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CHAPTER 1
INTRODUCTION

The notion of a viable model to predict a dichotomous variable such as whether a
student will enroll or not enroll at a specific university entails either an explicit or
implicit fundamental supposition that there are underlying patterns that will be useful and
reliable for accurate forecasting of the variable of interest. Yet, any theoretical model that
explains the variability or pattern that underlines the variable of interest is dependent on
observable data a researcher has available. In general, the patterns that the model captures
will provide accurate predictions if these patterns are sustained in future data related to
the variable of interest. In other words, fitting a model on observed or historical data that
has underlying patterns to explain the variable of interest will be useful for accurate
prediction, if those underlying patterns in future data mimic or hold to the patterns from
which the model was built. For many researchers, available data needed for modeling
purposes comes from snap shots of data coming from the time of interest. For example,
institutions of higher education studying the dichotomous variable of retention will have
snap shots of fall census data, spring census data, and summer census data from which to
explore and use to make reports and/or for modeling. This study will create a data mining
program that is used as a pre-modeling technique to explore a multitude of partitioning
and stratification combinations on snap shots of observed historical data to determine

which combination generates the “best” sustained patterns for the dichotomous variable



of interest. In addition, we will derive and specify the underlying statistical decision rule
that determines the “best” partitioning patterns within our data mining program. Thus,
this study will provide a pre-modeling tool that determines the most reliable or best, as
defined by our decision rule, partitioning patterns that can be used for predictive
modeling.

In this research we will illustrate a pre-modeling technique on snap shots of data
by utilizing pre-existing historical data from Texas Woman’s University (TWU)
containing readily available and easily measured factors or variables, which most
institutions of higher learning will also have available. To implement this pre-modeling
technique we will write a computer program that will efficiently explore the variable of
interest contained in the snapshots of historical data. Through our derived decision rule,
the brogram will iterate through a multitude of partitions and stratifications of these
combined snapshots of historical data to determine the partition and stratification method
that yields the most consistent or “best” historical patterns for predictive modeling. Thus,
regardless of the model used for prediction, we will illustrate using TWU data that
attention to partitioning and stratification patterns of the data can enhance prediction.

In Chapter-II, we will review the literature on predictive modeling concerning
higher education data. Chapter-III will introduce the idea of partioning snap shots of
historical data and provide a simple example to illustrate that partitioning snap shots of

data can alter the historical patterns on the dichotomous variable of interest. Chapter-III
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will also introduce appropriate definitions and notation needed to derive our decision
rule. In Chapter-IV, we will define and illustrate how the decision rule works. Using this
decision rule our program will provide the best historical enrollment patterns found from
TWU snap shots of data. Chapter-V will model the top three historical patterns
determined by our program and compare their predictive accuracy on data that was not
used to make the model. Finally, Chapter-VI will provide our conclusions and a

discussion of possible future research.



CHAPTER 11
LITERATURE REVIEW

Many researchers in higher education have an interest in understanding their
student population. To facilitate their understanding, institutions will likely explore the
data they collect to determine viable patterns that can lend to more insights to the
students they serve. In this regard, the institution may be interested in predictive
modeling, especially when it comes to predicting enrollment since funding for public
universities may depend on the total credit hour production their enrolled students
generate. To predict re-enrollment at an institution of higher education requires two
fundamental components: student information data from the past and a mathematical
model for prediction. Regardless of the issue that may concern those involved with an
institution of higher education, in general, an interest in using data to facilitate
understanding of their student clientele through reporting or to generate predictive
modeling is common. In this chapter, we will review various uses of student information
data and note that the literature in higher education lacks a data mining technique that
explicitly uses a statistical decision rule to determine historical consistency of snap shots
of data.

Any institutions geographical location, employees, size, and services certainly
contribute to the general culture of that institution and help to define its unique

atmosphere. Thus, it stands to reason that variable selection and data gathering needed to



understand an institutions clientele might vary across institutions. In this regard, a paper
by the consulting group Noel Levitz (2002) addressed this issue making a note that, while
no two institutions are ever alike in the exact data, they hold many data needs in
common. Noel Levitz makes the point that by tracking these data and derivatives that
apply to each situation, they have literally seen more than Max(P) enrollment managers
making changes necessary to sustain a competitive edge. In a study by Goenner and
Snaith (2004), they note that theory should dictate this choice of variables in modeling.
However, they acknowledge that often in social science there are several theories that
may suggest the inclusion or exclusion of certain variables as controls. The result of this
is that researchers may use different variables in their analysis and come to different
results with respect to predicted effects and their statistical significance. Nonetheless,
Goenner and Snaith (2004), note that empirical analysis requires researchers to choose
which variables to use as control in their models. The implication is that having necessary
data to determine significant variables can facilitate understanding of their clientele and
such data may be useful in modeling so that an institution can be competitive in their
management of enrollment.

For an institution to understand their student clientele, variables'and the
accompanying data are needed so that empirical analysis and reporting can be used to
facilitate administrative decisions regarding the clientele the institution typically attracts.

Before beginning to build a model or gain information from data, it is important to



perform an exploratory data analysis (EDA). EDA is a set of procedures aimed at
understanding the data and the relationships among the variables (Refaat 2006; Hoaglin,
Mosteller, Tukey and John Wilder 1985; Valleman, Hoaglin 1977). In this regard, to
identify appropriate variables and patterns that may be useful or considered significant,
from a statistical standpoint, generally involves programming skills to mine the data or
statistical modeling skills to use the data for predictive modeling. For example, William
N. Anderson (2005), makes a deliberate point to mention that before conducting a
research study, people involved must first seek assistance from colleagues from their
institutional research officer or from the faculty members in mathematics, statistics or
operations research department to assure those involved have the right skill set to address
the problem. A study made by Goenner and Pauls (2006) found that statistically
significant variables such as geographic and demographic data based on the student’s zip
code provide predictors for enrollment. Nonetheless, all the aforementioned studies do
not address a variable’s significance in relation to how the data is partitioned.

When it comes to prediction, there are many theoretical models that an institution
can use in order to aid their prediction. The types of model that can be used are
predicated on the variable of interest. For example, William N. Anderson (2002) used
Linear Regression to Predict the Number of Students in a Freshman Class. In general, a
linear regression model is appropriate, assuming appropriate assumptions have been met,

to model a qualitative variable. Another example of linear regression involved modeling



undergraduate graduation rates (Hamrick 1964). However, when it comes to the
enrollment of an individual, the variable is qualitative (i.e. categorical) with a
dichotomous outcome such as enroll or not enroll. For a dichotomous variable, logistic
regression is often used as a model. For instance, enrollment prediction is quite
frequently modeled utilizing logistic regression (Ahluwalia 2006; Goenner and Pauls
2006; Morley 2000). Predicting retention in institutes of higher education is another
example of where logistic regression was used (Astin 1997; Hamrick, Schuh and Shelley
2004; Hurtado, Saenz, Santos and Cabrera 2007). Yet another example is predicting

~ success in college where the outcome is completion versus non-completion of a
bachelor's degree (Geiser and Santelices 2007; Trusty and Niles 2003). In addition,
logistic regression has been used to model success in particular courses (Belcheir 2002;
Perkhounkova, Noble, and Sawyer 2005). In general, those models specify the parameter
estimates obtained from using significant variables from modeling observed data, but
their data are not made by combining snap shots.

