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ABSTRACT 

 

NARJES ALSHAKHOURY 

MATHEMATICAL MODELING AND CONTROL OF MERS-COV EPIDEMICS 

DECEMBER 2017 

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a viral infectious 

disease that can be transmitted to humans through interaction with infected animals or 

humans. In this thesis, we will investigate the basic compartment models for infectious 

diseases qualitatively and quantitatively. The equilibrium points and their stability will be 

explored by using differential equations methods. Based on the available data on the 

Middle East Respiratory Syndrome, this research study will clarify the model of MERS-

CoV analytically and numerically. Additionally, this proposed study will explore the 

optimal control to reduce the spread of MERS-CoV disease as well as its threshold.  

Mathematical software, such as MAPLE, will be used to investigate the model. 

 

 

 

 

 

 



v 
 

 

 

TABLE OF CONTENTS         

                                                                                                                                  Page 

DEDICATION ..................................................................................................... ii 

ACKNOWLEDGMENTS .................................................................................... iii 

ABSTRACT ....................................................................................................... iv 

LIST OF TABLES ............................................................................................. vii 

LIST OF FIGURES ........................................................................................... viii 

      Chapter 

    I.     INTRODUCTION ..................................................................................... 1 

    II.     MATHEMATICAL COMPARTMENT MODELS FOR INFECTIOU                         
DISEASES: (SIR) AND (SEIR) MODELS ................................................ 5 

               2.1 Susceptible-Infectious-Recovery (SIR) Model................................... 6 

                  Definition of the basic reproduction ratio .......................................... 8 

                  Definition of endemic equilibria and the disease-free equlibria ....... 10 

                  Definition of Jacobian matrix .......................................................... 10 

                  Theorem (Stability Theorem) ......................................................... 11 

              2.2 Numerical Explanation of SIR Model using MAPLE ......................... 13 

              2.3 Susceptible-Exposed-Infectious-Recovery (SEIR) Model ................ 18 

              2.4 The Basic Reproduction Ratio 𝑅0 for SEIR Model ........................... 24 

                 The next-generation method ........................................................... 25 

              2.5 Numerical Solution of SEIR ............................................................. 26 



vi 
 

    III.    MERS-CoV MODEL INVESTIGATION-DESCRIPTION OF  THE                
MODEL ................................................................................................. 32 

              3.1 The Jacobian Matrix for MERS-CoV: ............................................... 37 

              3.2 The Reproduction Ratio 𝑅0of MERS-CoV Model ............................. 38 

              3.3 Developed Model of MERS-CoV ..................................................... 41 

    IV.    NUMERICAL INVESTIGATION OF MERS-CoV MODEL AND ITS                
CONTROL ............................................................................................ 45 

    V.     CONCLUSION ..................................................................................... 53 

REFERENCES ................................................................................................. 55 



vii 
 

 

LIST OF TABLES 

 

Table               Page    

1. POSSIBLE BEHAVIORS DEPENDING ON THE VALUES OF                         
EIGENVALUES .......................................................................................... 11 

2.  THE VALUE OF PARAMETERS IN MERS-COV SYSTEM (3.1) ............... 46 

  

 

       

 

 

 

 

 

 

 

 



viii 
 

LIST OF FIGURES 

Figure                          Page 

 

 2.1      SIR COMPARTMENT MODEL ..................................................................... 7 

 2.2      THE OUTPUT OF JACOBIAN MATRIX OF SIR MODEL ............................ 14 

 2.3      THE OUTPUT OF EQUILIBRIUM POINTS OF SIR MODEL ...................... 14 

2.4       THE OUTPUT OF THE JACOBIAN MATRIX AT DFE AND ITS                                                                          
EIGENVALUES .......................................................................................... 14 

 2.5      THE OUTPUT OF THE JACOBIAN MATRIX AT EE ................................... 15 

 2.6      THE PLOT OF THE TRAJECTORY FOR SUSCEPTIBLE AND         
INFECTIOUS INDIVIDUALS OF SIR MODEL USING MAPLE .................... 15 

