-
' 

proc sort data=year99. tmp out=year99. y99F Am; 

by id_ bog returning; 

run; 

data year99.y99FAm; 

set year99.y99FAm; 

by id_bog; 

if first.id_ bog; 

run-
' 

proc datasets library=year99; 

delete tmp; 

run-
' 

*Combining fall semester for all years* 

data ALL_ SEM.ALL _FALL; 

set year99. Y99F A; 

YEAR='99'; 

L VL=lvl_99F A; 

CLS=cls _99F A; 
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drop lvl 99F A els 99F A ret 99F A lvl 00SP els 00SP ret 00SP· - - - - - - ' 

run; 

data ALL_SEM.tmp; 

set year00.Y00FA; 

YEAR='00'; 

LVL=lvl_00FA; 

CLS=els _ 00F A; 

drop lvl_00FA els_00FA ret_00FA lvl_0lSP els_0lSP ret_0lSP; 

run; 

proc append base= ALL_SEM.ALL_FALL data= ALL_SEM.tmp; 

run; 

data ALL_ SEM. tmp; 

set year0l.Y0lFA; 

YEAR='0l'; 

LVL=lvl_0IFA; 

CLS=els _ 01 FA; 

drop lvl_0lFA els_0lFA ret_0lFA lvl_02SP els_02SP ret_02SP; 

run-
' 

proc append base= ALL_SEM.ALL_FALL data= ALL_SEM.tmp; 

run; 

data ALL_ SEM. tmp; 

set year02. Y02F A; 
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YEAR='02'; 

LVL=lvl_02FA; 

CLS=els _ 02F A; 

drop lvl 02FA els 02FA ret 02FA lvl 03SP els 03SP ret 03SP· 
- , - - - - - ' 

run· 
' 

proc append base= ALL_SEM.ALL_FALL data= ALL_SEM.tmp; 

run· 
' 

data ALL_SEM.tmp; 

set year03.Y03FA; 

YEAR='03'; 

LVL=lvl_03FA; 

CLS=els_03FA; 

drop lvl_03FA els_03FA ret_03FA lvl_04SP els_04SP ret_04SP; 

run; 

proc append base= ALL_SEM.ALL_FALL data= ALL_SEM.tmp; 

run; 

data ALL_ SEM.tmp; 

set year04.Y04FA; 

YEAR='04'; 

LVL=lvl_04FA; 

CLS=cls _ 04 FA; 

drop lvl_04FA els_04FA ret_04FA lvl_05SP els_05SP ret_05SP; 
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run· 
' 

proc append base= ALL_SEM.ALL_FALL data= ALL_SEM.tmp; 

run· 
' 

proc datasets library=ALL _ SEM; 

delete tmp; 

run; 

* Create returning semester for all years* 

data ALL_ SEM.ALL _RETURNING; 

set year99. Y99r; 

YEAR='99'; 

L VL=lvl_99F A; 

CLS=cls _99F A; 

drop lvl_99F A els _99F A ret_99F A lvl_ 00SP els_ 00SP ret_ 00SP; 

run; 

data ALL_ SEM.tmp; 

-set year00. Y00r; 

YEAR='00'; 

LVL=lvl_00FA; 

CLS=cls _ 00F A; 

drop lvl_00FA cls_00FA ret_00FA lvl_0 lSP cls_0 lSP ret_0 l SP; 

run· , 
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proc append base= ALL_SEM.RETURNING data= ALL_SEM.tmp; 

run; 

data ALL_SEM.tmp; 

set yearO 1. YO 1 r; 

YEAR='Ol'; 

LVL=lvl_OlFA; 

CLS=cls _ 01 FA; 

drop lvl_OIFA cls_OlFA ret_OlFA lvl_02SP cls_02SP ret_02SP; 

run· 
' 

proc append base= ALL_SEM.RETURNING data= ALL_SEM.tmp; 

run; 

data ALL_SEM.tmp; 

set year02. Y02r; 

YEAR='02'; 

L VL=lvl_ 02F A; 

CLS=cls _ 02F A; 

drop lvl_02FA cls_02FA ret_02FA lvl_03SP cls_03SP ret_03SP; 

run· 
' 

proc append base= ALL_SEM.ALL_RETURNING data= ALL_SEM.tmp; 

run· 
' 

data ALL_ SEM. tmp; 

set year03.Y03r; 
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YEAR='03'; 