In the literature there are qualitative variables of interest that may not be
dichotomous in nature. Many researchers may be interested in predicting the outcome of
a variable with three or more categories, known as polychotomous. For instance, the
variable 'type of service use' is an outcome variable that is often measured in health
services research. Types of health services utilization can include medical provider visit,

hospital outpatient visit, emergency room visit, hospital inpatient stay, and home health



care visit (Hedeker 2003). Researchers in the medical sciences also make extensive use
of polychotomous logistic regression modeling when assessing risk of disease (Dubin and
Pasternack 1986; Lawrence et al. 2006; O'Shea et al. 1999). Social science i’s yet another
field of research in which this statistical analysis is performed. For instance, Koivusilta,
Arja, and Andres (2003) utilized polychotomous logistic regression analysis to assess the
associations between health behaviors and health in adolescence and attained educational
level in‘ adulthood. Another example from the social sciences assesses the relationship
between perceived life satisfaction and substance abuse in adolescents (Zullig et al.
2001). Similar to the dichotomous modeling techniques mentioned above, these
polychotomous modeling techniques were applied to a certain subset of data and did not
address expanding the discussion to a combination of snapshots of data.

For any study which specifies significant variables or indicators, the reliability of
the variables usefulness as a predictor or as a viable indicator to help administrators
understand student enrollment will be validated if the pattern from which its significance
was determined generally holds for future data. In the context of modeling for prediction,
this means that parameter estimates for the predictive model, from the historical data, will
generally imitate the patterns or parameter estimates you would expect to get with the
current data after the results of reenrollment are actually known. This particular nuance
with the historical patterns towards variable patterns for prediction or reporting is rarely

mentioned in the literature. In addition, none of the studies we have seen in the literature



explicitly address the importance of partitioning their data sets prior to model building in
order to facilitate better patterns. Rather they typically specify parameter estimates from
modeling a single set of data.

In one study, Marshall and Oliver (1979) proposed a forecasting model, on a set
of current students, based on the reenrollment patterns of certain historical first-time
students. These sets of first time students were found by finding the historical semester
data from which the students of interest first entered the University. The unmentioned
importance of modeling the enrollment patterns of first-time students is that you
implicitly create mutually exclusive partitioning of the historical snap shots of data so
that a student of interest will only belong to a single historical set, which will help avoid
over prediction. No less important in Marshall and Oliver’s paper is the unaddressed
discussion about modeling different mutually exclusive partitions of the historical data to
possibly yield better predictions.

In this study we will develop a data mining technique to uncover relevant patterns
in the snap shots of data prior to model building. After the academic data from students
has been cleaned up and in a proper format through the use of data mining, the
exploratory data analysis conducted in this study will provide a method to determine a
partitioning of the data which provide historically viable holding patterns for modeling
the dichotomous outcome of interest. In the next chapter we will introduce the notation

necessary to help explain how you can partition data into various mutually exclusive sets



and show, through an example, that partitioning the historical snap shots of data does

make a difference in the observed patterns.
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CHAPTER 111
DATA EXPLORATION

To gain understanding of a certain topic of interest, a conceptualization of the
problem itself and the factors or variables that can influence the phenomenon is essential.
From conceptualizing the problem and identifying the appropriate factors of interest,
administrators or many businesses these days have the capability to store and retrieve
data concerning these factors to better understand the clientele they serve or intend to
serve. In a predictive modeling paper by Thomas, Dawes and Reznik (2001), they make
the point that an institution needs to have “good data in a usable form.” Having good data
can involve cleaning data entry errors and also keeping appropriate variables or fields
within the database that can help understand the topic of interest. In predictive modeling
or for any kind of reporting, a conceptualized variable or factor is not usable if the field
within the database, which stores its values, is not well occupied. Nonetheless, good data
in and of itself is not inherently informative, it still has to be explored or mined
appropriately in order to determine usable or reliable patterns that will facilitate modeling
or even simple reporting. For example, Marshall and Oliver (1979, p. 196) modeled the
“very stable behavior in student attendance.” Implicit in this statement is that historical
patterns were explored and the patterns that exhibited consistency, presumably over time,
were deemed worthy for use in predictive modeling. In our study we will explore patterns

of data that is formed by composite snap shots. Composite snap shots of data, as defined

11



below, is a combination of snap shots of data frozen at specific moments of time, In this
chapter we will intrpduce necessary mathematical notation that will facilitate our
discussion and to help illustrate that partitioning composite snap shots of data into
mutually exclusive sets is an important consideration (i.e. matters) when it comes to

finding stable or reliable patterns over time that can be used for reporting or modeling.

Definition 1. Let S; represent a snapshot of data at some time 7" = t. Without loss of
generality suppose T = 1, 2,....,/ corresponds to points of time with corresponding

snapshots of data Sy, S,, ..., S;. Then a composite snapshot of data is the set P = §{U S,

!
o S= S
i=1

The idea of composite snap shots is very common with higher education data and
can be found in many other situations. Our particular example will illustrate how we
make a composite data sets using snap shots of semester data and explore that data in
order to understanding reenrollment patterns. Thus, we will explore patterns from the
data related to the dichotomous state of whether a set of students reenrolls or does not
reenroll into a semester of interest. Using notation we will let P = {1, 2, ..., N} represent
the set of indices for the finite population of potential reenrolling students of size N. The

set P represents the total number of unique individuals we expect from our composite
12



data sets. For each individual £ € P, the variable of interest or the dependent variable is

defined as

(3.1)

_ 1, Student reenrolls at TWU
Y= 0, Student does not reenroll at TWU

Suppose the administration wants to understand the patterns of y; for the current

academic year of students to help determine who will return the following academic’s
year Fall semester. An academic year for an institution of higher education begins in the
Fall semester, continues into the Spring Semester, and ends after the summer semester
prior to the following fall semester, which begins a new academic year. For example, the
current academic year consists of the following semesters: Fall 2008, Spring 2009, and
Summer 2009. It’s worth noting that because the Fall semester and Spring semester, for
example, of the same academic year occur at different calendar years, we will not use a
calendar year to refer to an academic year in this paper. We will assume it is understood
that when we refer to, for example, the Fall Semester and Spring semester from the same
academic year that the reader realizes those semesters do not occur under the same
calendar year. In our example, we consider students that attend the fall or spring of the
same academic year. The composite of those snap shots of data give us a set of

individuals, where the individuals are listed only once. Figure 1 illustrates the idea of a

13






Having one index for each unique student in the set P is particularly important for
predicting. For example, suppose the researcher wants to predict if those students from
the current academic year FA and SP semester will reenroll the next Fall semester, which
is the beginning of the following academic year. A mistake the researcher could make is
to predict the reenrollment of FA students and then predict the reenrollment of SP
students, since many students will be listed in both data sets. In other words, an
intersection exists between the sets FA and SP which means FA and SP are not mutually
exclusive since FA N SP # &. Consequently, over prediction will be a problem. Thus,
the researcher should consider making a prediction on sets of students that are mutually

exclusive and together form a partition, see definition below, of the set P.