 2.7      THE 3D PLOT OF SIR MODEL .................................................................. 16 

2.8       THE TRAJECTORY OF SUSCEPTIBLE AND INFECTIOUS CLASSES            
OF SIR MODEL WHEN 𝑹𝟎 > 𝟏................................................................... 16 

 2.9      THE PLOT OF SUSCEPTIBLE AND INFECTED INDIVIDUALS OF  SIR  
MODEL WHEN 𝑹𝟎 < 𝟏 ............................................................................... 17 

 2.10    THE PLOT OF SUSCEPTIBLE, INFECTED, AND RECOVERED          
CLASSES OF SIR MODEL WHEN 𝑹𝟎 > 𝟏 ................................................. 17 

 2.11     SEIR COMPARTMENTS MODEL ............................................................. 19 

 2.13     THE OUTPUT OF JACOBIAN MATRIX OF SEIR MODEL ........................ 26 

 2.14    THE 3D PLOT OF SEIR MODEL WITH SELECTED INITIAL VALUES        
WHEN 𝑹𝟎 < 𝟏 ............................................................................................. 27 

 2.15    DIFFERENT PLOTS OF S, I, AND E CLASSES OF SEIR MODEL               
WHEN 𝑹𝟎 < 𝟏 ............................................................................................. 28 

 2.16    THE 3D PLOT OF SEIR MODEL WHEN 𝑹𝟎 > 𝟏 ........................................ 29 



ix 
 

 2.17    DIFFERENT PLOTS OF S, I, E CLASSES OF SEIR MODEL                      
WHEN 𝑹𝟎 > 𝟏 ............................................................................................. 30 

 4.1      THE OUTPUT OF THE EIGENVALUES AT DFE FOR MERS MODEL ...... 46 

 4.2      THE PLOT OF INFECTED INDIVIDUALS OF MERS ................................. 47 

 4.3      THE PLOT OF E V. S OF MERS ................................................................ 47 

 4.4      PLOTS OF S, E, I, AND H INDIVIDUALS FOR SYSTEM (3.1) ................... 47 

 4.5      THE OUTPUT OF 𝑹𝟎 FOR MERS MODEL................................................. 48 

 4.6      THE OUTPUT OF 𝑹𝟎 WHEN 𝜷𝟏 = 𝟎. 𝟎𝟏 .................................................... 48 

 4.7       PLOT OF I, AND H INDIVIDUALS OF MERS MODEL WHEN 𝑹𝟎 < 𝟏 ....... 49 

 4.8       PLOT OF OPTIMAL CONTROL 𝒖(𝒕) FOR MERS MODEL ........................ 51 

 4.9      PLOT OF 𝑰(𝒕) FOR MERS MODEL WITH AND WITHOUT                              
THE OPTIMAL SOLUTION ......................................................................... 51 



1 
 

 
 

 
CHAPTER I 

INTRODUCTION 

 

Recently, Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has 

concerned the Arabian Peninsula. MERS-CoV is believed to be an infectious disease 

transmitted to humans by contact with either infected animals or humans. As a first virus 

that related to lineage C Betacoronavirus (𝛽𝐶𝑜𝑉) and the sixth Coronavirus (CoV), MERS-

CoV is a virus transmitted to humans [2]. In 2012, the first case of MERS-CoV was 

recognized in the Kingdom of Saudi Arabia. The case symptoms included fever, short 

breath, cough, and expectoration [29]. Before MERS-CoV had emerged, the outbreak of 

the zoonotic coronavirus known as Sever Acute Respiratory Syndrome (SARS) spread in 