L VL=lvl_ 03F A; 

CLS=cls _ 03F A; 

drop lvl_03FA cls_03FA ret_03FA lvl_04SP els 04SP ret 04SP; - -

fllff 
' 

proc append base= ALL_SEM.ALL_RETURNING data= ALL_SEM.tmp; 

fllff 
' 

data ALL_ SEM. tmp; 

set year04.Y04r; 

YEAR='04'; 

L VL=lvl_ 04F A; 

CLS=cls _ 04 FA; 

drop lv1_04FA cls_04FA ret_04FA lvl_05SP cls_05SP ret_05SP; 

run; 

proc append base= ALL_SEM.ALL_RETURNING data= ALL_SEM.tmp; 

run; 

proc datasets library=ALL _ SEM; 

delete tmp; 

run-, 
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*Create independent variables age value, cumulative gpa, gpa value* 

data fall. tmp 1 ; 

set fall. tmp 1 ; 

ageval=2000-year( doh); 

if ageval<25 then AGE=l; 

if ((ageval>=25) and (ageval<45)) then AGE=2; 

if ageval>=45 then AGE=3; 

if ageval="" then AGE=O; **missing; 

***· 
' 

if gmat<>"" then GPAval=gmat; 

else if((gre_q<>"") and (gre_v<>"")) then GPAval=(gre_q+gre_v)/2; 

else if ((sat_ v<>"") and (sat_ m<>"")) 

then GPAval=(sat_ v+sat_ m)/2; 

else GPA_entry=O; **missing; 

ifGPAval<450 then GPA_entry=l ; **low; 

if GPAval>=450 then GPA_entry=2; **high; 

if GP Aval="" .then GPA_entry=O; **missing; 

***· 
' 

if cum_gpa>=3 then GPA=2; **high; 

if ((cum_gpa>=2) and (cum_gpa<3)) then GPA= l; ** low; 

if cum_gpa="" then GPA=O; **missing; 

run-
' 
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*Running frequency procedure* 

proc freq data=ALL_SEM.current; 

tables cls*year /chisq expected cellchil2 norow nocol; 

weight NEXT_RETURNING; 

output out=ALL_sem.tmp pchi; *pchi lrchi n nmis; 

run; 
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APPENDIXC 

SAS Output Tables for Different Partitioning Methods 
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SAS Output Tables 

First Partitioning Method: (A 1u A2 u A3) Tagged by Fall 

Table 21 

Coefficient Estimates for the Model of Returning Students 

Analysis of Maximum Likelihood Estimates 

Standard Wald 

Chi- Pr > Chi-
Parameter DF Estimate Error Square Square 
Intercept 1 -0.3562 1.5641 0.0519 0.8198 
El (white, non-hispanic) 1 -0.351 0.3399 1.0664 0.30.18 
E2 (black, non-hispanic) 1 -0.285 0.3417 0.6956 0.4043 
E3 (his panic) 1 -0.1742 0.344 0.2565 0.6125 
E4 (asian, amer./pac. isl.) 1 -0.3186 0.3494 0.8312 0.3619 
ES (Amer. Indian/alaskan) 1 -0.2639 0.4073 0.4198 0.517 
E6 (international) 1 -0.106 0.3549 0.0893 0.7651 
E7 (other) 0 0 
C 1 (Doctorate Degree) 1 -0.4094 1.6955 0.0583 0.8092 
C2 (Freshman) 1 -0.3024 0.0849 12.686 0.0004 
C3 (Junior) 1 0.3457 0.0872 15.7143 <.0001 
C4 (Master) 1 -0.7094 1.5199 0.2178 0.6407 
CS (Post Baccalaureate) 1 -0.7773 0.5504 1.9945 0.1579 
C6 (Sophomore) 0 0 

C7 (Senior) 1 -1.1282 0.0763 218.6753 <.0001 
C8 (Sophomore) 0 0 
L 1 (Undecided) 1 -0.1685 1.6219 0.0108 0.9173 
L2 (Undergraduate) 1 1.2675 1.5263 0.6896 0.4063 
L3 (Post Baccalaureate) 1 1.4166 1.4226 0.9915 0.3194 
L4 (Graduate Nursing) 1 -0.00973 0.1705 0.0033 0.9545 
LS (Graduate Master) 1 1.4663 0.1576 86.5258 <.0001 
L6 (Graduate Doctorate) 1 1.6821 0.7666 4.8149 0.0282 
L 7 ( Graduate Certificate) 0 0 
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Table 22 