Definition 2. Let k € A;, a partition of the set P consists of sets 4, 4,, ..., A; such that P

k
=AU Ay U U 4= | 4, where 4; N A; =D fori#].

i=1

From Definition 1, the composite of / snap shots of data P = §10 S U U Sy is
composed of sets for which an intercept is possible. In other words, for any two sets S;
and S; for which i # the possibility exists that S; N S; # ), for any three sets Sj, Si, Sk

for which i # j # k, the possibility exists that S; N .S; M Sy # &, and for four sets up to /

15



sets a similar argument of possible intercepts existing can be made. So, given a

composite of / snap shots of data P = S;u S, U --U §; and the knowledge that possible

intersections exists, we can now count the maximum number of mutually exclusive sets

that can be formed from S}, S5,..., S;. To illustrate our discussion on counting these sets
we will periodically refer to Figure 3, which contains only / = 3 snap shots of data: S| =
A1V A4 U A5 U A7 Sy = Ap U As U Ag U A7; S3= A3 Ay U Ag U A4. First, for [ sets of

snap shots, the maximum number of subsets that do not contain an intersection is

e

which we will denote as /C;. For example, in Figure 3, where / = 3, we can see that the
maximum number of subsets that individually are not composed of an intersection is 3C;

=3, these subsets are 4, Ay, and 43. Again, for / sets of snap shots, the maximum

number of only pair wise intersections is

o

which we will denote as /C,. For example, in Figure 3, where / = 3, we can see that the

maximum number of only pair wise subsets is ;C; = 3. These subsets are A4, A5, and 4.

16



Next, for / sets of snap shots, the maximum number of subsets that are composed by the

intersections of exactly three sets is

SEE

which we will denote as /C;. For example, in Figure 3 we can see that the maximum
number of subsets that are composed by the intersections of exactly three sets is ;C; =1.

This is the subset 4. Following this pattern for the general case when we have / snap
shots of data that compose P = S;u S, U --U S, the maximum number of mutually

exclusive subsets, created from considering all possible intersections is

/
Max(P) =Zm =2/ (3.2)
1

i=1
An important observation of these Max(P) subsets, is that these subsets are mutually

exclusive and together form a partition of P. For example, in Figure 2, we see that 4; N
A; =, fori#j and P = A1 Ay U A3 U A4 A5V Ag U A7. In general, for a
composite of / snap shots of data P = S;U S, U U §;, we can rewrite P as partition of
Max(P) mutually exclusive sets

P= AIU A2 U oeee U Amax(P)- (33)

17






contain anywhere from 1 to Max(P) —1 subsets. However, in this paper, we generally

restrict an association to one of the following conditions: 1) A; c §; or ii) For any

sequence length k < max(P) of consecutive snap shots S;, Si1,---5 St4k» A; =8t U SV
U Stp only if Sy Sy N Sy # . The one exception to condition (i) and (ii) is
the partition created by the following association: P= (AU Ay U Az U Apayp)) =
4

In Figure 2 we illustrate two methods of partitioning P = FA U SP using the
following mutually exclusive subsets: 1) Fall-Main = FA and Spring Subset = SP — FA
(or SP N (FA N SPY') ; 2) Fall Subset=FA — SP (or FA N (FA N SP)') and Spring-
Main = SP. Method 1 creates the following partition P = Fall-Main U Spring Subset
and Method 2 creates the partition P = Fall Subset L Spring-Main. Notice that P = FA
U SP satisfies the definition of a composite data set, Definition 1, but does not satisfy the
Definition 2 of a partitioned data set until we rewrite P using either Method 1 or Method

2 above.
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actual observed data, we see in Table 1 under Method 3 that the intersection for both
Year 1 and Year 2 data constitute the largest subsets of P; and P, respectively. This
phenomenon that the fall and spring data, coming from the same academic year, we
believe, is common for most institutions of higher education. Also, notice that in Table 1,
for the respective years, the total number of students, the total number of returning (y=1)
students, and the total number of students that do not return (y = 0) is exactly the same
for each method of partitioning. To better see the patterns of reenrollment given by the

different partitioning methods P; and P, in Table 1, we will present a table that shows

the reenrollment patterns of Table 1 in terms of percentages.

21



Table 1

Re-enrollment Patterns of P =FA  SP by Partition

Year-1 Year-2

Not

No. Return| Not Return No. Return Return

Method Partition Students | (y =1) (y=0) Students | (y=1) (y=0)
Method 1 Fall_Main 175 135 40 175 134 41
Spring_subset 80 70 10 79 69 10
Total (N) 255 205 50 254 203 51
Method 2 [Fall_subset 75 60 15 75 64 11
Spring_Main 180 145 35 179 139 40
Total (N) 255 205 50 254 203 51
Method 3 |rall_subset 75 60 15 75 64 11
Intersection 100 75 25 100 70 30
Spring_subset 80 70 10 79 69 10
Total (N) 255 205 50 254 203 51

Recall that our objective is to explore historical data in order to find patterns that

exhibited consistency over time. In Table 2 we see an example of two years worth of

historical reenrollment patterns presented by different partitioning methods in terms of

percentages. In this context Table 2 shows that for Year 1 under partition Method 1 that

77.1% of the 175 students in Fall_Main returned while 87.5% of the 80 students in spring

subset returned. Notice that in Year 2 similar reenrollment percentage patterns emerge:

76.1% of the Fall Main returned while 87.3% of the Spring_Subset returned. From

Year 1 to Year 2 the reenrollment percent patterns in Fall_Main were off by only .5%.

22




Similarly, the reenrollment percent patterns in Spring_Subset were off by only 0.2% from
Year 1 to Year 2. Analyzing the data from this perspective, we see the most consistent
enrollment patterns from Year 1 to Year 2 are found under partition Method 1 which
shows less variation in enrollment patterns from year to year in terms of percentages.
From Table 2 we see that the cumulative absolute value of the differences in enrollment
percentages by partition Method 1 from Year 1 to Year 2 is only 1.4%. Partition Method
2 is a distant second in terms of enrollment consistency by having a cumulative absolute
value of the differences in enrollment percentages from Year 1 to Year 2 of 16.4%. This
example illustrates that partitioning matters when trying to find consistent historical
enrollment patterns.