26 countries, which exceeded 8000 cases in 2003 [30]. In fact, SARS was the first known 

coronavirus infection at that time. Before that time, Coronavirus infections caused no more 

than a moderate upper respiratory tract infection which was not considered as major public 

health issue [5]. Early large nosocomial epidemic events are significant characteristic for 

both SARS and MERS, nosocomial infectious diseases that have a reproduction number 

declining to be less than 1 for 3 to 5 disease generations [3]. MERS-CoV related viruses 

have been discovered in bats that have indirect contact with humans [26]. Considerable 

indications assumed that the main source of MERS-CoV transmission is dromedary 

camels [18,23, 9]. It is suggested that there might be a viral connection between bats, 

camels and humans, whereas there is no specific evidence of the main sources of MERS-

CoV [27]. The result of the zoonotic transmission events that have generated MERS-CoV 
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with clusters of reported human to human transmission of the virus is that animal is a 

preceding source of MERS-CoV [12]. In early 1992, the antibodies of MERS existed in 

dromedaries, whereas the first case of MERS-CoV reported in humans was in 2012 [23]. 

Even though some evidence suggested that camels are one of the sources of MERS-CoV 

transmissions, the precise sources of its outbreak are still unknown [9]. Even though 

MERS-CoV was spread first in the Arabian Peninsula, the outbreak spread around the 

world in many countries. An Italian adult man who traveled to Jordan was reported as a 

first case of MERS-CoV in Italy in May 2013 [21].  In 2014, many cases of MERS-CoV 

were reported in Saudi Arabia and in United Arab Emirates. At that time, the cases of 

MERS-CoV that were reported outside the Middle East had a history of visiting either 

United Arab Emirates (UAE) or the Kingdom of Saudi Arabia (KSA) [1]. MERS-CoV 

outbreaks are increasing since 2012. According to the World Health Organization (WHO), 

globally, 2079 cases have been reported, with 722 cases experiencing death as of 

September 6th, 2017.   

The lack of understanding of the dynamics of MERS-CoV transmission would lead 

to a fatal dramatic outbreak. Some factors, also, would assist in its spread, such as the 

pilgrims to the holy places in KSA. Annually, about 2 to 3 million Muslim pilgrims coming 

from approximately 180 countries travel to Mecca in KSA to perform the pilgrimage or Hajj, 

which affects the Saudi Arabia’s health system [17]. The Hajj event might be a factor of 

increasing the spread of MERS-CoV around the world. Until now, there is no antivirus for 

MERS-CoV infection to prevent its spread. The only precaution taken to limit the spread 

of the disease is isolation and hospitalization of the infected patients. The visitors coming 

back from the Middle East area must be investigated and isolated if they are suspected of 
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having any contact with MERS-CoV cases, or having the disease symptoms as the 

incubation period of the MER-CoV is 12 days [8]. 

 With this uncertain dynamic of MERS-CoV transmission, mathematical model 

and optimal control can assist epidemiologists to investigate the spread of the disease 

and behavior so that they can discover the strategies to limit the spread. In 2013, a 

stochastic model including nine compartments for MERS-CoV was approached by 

Chowella et al. [4]. Their results indicate that the average reproduction number is 0.45 if 

all the reported zoonotic cases are severe, while about 57% of secondary cases are 

symptomatic. The major result in [4] was that the hospitalized cases should be more 

considered by epidemiologists because hospitalized transmission is four times higher 

than community transmission. On the other side, during the largest outbreak which 

happened outside the Middle East in 2015 in the Republic of South Korea, [26] studied 

the mathematical model of MERS-CoV. The study indicates a higher basic reproduction 

number that equals to 4.422. Using SIR model and Bayesian method, [25] studied the 

epidemic level of MERS and the reproduction values in western, central, and eastern 

regions of Saudi Arabia between May 2013 and May 2015. In 2017, a stability method of 

ordinary differential equation was used by Al-Asouad N. et al. in [20] to study the 

analytical investigation of MERS-CoV mathematical model, resulting the endemic steady 

state which is stable with isolation method for preventing the spread of MERS-CoV. 