Odds Ratios for the Model of Returning Students 

Odds Ratio Estimates 

95% Wald 
Effect Point Estimate Confidence Limits 

El (white, non-hispanic) 0.704 0.362 1.371 

E2 (black, non-hispanic) 0.752 0.385 1.469 

E3 (hispanic) 0.840 0.428 1.649 

E4 (asian, amer./pac. isl.) 0.727 0.367 1.442 

E5 (Amer. Indian/alaskan) 0.768 0.346 1.706 

E6 (international) 0.899 0.449 1.803 

C 1 (Doctorate Degree) 0.664 0.024 18.427 

C2 (Freshman) 0.739 0.626 0.873 

C3 (Junior) 1.413 1.191 1.676 

C4 (Master) 0.492 0.025 9.675 

C5 (Post Baccalaureate) 0.460 0.156 1.352 

C7 (Senior) 0.324 0.279 0.376 

L 1 (Undecided) 0.845 0.035 20.296 

L2 (Undergraduate) 3.552 0.178 70.742 

L3 (Post Baccalaureate) 4.123 0.254 67.018 

L4 (Graduate Nursing) 0.990 0.709 1.383 

L5 ( Graduate Master) 4.333 3.182 5.902 

L6 (Graduate Doctorate) 5.377 1.197 24.159 
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Table 23 

Partition for the Hosmer and Lemeshow Test 

Partition for the Hosmer and Lemeshow Test 

next_returning = 1 next_retuming = 0 

Group Total Observed Expected Observed Expected 

1 1227 247 240.44 980 986.56 

2 1694 585 583.92 1109 1110.08 

3 1187 480 486.74 707 700.26 

4 94 47 46.97 47 47.03 

5 2299 1161 1178.07 1138 1120.93 

6 1044 574 560.39 470 483.61 

7 1220 689 695.74 531 524.26 

8 1371 875 867.16 496 503.84 

9 2081 1461 1459.57 620 621.43 
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Second Partitioning Method: (A 1 u A2) u A3 

Table 24 

Coefficient Estimates for the Model of Returning Students (Fall Main) 

Analysis of Maximum Likelihood Estimates 

FallMain 

Std. Wald Std. Wald 

D Esti- Chi- Pr >C hD Esti- Chi- Pr > C 
Parameter F mate Error Square iSq F mate Error Square hiSq 

Int. 1 -0.926 1 1.7165 0.2911 0.5895 1 -1.2973 1.6298 0.6336 0.426 

E 1 ( white, non-hispanic) 1 0.086 7 0.3396 0.0651 0.7986 1 0.3988 0.5259 0.575 0.4483 

E2 (black, non-hispanic) 1 0.0965 0.3419 0.0797 0.7777 1 0.5675 0.5458 1.0813 0.2984 

E3 (his panic) 1 0.2407 0.3449 0.4871 0.4852 1 0.3811 0.5706 0.4461 0.5042 

[E4 (asian, amer./pac. isl.) 1 0.0878 0.3521 0.0621 0.8032 1 0.8082 0.5855 1.9056 0.1675 

ES (Amer. Indian/alaskan) 1 0.0652 0.42 0.0241 0.8766 1 -11.5675 378.7 0.0009 0.9756 

E6 (international) 1 0.2907 0.3585 0.6575 0.4174 0 0 

E7 (other) 0 0 0 0 

C 1 (Doctorate Degree) 1 0.2153 1.8361 0.0138 0.9066 1 -0.7167 1.5668 0.2093 0.6474 

C2 (Freshman) 1 -0.4205 0.0994 17.8901 <.0001 1 -0.1567 0.3621 0.1872 0.6652 

C3 (Junior) 1 0.2293 0.1032 4.9394 0.0263 1 0.5327 0.3395 2.4615 0.1167 

C4 (Master) 1 -0.0364 1.6747 0.0005 0.9826 1 -2.0882 1.6143 1.6733 0.1958 

CS (Post Baccalaureate) 1 0.3044 0.8926 0.1163 0.7331 1 -0.9975 1.5442 0.4173 0.5183 