Table 2

The Percent of Enroll and Not Enroll by Partitioning Method

% Return (y = 1) % Not Return (y = 0)

Method Partition Year1 [Year2 |[%off [Yearl |[Year2 % off
Method 1 [Fall Main 77.10%| 76.60%| 0.50%| 22.90%| 23.40%| -0.50%
Spring_subset | 87.50% 87.30%| 0.20%| 12.50%| 12.70%| -0.20%
Total off (Absolute Value) 0.70% 0.70%
Method 2 [Fall subset 80% 85.30%| -5.30% 20%| 14.70%| 5.30%
Spring Main 80.60%| 77.70%| 2.90%| 19.40%| 22.30%| -2.90%
Total off (Absolute Value) 8.20% 8.20%
Method 3 |Fall subset 80%| 85.30%| -5.30% 20%| 14.70%| 5.30%
Intersection 75% 70% 5% 25% 30% -5%
Spring subset | 87.50%| 87.30%| 0.20%| 12.50%| 12.70%| -0.20%
Total off (Absolute Value) 10.50% 10.50%
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For institutions of higher education there is typically useful information that is
known concerning their students. For now we have introduced the idea of partitioning a
set P that adheres to Definition 2 in order to find consistent patterns for a single

dependent variable, y;, as defined by Equation 3.1. Yet, for each individual k£ € P a set of

p independent variables

X, = {X0 X X (3.4)
will exist that can facilitate understanding of the dependent variable, y. These
independent variables can also facilitate partitioning and bring about an interesting
consideration a researcher has to address when making certain types of partitioning on
snap shots of data. Recall snap shots of data make up the set P. For example, we
introduced the set P = FA U SP. These snap shots of data are made at different times and
hence the information contained in x;, for each k € P can change. So, for a set such as
Intercept = FA N SP, should we just use the latest information in x;? For example, a
student in FA may be classified as a sophomore in FA, but in the same academic year and
subsequent semester SP they may be classified as a junior. In other words, should we tag
or assign to the individuals in F4 N SP, the information x;, contained in FA or SP? For
categorical variables such as classification, the answer depends on whether stratification

using that variable on the set we named Intercept facilitates finding more consistent

patterns of y; using the information from xj from either snap shot FA or snap shot SP.
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CHAPTER IV
DECISION RULE

In Chapter III we discussed the different ways that we can partition the data. In
fact, the more snapshots of data that defines the composite data set P, then the more ways
the set P can be partitioned. Having (Max(P) X (k)), where k is the number of levels
in a categorical variable, there are over Max(P) of possible combinations to make a
partition. The need for a computer algorithm becomes imperative in order to explore
these possibilities. In this chapter we discuss how our computer algorithm will explore
various partitioning methods and specify the decision rule we will create in order to
determine the “best” partition that shows consistent historical patterns on yy.

We are interested in knowing if there are significant reenrollments patterns from
students attending TWU during the Fall and Spring semester of the same academic year.
In particular we would like to facilitate finding reenrollment patterns on the set of
students indexed by the set P = FA U SP by determining an appropriate partition of P
geared towards finding consistent historical enrollment patterns. Thus, our computer
algorithm will be limited to the historical composite data sets P = FA U SP, but our
discussion can easily be extended to include more snap shots of data that form a
composite. Although we are using only two snapshots of data to form our composite data

set, it is worth noting that exploratory analysis on TWU historical data found that for any
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3 contain two sets that create the partition. For partition Method 2 the two sets that

define the partition of P are 4] = (4,U A4,) and A, = 43. For partition Method 3, the sets
that define the partition of P are 4 = A4; and A4, = (4, U A3). Whereas, Method 4

contains only one set: 4, = (4;U A U 43). Now, for each method and each subset of

the partition, our program will explore the enrollment patterns of that subset. The
combination of the enroliment patterns of the subsets that defines the partition method
will be examined in order to determine which partition method shows the most reliable

historical patterns on y;.

Table 6

Variation in Partitioning

Return Next Fall
=1

Year1 | Year2

Method Partition Year 1 | Year2 | (rate) (rate)
Fall Main 7 11
Method 1 [(41U A42) 91 90 -7.70%| -12.20%
Spring_Subset 2 5
43 9 10| -22.20%| -55.50%

The program must choose between all the ways of partitioning P presented in

Table 5. The example presented in Table 6 represents one way of partitioning P, but the
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logical discussion that follows concerning identifying this partition’s historical
consistency of enrollment can be applied to any of the partitioning methods. Historical
consistency relates to the variation that will be introduced by each partitioning method.
The partitioning method that introduces the least amount of variation will be deemed the
“best” method of partitioning. To get an idea of the partitioning variability that occurs,

see Table 6. In Table 6 we can see that out of 91 students in the set Fall Main = (4;u
As), 7 or 7.7% of them returned the following fall semester. If we expect to find
consistent historical patterns then we can assume that the following year, in this case
Year 2, approximately 7.7% of the students in the subset Fall Main = (4,u 4,) for Year
2 will reenroll the following fall. As you can see, this information is known, because we
are dealing with historical observations. As it turns out, in Year 2, out of 90 students in
the subset Fall Main = (4, 43), 11 or 12.2% of them returned the following fall
semester. Thus, from Year 1 to Year 2 we see variability in the reenrollment rate for the
subset Fall Main = (4| 45). Similarly, from Year 1 to Year 2 we see variability in the
reenrollment for the subset Spring_Subset = A5. In particular, out of 9 students in
Spring_Subset = 43, 2 or (22.2%) reenrolled into the following fall, whereas in Year 2,
out of 10 students in Spring_Subset = 43, 5 or (55.5%) reenrolled into the following fall.

Thus, our program needs a way to evaluate historical pattern created by partitioning in

order to determine its consistency and compare this partitioning methods consistency to

30









academic years of historical patterns. To discern the two years of academic information

we will use appropriate notation. Let P;= FA; U SP; represent the set of students from

academic Year 1 of size Ny, in Table 8 N; =100. For any partition method there exists k

< Max(P) mutually exclusive associations Al* , A; s ees A,:. In Table 9, the composite set

is P = FA U SP, therefore Max(P) = 3, and these mutually exclusive sets are listed in

Table 4. In addition, the partition of consideration is Table 9is P = (4,U 4;) U 43,
Method 2 from Table 5, where k = 2 such that Af =(4,v 4,) and A; = A3. Now, for any
mutually exclusive association A;. of size N|; < N; from academic Year 1 there exists R,
students who reenroll and R that do not reenroll into the following fall semester. For
example, the association Al* =(4;Y 4p) in Table 8 has Ny; =100, Ry =7 and Rj = 84.

An important calculation we need from academic Year 1 patterns is the enrollment

proportion for returning and non-returning students from association A; . In academic

Year 1, the proportion of students from A;. that reenroll is

N
N

PR, (4.3)

and the proportion of students from A; that do not reenroll is
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PR = (4.4)

In Table 8, academic Year 1 association Al* = (41 4p) has pp = —;—1 =0.077 (or 7.7%

reenrollment) and pp = 84 _ .923 (or 92.3% non-reenrollment). For academic Year 2,
K91

let Py= FA, U SP, represent the set of students of size N5, in Table 8 N, = 100. Also.
the corresponding mutually exclusive association to academic Year 1, the association A;
of size N,; < N, from academic Year 2 contains R; students who reenroll and R; that do
not reenroll into the following fall semester. For example, the association Al* =41V 4y)
in Table 8 has R,=11and R, =79. If we expect to find consistent reenrollment patterns
from academic Year 1 to academic Year 2, then we expect association A; for academic
Year 2 to have a reenrollment proportion similar to p R from academic Year 1 and to
also have a non-reenrollment proportion similar to p Rl from academic Year 1. Thus, for

any consecutive pair of academic years with association A;. , we will use Equation 4.3 to

define our expected value of returning students for the most current historical academic

year, in this case academic Year 2, as
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ER2

= Np;(pg)s

and using Equation 4.4 our expected value of non-returning students is

Epy = Npj(pgy)-

(4.5)

(4.6)

From Table 8, association A; = (41U A,) for academic Year 2 has an expected

reenrollment of £ R, = No(p R ) =90(0.077) = 6.93 and an expected non-reenroliment

of Ep = Nyj(pg) =90(923)=83.07.

Table 8

Historical Enrollment Patterns Under Partition P = (A;UAy)) U A3

Academic Year 1 Academic Year 2
Total | no-return jyes-return Total | no-return yes-return
Partition (N) | (Row %) (Row %) [Partition N) (Expected) |(Expected)
IFall Main 84 7 Fall Main 79 11
* . =
A =AIVAD) 91 | 9230% | 7.70% | A “UIVAD| 90 | 8307 | -6.93
Spring Subset 7 2 Spring_Subset 5 5
* *
4 9 | -77.80% | -2220% | ‘b 10 -7.78 -7.78
Total 100 | 91 g  |Total 100 84 16

Our main goal is to find a way to evaluate historical patterns created by

partitioning. For any partition method there exists k£ < Max(P) mutually exclusive

associations Al* , A; ) oo A,: that define the partition method: P = A]* U A; U v A,:. To
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2 2 2 2
= * + * patls * - .
Xp zAl X4 zAk (4.8)

For example, using Equation 4.6 the association A; = (A;v A,) from Table 8 will

generate chi-squared value

2 _ (11-693)°  (79-83.07)" _

4 6.93 83.07

2.59.

In addition, the association 4,= A3 from Table 8 will generate a chi-squared value

2 _(5-778)°  (5-7.78)’

= =1.99.
t4 7.78 778

Thus, using Equation 4.7, the historical consistency of the partition method presented in

Table 8 is

25=2.59+1.99=458.

Now, suppose we have competing partition methods Py, P,,..., P,, then for each partition

method, using Equation 4.7, we can calculate corresponding chi-squared values );f,l , );f,
2

s eens Z}Z . Our decision rule on which partition method is best will be determined by

n

Best Partition = Min(,(}‘?;1 , 112,2, ey 112, ) (4.9)
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In our study we examine three years of historical enrollment patterns for
composite snap shot P = F4 U SP. The Academic years of data we will explore for
historical consistency on y;, as determined by Equation 4.7, are academic Year 1 = {Fall
2001, Spring 2002}, academic Year 2 = {Fall 2002, Spring 2003}, and academic Year 3
= {Fall 2003, Spring 2004}. Having three years of historical patterns to examine is a
simple extension of the discussion we had for two academic years of historical patterns

presented in Table 8. In general, for any consecutive pair of academic years with
association A;, for some partition method, we will calculate a chi-squared statistic

presented by Equation 4.6. To determine the overall value of or Equation 4.6 will require

adding the corresponding values of Equation 4.6 for each consecutive pair of academic
years. For example, suppose we are considering the association A;, for some partition
method, over three years of historical patterns. First, we will explore the historical

patterns from academic Year 1 to academic Year 2 for association A; and determine the

appropriate chi-squared value represented by Equation 4.6, which we will denote as

2. Similarly, we explore the historical patterns from academic Year 2 to academic

12)4;

Year 3 for the same association A; and determine the appropriate chi-squared value

represented by Equation 4.6, which we will denote as ,((223)14‘ . The overall chi-squared
J
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injecting strata into the associations that_ define the partition. If an association A;. has
information x; from different time periods T = t, then the program will tag that set with
the information from the different time periods and calculate separate chi-squared values,
Equation 4.6, using the categorical variable for the each tagged time t . Table 11,
presents the chi-squared results of Equation 4.7 for the partitions using categorical
variables for stratification. The union of sets that were made at different times then the
program needs to consider tagging the set. For example, partition Method 2 contains the
mutually exclusive set 45 = F4 n SP which contains x; information from the fall
semester as well as x; information from the spring semester. However, since we
associated that set with 4; = F4 N (FA n SP)" in Method 2, then we tagged 4, with the
information x; contained during the time of the fall semester. Similarly, Method 4
contains Ay = FA N SP so Table 11 shows two results for that partitioning method, one
when A4, is tagged with spring information and the other when 4, is tagged with fall

information. One of the most interesting things to note from comparing the chi-squared
values from Table 9 to Table 11 is that in every case, adding a variable to stratify the

partition facilitates finding more consistent patterns of y;. In other words, the chi-squared

values, calculated using Equation 4.7, in Table 11 are smaller than those in Table 9.
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using the best partition of P. To illustrate this, we will construct a model on random

variable y; using one historical academic year of data, Pypg, = F4 w SP. Now, historical
academic year data Ppggp = FA u SP will have observed values of y;, where y;, = 1 if
student k reenrolled in Fall 2003 and y; = 0 if student k did not reenroll in Fall 2003. In

this regard, we can associate for each individual £ € P,y a set of p independent
. . * ..
variables x; = {xl ks X2k, X pk} , to explain y;. For each association 4; from the partition

Proon = Al* v A; U ey A; and for £ A,-* , we will use SAS software to specify a logistic

regression model of the form

Ly = Bo+Bixig + Boaxok +--BpXpk > (5.1)

where £, By,..., ﬂp represent the coefficient values, which are determined through

maximum likelihood estimation by SAS. For a more detailed discussion on logistic

regression see Ahluwalia (2006) and Ingram (2008).