C6 (Sophomore) 0 0 0 0 

C7 (Senior) 1 -1.1952 0.0898 177.0651 <.0001 1 -0.2052 0.2951 0.4833 0.4869 

C8 (Sophomore) 0 0 0 0 
-

L 1 (Undecided) l 0.018 1.7433 0.0001 0.9918 0 0 

L2 (Undergraduate) 1 1.9091 1.6818 1.2886 0.2563 1 -1.3572 1.5267 0.7903 0.374 

IL3 (Post Baccalaureate) 1 0.8759 1.4248 0.3779 0.5387 0 0 

L4 (Graduate Nursing) 1 0.0323 0.1922 0.0282 0.8667 1 0.1752 0.4973 0.1241 0.7246 
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Table 24 (continued) 

Analysis of Maximum Likelihood Estimates 

FallMain 

Std. Wald Std. Wald 

D Esti- Chi- Pr > Ch D Esti- Chi- Pr > C 
Parameter F mate Error Square iSq F mate Error Square hiSq 

LS ( Graduate Master) 1 1.2711 0.1769 51.6608 <.0001 1 0.733 0.4808 2.3243 0.1274 

L6 (Graduate Doctorate) 1 1.6227 0.7724 4.4138 0.0356 0 0 

L 7 ( Graduate Certificate) 0 0 0 0 
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Table 25 

Odds Ratios for the Model of Returning Students (Fall Main) 

Odds Ratio Estimates 

FallMain Spring Subset 

9S% Wald 9S% Wald 

Point Confidence Limit 
Effect Point Estimat e Confidence Limits Estimate s 

El (white, non-hispanic) 1.091 0.56 2.122 1.49 0.532 4.177 

E2 (black, non-hispanic) 1.101 0.564 2.153 1.764 0.605 5.141 

E3 (hispanic) 1.272 0.647 2.501 1.464 0.478 4.48 

E4 (asian, amer./pac. isl.) 1.092 0.547 2.177 2.244 0.712 7.07 

ES (Amer. Indian/alaskan) 1.067 0.469 2.431 <0.001 <0.001 >999.999 

~6 (international) 1.337 0.662 2.701 

C 1 (Doctorate Degree) 1.24 0.034 45.329 0.488 0.023 10.529 

C2 (Freshman) 0.657 0.54 0.798 0.855 0.42 1.739 

C3 (Junior) 1.258 1.027 1.539 1.703 0.876 3.314 

C4 (Master) 0.964 0.036 25.685 0.124 0.005 2.932 

CS (Post Baccalaureate) 1.356 0.236 7.797 0.369 0.018 7.607 

C7 (Senior) 0.303 0.254 0.361 0.814 0.457 1.452 

LI (Undecided) 1.018 0.033 31.023 

[,2 (Undergraduate) 6.747 0.25 182.267 0.257 0.013 5.129 

L3 (Post Baccalaureate) 2.401 0.147 39.194 

L4 ( Graduate Nursing) 1.033 0.709 1.505 1.191 0.45 3.158 

LS ( Graduate Master) 3.565 2.521 5.042 2.081 0.811 5.34 

L6 ( Graduate Doctorate) 5.067 1.115 23.023 
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Table 26 

Partition for the Hosmer and Lemeshow Test (Fall Main) 

Partition for the Hosmer and Lemeshow Test 

FallMain Spring Subset 

riext returning = 1 next returning = 0 next returning = 1 next returning = 0 

Group Total Observed Expected Observed Expected Total Observed Expected Observed Expected 
1 863 267 265.09 596 597.91 197 9 9.26 188 187.74 

2 1086 514 508.96 572 577.04 346 24 19.62 322 326.38 

3 955 487 493.87 468 461.13 160 8 11.34 152 148.66 

4 1896 1125 1132.96 77 1 763.04 394 29 30.99 365 363.01 

5 1037 646 639.48 391 397.52 269 24 23.25 245 245 .75 

6 895 584 588.58 311 306.42 163 14 15.36 149 147.64 

7 757 550 546.08 207 210.92 403 36 38.3 367 364.7 

8 974 734 730.59 240 243.41 249 33 28.24 216 220.76 

9 1247 983 984.39 264 262.61 326 52 52.63 274 273.37 
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Table 27 