Given a specified “best™ partition for academic year P, we want to explore the
* * * .
equivalent partitioning method, Pyg93 = 4 YA U U 4y, in the subsequent academic
o o * * *
year 2003. In particular, for partitioning method, Prgg3 = 4 U 4 U U 4;, we want to

T *
predict the total number of students from each association 4;
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Prediction for second best, Method 2, partition: P = (4 1 UAZ JUA @-Tagged by Fall

For the best partition, P = (4, v 4, YU A3-Tagged by Fall, identified in Chapter

IV, Equation 4.1 for association 4, = (4,U 4,) and 4, = A3 coming from Py, are

L., =-9261+(.0867*E1(white, non-hispanic))+
+(.0965*E2(black, non-hispanic))+(.2407*E3(hispanic))+
+(.0878*E4(asian, amer./pac. isl.))+(.0652*E5(amer. indian/alaskan))+
+(.2907*E6(international))+(.2153*C1(Docorate Degree))+
+(-.4205*C2(Freshman))+(.2293*C3(Junior))+(-.0364*C4(Master) )+ (5.8)
+(.3044*C5(Post Baccalaureate))+(-1.1952*C7(Senior))+
+(.0180*L1(Undecided))+(1.9091*L2(Undergraduate))+
+(.8759*L3(Post Baccalaureate))+(.0323*L4(Graduate Nursing))+
+(1.2711*L5(Graduate Master))+(1.6227*L6(Graduate Doctorate))

Similarly, for Spring subset we will have:

L= -1.2973+(.3988*E1(white, non-hispanic))+
+(.5675*E2(black, non-hispanic))+(.3811*E3(hispanic))+
+(.8082*E4(asian, amer./pac. isl.))+(-11.5675*ES(amer. indian/alaskan))+
+(-.7167*C1(Docorate Degree))+(-.1567*C2(Freshman))+
+(.5327*C3(Junior))+(-2.0882*C4(Master))+
+(-.9975*C5(Post Baccalaureate))+(-.2052*C7(Senior))+
+(-1.3572*L2(Undergraduate))+(.1752*L4(Graduate Nursing))+
+(.7330*L5(Graduate Master))

(5.9)
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The SAS coefficient output for Equation 5.8 and 5.9 above is found in Table 24
and Table 27 from Appendix C. In addition, practical interpretations of the beta
coefficients in Equation 5.7 can be obtained from the odds ratios table (see Table 25 and
Table 28 from Appendix C).

In order to assess the fit of our model we used a Hosmer and Lemeshow

goodness-of-fit test, which tests the hypothesis that there are no differences between

observed response variable values, y;, from the training data set A; coming from Py,

and the estimated response values calculated by using model 5.8 and 5.9. Table 14 and

Table 15 shows that we failed to reject the above hypothesis which indicates the model

fits the data well.

Table 14

Hosmer and Lemeshow Goodness-of-Fit Test for A;

Hosmer and Lemeshow
Goodness-of-Fit Test

[ Chi-Square | DF | Pr> ChiSq |
0.9028 7T 0.9962
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Table 18

Hosmer and Lemeshow Goodness-of-Fit Test for A;

Hosmer and Lemeshow
Goodness-of-Fit Test

Chi-Square | DF | Pr> ChiSq
5.1905 7 0.6367

Now using Equation 5.10 and 5.11, the predicted reenrollment from association A; =
A1 (4 U A3)-Tagged by Spring coming from P,g3 = A1 (43 U A3) is found in Table
17 and Table 18. In Using Equation 5.10 and 5.11, Table 19 shows the total predicted re-

enrollment using this partition method P,gg3= 4|V (4, U 43), identified as the best
partition, Method 3, is Thfehoq—3 = 6,937. The actual reenrollment total, Equation 5.10

and 5.11, coming from Ppgg3 = (41U A W A3) is Tp . = 6,577. Thus, using partition

Method 3 the prediction was off by 360.

56
























APPENDIX A

List of Independent Variables



Table 20

List of Independent Variables

VARIABLE DEFINITION CODING
(0) age value is missing
AGEVAL Age categories (1) age <25
(2) 25<=age<45
(3) 45<=age
A ¢ (gmat score) if exists
verage score o : e
GPAVAL ((gre_qgt+gre v)/2) if gmat score is missing
GRE, SAT or GMAT ((sat_v-+sat_m)/2) if gmat score is missing
and gre score is missing too
(0) missing
GPAENTRY Aveiage score (1) gpaval<450
categories (2) 450<=gpaval
(0) missing
CUMGPA Cumulative GPA | (1) 2<=gpa<3
(2) 3<=gpa
(0) missing
GPA GPA categories (1) 2<=cumgpa<3
(2) 3<=cumgpa
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APPENDIX B

SAS Code
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SAS Code

This is the code used to complete this analysis for computing the chi square.

* Telling SAS where to find data*

libname FALL 'c:\Thesis\Fal\DATA\};

libname SPRING 'c:\Thesis\Spring\DATA';
libname ALL_SEM 'c:\Thesis\AllSemesters';
libname year99 'c:\Thesis\AllSemesters\Years\99';
libname year00 'c:\Thesis\AllSemesters\ Years\00';
libname year01 'c:\Thesis\AllSemesters\Years\01';
libname year02 'c:\Thesis\AllSemesters\Years\02';
libname year03 'c:\Thesis\AllSemesters\Years\03';

libname year04 'c:\Thesis\AllSemesters\Years\04';

*Merging data sets to form one dataset with all years*
*for spring00*;
data project.tmp;
set project.sp_00;
run;
proc sort data=project.tmp out=project.tmp2;
by id_bog;

run;
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data project.tmp id;

set project.tmp?2 (keep=id_bog term stu_level class);
by id_bog;

if first.id_bog;

run;

*Creating a unique ID in the new dataset*

proc sort data=project.tmp_id out=project.tmp;
by id bog;

run;

data all_sem.springID;

set project.tmp;

run;

*Deleting temporary files*
proc datasets library=project;
delete tmp;
delete tmp2;
delete tmp _id;

delete tmp_id_spring01;

delete tmp_id spring02;

delete tmp_id spring03;
68



delete tmp _id_spring04;
delete tmp_id_spring05;

run;

*Creating and appending data sets for fall semester*
data FALL.tmp;
set FALL.fa 99;
run;
proc sort data=FALL.tmp out=FALL.tmp2;
by id_bog term;
run;
data FALL.tmp id;
set FALL.tmp2 (keep=id_bog term stu_level class);
by id_bog;
if first.id_bog;
run;
*fall00*;
data F ALL.tmp;
set FALL.fa 00;
run;
proc sort data=FALL.tmp out=FALL.tmp2;

by id_bog;
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run;

data FALL.tmp id_fall00;

set FALL.tmp2 (keep=id_bog term stu_level class);
by id_bog;

if first.id_bog;

run;

proc append base=FALL.tmp_id data=FALL.tmp id fall00;

run;

*Adding returning or not variable*
* fa99*;

data ALL_SEM.listed once;
set ALL_SEM.uniquelD;

by id bog;

if first.id_bog;

drop stu_level class term;
run;

data ALL._SEM.tmp;

set ALL._SEM.uniquelD;

by id_bog;

if term="99/FA’;
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run;

data ALL._SEM.listed once;

set ALL_SEM.listed once;

if ((ret. 99FA='NQO') and (ret_00SP_tmp="NO")) then ret 00SP="YES',
else ret 00SP=ret 00SP_tmp;

drop ret_ 00SP_tmp;

rum;

*1a00*;

data ALL_SEM.tmp;

set ALL_SEM.uniquelD;

by id bog;

if term="00/FA";

lvl 00FA=stu_level;

cls 00FA=class;

ret_ 00FA_tmp=NO'; *default=NO*;

drop stu_level class term;

rumn;

data ALL. SEM.listed_once;

merge ALL_SEM.listed_once ALL_SEM.tmp;

by id_bog;

run;

data ALL_SEM.listed_once;
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run;

proc append base= year99.tmp data= year99.y99r;

run;

proc sort data=year99.tmp out=year99.y99F Am;
by id_bog returning;

run;

data year99.y99FAm;

set year99.y99FAm;

by id_bog;

if first.id_bog;

run;

proc datasets library=year99;
delete tmp;

run;

*Combining fall semester for all years*
data ALL_SEM.ALL FALL;

set year99.Y99FA;

YEAR='99";

LVL=Ivl 99FA;

CLS=cls 99FA;
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YEAR='02";

LVL=Ivl 02FA,;

CLS=cls 02FA;

drop lvl_02FA cls_02FA ret 02FA 1vl 03SP cls 03SP ret 03SP;
run;

proc append base= ALL_SEM.ALL FALL data= ALL_SEM.tmp;
run;

data ALL_SEM.tmp;

set year03.YO3FA;

YEAR='03";

LVL=lvl 03FA;

CLS=cls_03FA;

drop Ivl_03FA cls_03FA ret_03FA 1vl_04SP cls_04SP ret_04SP;
run;

proc append base= ALL_SEM.ALL_FALL data= ALL_SEM.tmp;
run;

data ALL._SEM.tmp;

set year04.Y04FA;

YEAR="04';

LVL=lvl 04FA;

CLS=cls_04FA;

drop Ivl 04FA cls_04FA ret_04FA lvl_05SP cls_05SP ret_05SP;
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run;
proc append base= ALL_SEM.ALL FALL data= ALL _SEM.tmp;
run; |
proc datasets library=ALL SEM;
delete tmp;

run;

*Create returning semester for all years*
data ALL_SEM.ALL_RETURNING;
set year99.Y99r;

YEAR='99';

LVL=Ivl 99FA;

CLS=cls_99FA;

drop Ivl_99FA cls_99FA ret_99FA Ivl_00SP cls_00SP ret_00SP;
run;

data ALL._ SEM.tmp;

set year00.Y0Or;

YEAR="00';

LVL=1vl 00FA;

CLS=cls_00FA;

drop Ivl_OOFA cls_00OFA ret_00FA Ivl_01SP cls_01SP ret 01SP;

run;
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proc append base= ALL_SEM.RETURNING data= ALL_SEM.tmp;
run;

data ALL_SEM.tmp;

set year01.YOlr;

YEAR='01";

LVL=lvl OIFA;

CLS=cls_01FA;

drop lvl O1FA cls_ 01FA ret 01FA 1vl 02SP cls_02SP ret 02SP;
run;

proc append base= ALL_SEM.RETURNING data= ALL._ SEM.tmp;
run;

data ALL_SEM.tmp;

set year02.Y02r;

YEAR='02";

LVL=1vl 02FA;

CLS=cls_02FA;

drop Ivl_02FA cls_02FA ret_02FA 1vl_03SP cls_03SP ret_03SP;
run;

proc append base= ALL_SEM.ALL_RETURNING data= ALL_SEM.tmp;
run;

data ALL_SEM.tmp;

set year03.YO03r;
80



YEAR='03";
LVL=Ilvl 03FA;
CLS=cls 03FA;
drop vl 03FA cls_03FA ret 03FA lvl 04SP cls 04SP ret 04SP,
run;
proc append base= ALL_SEM.ALL RETURNING data= ALL_SEM.tmp;
run;
data ALL_SEM.tmp;
set year04.Y 04r;
YEAR='04';
LVL=Ivl 04FA;
CLS=cls _04FA,;
drop Ivl 04FA cls_04FA ret_04FA 1vl_05SP cls_05SP ret_05SP;
run;
proc append base= ALL_SEM.ALL RETURNING data= ALL_SEM.tmp;
run;
proc datasets library=ALL_SEM;
delete tmp;

run;
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*Create independent variables age value, cumulative gpa, gpa value*
data fall.tmp1;
set fall.tmpl;

ageval=2000-year(dob);

if ageval<25 then AGE=1;

if ((ageval>=25) and (ageval<45)) then AGE=2;

if ageval>=45 then AGE=3;

if ageval="" then AGE=0; **missing;

kkk.
’

if gmat<>"" then GPAval=gmat;
else if ((gre_q<>"") and (gre_v<>"")) then GPAval=(gre q+gre v)/2;
else if ((sat_v<>"") and (sat_ m<>""))
then GPAval=(sat_v+sat_m)/2;
else GPA_entry=0; **missing;
if GPAval<450 then GPA_entry=1; **low;
if GPAval>=450 then GPA_entry=2; **high;

if GPAval="" then GPA_entry=0; **missing;

*k k.

if cum_gpa>=3 then GPA=2; **high;
if ((cum_gpa>=2) and (cum_gpa<3)) then GPA=1; **low;
if cum_gpa="" then GPA=0; **missing;

run;
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*Running frequency procedure*

proc freq data=ALL_SEM.current;
tables cls*year /chisq expected cellchil2 norow nocol;
weight NEXT RETURNING;

output out=ALI._sem.tmp pchi; *pchi Irchi n nmis;

run;
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SAS Output Tables

First Partitioning Method: (410 Ay U A43) Tagged by Fall

Table 21

Coefficient Estimates for the Model of Returning Students

Analysis of Maximum Likelihood Estimates

Standard Wald

Chi- Pr> Chi-
Parameter DF Estimate Error Square Square
Intercept 1 -0.3562 | 1.5641 0.0519 | 0.8198
El (white, non-hispanic) 1 -0.351 | 0.3399 1.0664 | 0.3018
E2 (black, non-hispanic) 1 -0.285 | 0.3417 0.6956 | 0.4043
E3 (hispanic) 1 -0.1742 0.344 0.2565| 0.6125
E4 (asian, amer./pac. isl.) 1 -0.3186 | 0.3494 0.8312 | 0.3619
E5 (Amer. Indian/alaskan) 1 -0.2639 | 0.4073 0.4198 0.517
E6 (international) 1 -0.106 | 0.3549 0.0893 | 0.7651
E7 (other) 0 0 . . .
C1 (Doctorate Degree) 1 -0.4094 | 1.6955 0.0583 | 0.8092
C2 (Freshman) 1 -0.3024 | 0.0849 12.686 | 0.0004
C3 (Junior) 1 0.3457 | 0.0872 | 15.7143 | <.0001
C4 (Master) 1 -0.7094 | 1.5199 0.2178 | 0.6407
C5 (Post Baccalaureate) 1 -0.7773 | 0.5504 1.9945 | 0.1579
Cé6 (Sophomore) 0 0 . . .
C7 (Senior) 1 -1.1282 | 0.0763 | 218.6753 | <.0001
C8 (Sophomore) 0 0 . . .
L1 (Undecided) 1 -0.1685 | 1.6219 0.0108 | 09173
L2 (Undergraduate) 1 1.2675 | 1.5263 0.6896 | 0.4063
L3 (Post Baccalaureate) 1 1.4166 | 1.4226 0.9915 0.3194
L4 (Graduate Nursing) 1] -0.00973 | 0.1705 0.0033 | 0.9545
LS5 (Graduate Master) 1 1.4663 | 0.1576 | 86.5258 | <.0001
L6 (Graduate Doctorate) 1 1.6821 [ 0.7666 4.8149 | 0.0282
L7 (Graduate Certificate) 0 0
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Table 24 (continued)