Coefficient Estimates for the Model of Returning Students (Spring Subset) 

Analysis of Maximum Likelihood Estimates 

Standard Wald 
Parameter DF Estimate Error Chi-Square Pr > ChiSq 

Intercept 1 -1.2973 1.6298 0.6336 0.4260 

El (white, non-hispanic) 1 0.3988 0.5259 0.5750 0.4483 

E2 (black, non-hispanic) 1 0.5675 0.5458 1.0813 0.2984 

E3 (hispanic) 1 0.3811 0.5706 0.4461 0.5042 

E4 (asian, amer./pac. isl.) 1 0.8082 0.5855 1.9056 0.1675 

E5 (Amer. Indian/alaskan) 1 -11.5675 378.7 0.0009 0.9756 

E6 (international) 0 0 

E7 (other) 0 0 

C 1 (Doctorate Degree) 1 -0.7167 1.5668 0.2093 0.6474 

C2 (Freshman) 1 -0.1567 0.3621 0.1872 0.6652 

C3 (Junior) 1 0.5327 0.3395 2.4615 0.1167 

C4 (Master) 1 -2.0882 1.6143 1.6733 0.1958 

C5 (Post Baccalaureate) 1 -0.9975 1.5442 0.4173 0.5183 

C6 (Sophomore) 0 0 

C7 (Senior) 1 -0.2052 0.2951 0.4833 0.4869 

C8 (Sophomore) 0 0 

LI (Undecided) 0 0 

L2 (Undergraduate) 1 -1.3572 1.5267 0.7903 0.3740 

L3 (Post Baccalaureate) 0 0 

L4 (Graduate Nursing) 1 0.1752 0.4973 0.1241 0.7246 

L5 ( Graduate Master) 1 0.7330 0.4808 2.3243 0.1274 

L6 ( Graduate Doctorate) 0 0 

L 7 (Graduate Certificate) 0 0 
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Table 28 

Odds Ratios for the Model of Returning Students (Spring Subset) 

Odds Ratio Estimates 

9S% Wald 
Effect Point Estimate Confidence Limits 

El (white, non-hispanic) 3.177 0.431 23.398 

E2 (black, non-hispanic) 4.210 0.550 32.242 

E3 (his panic) 3.414 0.424 27.492 

E4 ( asian, amer./pac. isl.) 6.807 0.841 55.060 

ES (Amer. Indian/alaskan) <0.001 <0.001 >999.999 

C 1 (Doctorate Degree) 0.329 <0.001 326.389 

C2 (Freshman) 0.098 0.012 0.813 

C3 (Junior) 2.206 0.906 5.374 

C4 (Master) 0.021 <0.001 26.309 

CS (Post Baccalaureate) 0.118 <0.001 115.107 

C7 (Senior) 0.682 0.294 1.581 

L2 (Undergraduate) 0.096 <0.001 89.833 

L4 (Graduate Nursing) 2.433 0.313 18.944 

LS ( Graduate Master) 7.140 0.967 52.689 
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Table 29 

Partition for the Hosmer and Lemeshow Test (Spring Subset) 

Partition for the Hosmer and Lemeshow Test 

next_returning = 1 next_returning = 0 

Group Total Observed Expected Observed Expected 

I 222 1 1.06 221 220.94 

2 142 2 1.72 140 140.28 

3 346 9 7.76 337 338.24 

4 57 2 1.37 55 55.63 

5 394 10 11.48 384 382.52 

6 245 10 8.36 235 236.64 

7 243 11 11.54 232 231.46 

8 434 26 27.28 408 406.72 

9 269 20 23.19 249 245.81 

10 155 24 21.24 131 133.76 
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Third Partitioning Method: A1u(A2 uA]) 

Table 30 

Coefficient Estimates for the Model of Returning Students (Fall Subset) 

Analysis of Maximum Likelihood Estimates 

Standard Wald 
Parameter DF Estimate Error Chi-Square Pr> ChiSq 

Intercept 1 9.5025 177.1 0.0029 0.9572 

El (white, non-hispanic) 1 -0.0161 0.3379 0.0023 0.9619 

E2 (black, non-hispanic) 1 -0.0108 0.3446 0.0010 0.9749 

E3 (hispanic) 1 0.1414 0.3534 0.1601 0.6890 

E4 (asian, amer./pac. isl.) 1 -0.0230 0.3756 0.0038 0.9511 

ES (Amer. Indian/alaskan) 1 -0.1474 0.5457 0.0730 0.7871 

E6 (international) 1 0.0865 0.3824 0.0512 0.8210 

E7 (other) 0 0 

C 1 (Doctorate Degree) 1 -10.3026 177.1 0.0034 0.9536 

C2 (Freshman) 1 -0.2135 0.1339 2.5422 0.1108 

C3 (Junior) 1 0.1271 0.1511 0.7079 0.4001 

C4 (Master) 1 -10.4818 177.1 0.0035 0.9528 

CS (Post Baccalaureate) 1 0.5814 0.9058 0.4120 0.5210 

C6 (Sophomore) 0 0 

C7 (Senior) 1 -0.5463 0.1931 8.0036 0.0047 

CS (Sophomore) 0 0 

Ll (Undecided) 1 -10.5183 177.1 0.0035 0.9526 

L2 (Undergraduate) 1 -8.6189 177.1 0.0024 0.9612 

L3 (Post Baccalaureate) 1 -9.3578 177.1 0.0028 0.9579 

L4 ( Graduate Nursing) 1 -0.00503 0.2599 0.0004 0.9846 

LS ( Graduate Master) 1 1.9722 0.2495 62.5024 <.0001 
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Table 30 (continued) 

Analysis of Maximum Likelihood Estimates 

Wald 
Standard Chi-

Parameter DF Estimate Error Square Pr> ChiSq 

L6 ( Graduate Doctorate) 1 2.0018 0.8797 5.1784 0.0229 

L 7 (Graduate Certificate) 0 0 
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Table 31 

Odds Ratios for the Model of Returning Students (Fall Subset) 

Odds Ratio Estimates 

9S% Wald 
Effect Point Estimate Confidence Limits 

El (white, non-hispanic) 0.984 0.507 1.908 

E2 (black, non-hispanic) 0.989 0.503 1.944 

E3 (hispanic) 1.152 0.576 2.303 

E4 (asian, amer./pac. isl.) 0.977 0.468 2.040 

ES (Amer. Indian/alaskan) 0.863 0.296 2.515 

E6 (international) 1.090 0.515 2.307 

C 1 (Doctorate Degree) <0.001 <0.001 >999.999 

C2 (Freshman) 0.808 0.621 1.050 

C3 (Junior) 1.136 0.845 1.527 

C4 (Master) <0:001 <0.001 >999.999 

CS (Post Baccalaureate) 1.789 0.303 10.557 

C7 (Senior) 0.579 0.397 0.845 

LI (Undecided) <0.001 <0.001 >999.999 

L2 (Undergraduate) <0.001 <0.001 >999.999 

L3 (Post Baccalaureate) <0.001 <0.001 >999.999 

L4 (Graduate Nursing) 0.995 0.598 1.656 

LS ( Graduate Master) 7.187 4.407 11.718 

L6 ( Graduate Doctorate) 7.402 1.320 41.511 
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Table 32 

Odds Ratios for the Model of Returning Students (Spring Main) 

Odds Ratio Estimates 

95% Wald 
Effect Point Estimate Confidence Limits 

E 1 ( white, non-hispanic) 1.490 0.532 4.177 

E2 (black, non-hispanic) 1.764 0.605 5.141 

E3 (hispanic) 1.464 0.478 4.480 

E4 (asian, amer./pac. isl.) 2.244 0.712 7.070 

E5 (Amer. Indian/alaskan) <0.001 <0.001 >999.999 

C 1 (Doctorate Degree) 0.488 0.023 10.529 

C2 (Freshman) 0.855 0.420 1.739 

C3 (Junior) 1.703 0.876 3.314 

C4 (Master) 0.124 0.005 2.932 

CS (Post Baccalaureate) 0.369 0.018 7.607 

C7 (Senior) 0.814 0.457 1.452 

L2 (Undergraduate) 0.257 0.013 5.129 

L4 ( Graduate Nursing) 1.191 0.450 3.158 

L5 (Graduate Master) 2.081 0.811 5.340 
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Table 33 

Partition for the Hosmer and Lemeshow Test (Spring Main) 