Analysis of Maximum Likelihood Estimates

FallMain
Std. | Wald Std. | Wald
D| Esti- Chi- [Pr>Ch Esti- Chi- [Pr>C
Parameter F | mate | Error | Square | iSq mate | Error | Square[ hiSq
L5 (Graduate Master) 11 1.2711]0.1769| 51.6608 <.0001 0.733]0.4808{ 2.3243|0.1274
L6 (Graduate Doctorate) 1} 1.62270.7724] 4.4138 0.0356 0
L7 (Graduate Certificate) 0 0 0
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Table 25

Odds Ratios for the Model of Returning Students (Fall Main)

Odds Ratio Estimates

FallMain Spring Subset
95% Wald 95% Wald

Point]Confidence Limit

Effect Point Estimate]Confidence Limits} Estimate] S
E1 (white non-hispanic) 1.091 0.56] 2.122 1.49 0.532 4.177
E2 (black non-hispanic) 1.101 0.564] 2.153 1.764] 0.605 5.141
E3 (hispanic) 1.272 0.647y 2.501 1.464) 0.478 4.48
1.092 0.547| 2.177 2.2441 0.712 7.07

E4 (asian, amer./pac. isl.)

ES5 (Amer. Indian/alaskan) 1.067 0.469] 2.431 <0.001] <0.001] >999.999

E6 (international) 1.337 0.662) 2.701

C1 (Doctorate Degree) 1.24 0.034] 45.329 0.488] 0.023 10.529
C2 (Freshman) 0.657 0.54 0.798 0.855 0.42 1.739
C3 (Junior) 1.258 1.027 1.539 1.703| 0.876 3314
C4 (Master) 0.964 0.036] 25.685 0.124] 0.005 2.932
C5 (Post Baccalaureate) 1.356 0.236)  7.797 0.369] 0.018 7.607)
C7 (Senior) 0303 0254 0361 0814 0457 1452

L1 (Undecided) 1.018 0.033] 31.023

1.2 (Undergraduate) 6.747, 0.25] 182.267, 0.257 0.013 5.129

L3 (Post Baccalaureate) 2401 0.147) 39.194

1.4 (Graduate Nursing) 1.033 0.709] 1.50S 1.191 0.45 3.158

1.5 (Graduate Master) 3.565 2.521] 5.042 2.081f 0.811 5.34
5.067 1.115) 23.023

L6 (Graduate Doctorate)
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Table 26

Partition for the Hosmer and Lemeshow Test (Fall Main)

Partition for the Hosmer and Lemeshow Test
FallMain Spring Subset

next returning = 1|next returning =0 next_returning = 1 | next_returning = 0
Group|TotaljObserved|Expected|Observed|Expected] Total| Observed|Expected] Observed{Expected
1] 863 267 265.09 596 597.911 197 9 9.26 188 187.74
2] 1086 514 508.96 5721 577.04] 346 24 19.62 322 326.38
3| 955 487 493.87 468] 461.13] 160 8 11.34 152 148.66
4} 1896 1125 1132.96f 771} 763.04] 394 29 30.99 365 363.01
5| 1037 646 639.48 391  397.52} 269 24 23.25 245  245.75
6] 895 584 588.58 311 306421 163 14 15.36 149 147.64
71 757, 550 546.08 207  210.92f 403 36 383 367 364.7
8| 974 734f  730.59, 240 243.41| 249 33 28.24 216f  220.76|
9] 1247 983 984.39 264f 262.61] 326 52 52.63 274  273.37
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Table 30 (continued)

Analysis of Maximum Likelihood Estimates

Wald
Standard Chi-
Parameter DF | Estimate Error Square| Pr> ChiSq
L6 (Graduate Doctorate) 1| 2.0018] 0.8797 5.1784 0.0229
L7 (Graduate Certificate) 0 0
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Table 36

Partition for the Hosmer and Lemeshow Test (Fall Main)

Partition for the Hosmer and Lemeshow Test

next_returning = 1 next_returning = Oﬂ

Group | Total| Observed| Expected| Observed| Expected
1| 852 166| 167.81 686, 684.19
211160 298| 296.54 862 863.46

3| 659 189| 188.65|  470| 470.35
411433 528 541.46 905| 891.54

50 875 379 356.35 496| 518.65

6 782 3901 407.05 392 374.95

7| 748 4411 429.89 307 318.11

8 800 475| 476.16 325| 323.84

| 911047 691L 693.08 356 353.92
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Forth Partitioning Method: A; A, U A3 (A, tagged by Spring)

Table 37

Coefficient Estimates for the Model of Returning Students (Intersection Subset)

Analysis of Maximum Likelihood Estimates

Standard Wald

Chi- Pr > Chi-
Estimate | Error Square Square

o
A

Parameter

1.5018 1.448 | 1.0756 | 0.2997

Intercept

E1 (white, non-hispanic) -0.2656 | 0.1604 | 2.7433 0.0977

E2 (black, non-hispanic) -0.2723 | 0.1709 | 2.5395 0.111

E3 (hispanic) -0.0656 | 0.1781 | 0.1356 | 0.7127

E4 (asian, amer./pac. isl.) -0.1722 0.196 | 0.7713 | 0.3798

ES5 (Amer. Indian/alaskan) -0.0379 | 0.3478 | 0.0119 | 0.9132

E6 (international) 0

E7 (other) 0 . . .
C1 (Doctorate Degree) 10.4751 263.8 | 0.0016 | 0.9683
C2 (Freshman) -0.6309 | 0.1448 | 18.9923 | <.0001

C3 (Junior) -0.9457 | 0.1282 | 54.4434 | <.0001

C4 (Master) -1.7988 | 1.4206 | 1.6033 | 0.2054

C5 (Post Baccalaureate) -0.6952 | 0.6016 | 1.3353 | 0.2479

C6 (Sophomore) 0 . . .
C7 (Senior) -2.0231 | 0.1244 | 264.631 | <.0001
C8 (Sophomore) 0 . . .
L1 (Undecided) -13.698 459.8 | 0.0009 | 0.9762
L2 (Undergraduate) 0.3626 | 1.4362 | 0.0637 | 0.8007
L3 (Post Baccalaureate) -0.3572 | 1.5606 | 0.0524 | 0.8189
L4 (Graduate Nursing) 0.7002 | 0.2675| 6.8532 | 0.0088
L5 (Graduate Master) 0.5379 | 0.2442 | 4.8504 | 0.0276

L6 (Graduate Doctorate) -10.791 263.8 | 0.0017 | 0.9674

0

L7 (Graduate Certificate)
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