Partition for the Hosmer and Lemeshow Test 

next_retuming = 1 next_returning = 0 

Group Total Observed Expected Observed Expected 

1 377 98 100.23 279 276.77 

2 382 151 150.90 231 231.10 

3 486 312 318.71 174 167.29 

4 377 252 250.49 125 126.51 

5 401 288 280.75 113 120.25 

6 149 111 106.40 38 42.60 

7 740 540 537.57 200 202.43 

8 478 351 348.52 127 129.48 

9 471 345 354.43 126 116.57 
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Table 34 

Coefficient Estimates for the Model of Returning Students (Fall Main) 

Analysis of Maximum Likelihood Estimates 

Standard Wald 
Parameter DF Estimate Error Chi-Square Pr> ChiSq 

Intercept 1 -0.5396 1.4376 0.1409 0.7074 

E 1 ( white, non-hispanic) 1 -0.2735 0.1351 4.0976 0.0429 

E2 (black, non-hispanic) 1 -0.2078 0.1440 2.0833 0.1489 

E3 (hispanic) 1 -0.0354 0.1500 0.0557 0.8134 

E4 (asian, amer./pac. isl.) 1 -0.1125 0.1653 0.4631 0.4962 

ES (Amer. Indian/alaskan) 1 0.1280 0.3002 0.1817 0.6699 

E6 (international) 0 0 

E7 (other) 0 0 

C 1 (Doctorate Degree) 1 10.8663 159.5 0.0046 0.9457 

C2 (Freshman) 1 -0.5278 0.1054 25.0648 <.0001 

C3 (Junior) 1 -0.3430 0.0972 12.4459 0.0004 

C4 (Master) 1 -0.8756 1.4178 0.3814 0.5368 

CS (Post Baccalaureate) 1 -0.6040 0.4441 1.8495 0.1738 

C6 (Sophomore) 0 0 

C7 (Senior) 1 -1.7012 0.0929 335.0113 <.0001 

C8 (Sophomore) 0 0 

L 1 (Undecided) 1 -10.6609 275.3 0.0015 0.9691 

L2 (Undergraduate) 1 1.4506 1.4302 1.0287 0.3105 

L3 (Post Baccalaureate) 1 0.9302 1.5003 0.3844 0.5352 

L4 (Graduate Nursing) 1 0.3201 0.2214 2.0904 0.1482 

LS ( Graduate Master) 1 1.1900 0.2080 32.7415 <.0001 

L6 ( Graduate Doctorate) 1 -9.6709 159.5 0.0037 0.9517 

L 7 (Graduate Certificate) 0 0 
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Table 35 

Odds Ratios for the Model of Returning Students (Fall Main) 

Odds Ratio Estimates 

9S% Wald 
Effect Point Estimate Confidence Limits 

El (white, non-hispanic) 0.761 0.584 0.991 

E2 (black, non-hispanic) 0.812 0.613 1.077 

E3 (hispanic) 0.965 0.719 1.295 

E4 (asian, amer./pac. isl.) 0.894 0.646 1.236 

ES (Amer. Indian/alaskan) 1.137 0.631 2.047 

Cl (Doctorate Degree) >999.999 <0.001 >999.999 

C2 (Freshman) 0.590 0.480 0.725 

C3 (Junior) 0.710 0.587 0.859 

C4 (Master) 0.417 0.026 6.707 

CS (Post Baccalaureate) 0.547 0.229 1.305 

C7 (Senior) 0.182 0.152 0.219 

Ll (Undecided) <0.001 <0.001 >999.999 

L2 (Undergraduate) 4.266 0.259 70.371 

L3 (Post Baccalaureate) 2.535 0.134 47.982 

L4 ( Graduate Nursing) 1.377 0.892 2.126 

LS ( Graduate Master) 3.287 2.187 4.942 

L6 ( Graduate Doctorate) <0.001 <0.001 >999.999 
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Table 36 

Partition for the Hosmer and Lemeshow Test (Fall Main) 

Partition for the Hosmer and Lemeshow Test 

next_retuming = I next_retuming = 0 

Group Total Observed Expected Observed Expected 

1 852 166 167.81 686 684.19 

2 1160 298 296.54 862 863.46 

3 659 189 188.65 470 470.35 

4 1433 528 541.46 905 891.54 

5 875 379 356.35 496 518.65 

6 782 390 407.05 392 374.95 

7 748 441 429.89 307 318.11 

8 800 475 476.16 325 323.84 

9 1047 691 693 .08 356 353.92 
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Forth Partitioning Method: A 1uA2 uA3 (A2 tagged by Spring) 

Table 37 

Coefficient Estimates for the Model of Returning Students (Intersection Subset) 

Analysis of Maximum Likelihood Estimates 

Standard Wald 

Chi- Pr> Chi-
Parameter DF Estimate Error Square Square 
Intercept 1 1.5018 1.448 1.0756 0.2997 
El (white, non-hispanic) 1 -0.2656 0.1604 2.7433 0.0977 
E2 (black, non-his panic) 1 -0.2723 0.1709 2.5395 0.111 
E3 (hispanic) 1 -0.0656 0.1781 0.1356 0.7127 
E4 (asian, amer./pac. isl.) 1 -0.1722 0.196 0.7713 0.3798 
ES (Amer. Indian/alaskan) 1 -0.0379 0.3478 0.0119 0.9132 
E6 (international) 0 0 
E7 (other) 0 0 
C 1 (Doctorate Degree) 1 10.4751 263.8 0.0016 0.9683 
C2 (Freshman) 1 -0.6309 0.1448 18.9923 <.0001 
C3 (Junior) 1 -0.9457 0.1282 54.4434 <.0001 
C4 (Master) 1 -1.7988 1.4206 1.6033 0.2054 
CS (Post Baccalaureate) 1 -0.6952 0.6016 1.3353 0.2479 
C6 (Sophomore) 0 0 
C7 (Senior) 1 -2.0231 0.1244 264.631 <.0001 
C8 (Sophomore) 0 0 
L1 (Undecided) 1 -13.698 459.8 0.0009 0.9762 
12 (Undergraduate) 1 0.3626 1.4362 0.0637 0.8007 
L3 (Post Baccalaureate) 1 -0.3572 1.5606 0.0524 0.8189 
L4 (Graduate Nursing) 1 0.7002 0.2675 6.8532 0.0088 
LS ( Graduate Master) 1 0.5379 0.2442 4.8504 0.0276 
L6 ( Graduate Doctorate) 1 -10.791 263.8 0.0017 0.9674 
L 7 ( Graduate Certificate) 0 0 
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Table 38 

Odds Ratios for the Model of Returning Students (Intersection Subset) 

Odds Ratio Estimates 

9S% Wald 
Effect Point Estimate Confidence Limits 

El (white, non-hispanic) 0.767 0.560 1.050 

E2 (black, non-hispanic) 0.762 0.545 1.065 

E3 (hispanic) 0.937 0.661 1.328 

E4 (asian, amer./pac. isl.) 0.842 0.573 1.236 

ES (Amer. Indian/alaskan) 0.963 0.487 1.903 

C 1 (Doctorate Degree) >999.999 <0.001 >999.999 

C2 (Freshman) 0.532 0.401 0.707 

C3 (Junior) 0.388 0.302 0.499 

C4 (Master) 0.166 0.010 2.679 

CS (Post Baccalaureate) 0.499 0.153 1.622 

C7 (Senior) 0.132 0.104 0.169 

LI (Undecided) <0.001 <0.001 >999.999 

L2 (Undergraduate) 1.437 0.086 23.987 

L3 (Post Baccalaureate) 0.700 0.033 14.903 

L4 (Graduate Nursing) 2.014 1.192 3.402 

LS ( Graduate Master) 1.712 1.061 2.764 

L6 ( Graduate Doctorate) <0.001 <0.001 >999.999 
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Table 39 

Partition for the Hosmer and Lemeshow Test (Intersection Subset) 

Partition for the Hosmer and Lemeshow Test 

next_retuming = I next_retuming = 0 

Group Total Observed Expected Observed Expected 

1 270 105 104.12 165 165.88 

2 666 263 263.39 403 402.61 

3 419 198 193.99 221 225.01 

4 1030 502 508.64 528 521.36 

5 578 312 309.03 266 268.97 

6 479 291 287.73 188 191.27 

7 570 375 374.89 195 195.11 

8 565 398 401.13 167 163.87 

9 599 437 438.60 162 160.40 

10 673 561 560.49 112 112.51 
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