Also, [28] studied the mathematical dynamic transmission model for MERS-CoV in two 

areas by analyzing the sensitivity indices of the reproduction number to reduce the 

infected cases. However, these studies only focused on the mathematical models of 

MERS, but did not investigate the optimal control of MERS-CoV. Indeed, an optimal 
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control objective function can be introduced to reduce and limit the factors of MERS-CoV 

outbreak. 

 This paper contains five chapters. In Chapter II, we will investigate the properties 

of the two basic compartment models for infectious diseases, which are Susceptible-

Infectious-Recovery (SIR) model and Susceptible-Exposed-Infectious-Recovery (SEIR) 

model. In Chapter III, a model of MERS-CoV will be created and investigated using 

methods of nonlinear differential equations. Also, it contains developed model of MERS-

CoV with evaluation its reproduction ratio using next-generation method. Numerical 

solutions will be presented based on available data for MERS-CoV outbreak in Chapter 

IV. Mathematical software, such as MAPLE will be used to explore the model. Numerical 

control problem of reductions of the spread of MERS-CoV disease will be also 

presented. An optimal control problem of minimization of infected individuals at the 

terminal time Τ is stated and solved numerically. In the last chapter, the result of our 

study will be discussed and the conclusion will be made.
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CHAPTER II 

MATHEMATICAL COMPARTMENT MODELS FOR INFECTIOUS DISEASES: 

(SIR) AND (SEIR) MODELS 

 

The main consideration in epidemiology is studying the spread of diseases. 

Epidemiology deals with tracing and analyzing the factors that cause the spread of 

diseases over time, and seeks out finding possible control. Besides epidemiology, 

mathematical modeling is a contributory aspect of the study of infectious diseases. 

Mathematical modeling assists in understanding and predicting the behavior of infectious 

diseases. Mathematical epidemiology models have been studied for long time. The first 

compartment model for epidemic infectious diseases was derived by Kermarck and 

McKendrick [14]. In epidemic models, the population usually is divided into classes or 

compartments. In order to study the dynamics of the infectious diseases, the basic SIR 

epidemic model is used to divide the population into three various classes, which are 

susceptible 𝑆, infected 𝐼, and recovered 𝑅 individuals. In this model, the movement of 

individuals from one compartment to another is determined by their capability to fight the 

diseases and the individuals’ interactions with infected people [22]. The basic SIR model 

represents a system with three non-linear 1st order differential equations. Addition of an 

exposed compartment to SIR model leads to another model called SEIR model.  

In this chapter, investigation of the properties of the basic SIR and SEIR models 

will be explored. The SIR model will be first represented with a diagram, and an 



6 
 

explanation of its compartments and its parameters that show the connection between 

the compartments. Then, its equilibria and its basic reproduction ratio will be explored. 

Also,

the stability of its equilibria will be discovered according to the theory of stability. In the 

numerical solution for the SIR model, the trajectory of the model and the Jacobian matrix 

after linearizing the system of the SIR model will be explored. With selected initial value, 

the behavior of the spread of the infectious disease will be discovered. The same 

process will be followed for the SIR model, and by adding Exposed individuals 

compartment make it SEIR model.  

2.1 Susceptible-Infectious-Recovery (SIR) Model 

 

In SIR model, the population size is divided into three different states or 

compartments, which are Susceptible 𝑆(𝑡), Infectious 𝐼(𝑡), and Recovered 

individuals 𝑅(𝑡). The assumptions of our SIR model are stated below: 

• The population size is N, which contains all three compartments as 

mentioned before; therefore 𝑁 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) 

• The population size is fixed 

• In this model, the demographics (the natural birth and death of 

individuals) will be considered; The rate of birth equals the death rate and 

they are denoted by 𝜇; the birth rate enters the susceptible class as 𝜇𝑁  

• The rate of death is independent of the disease  

• The rate of the interactions between susceptible class and infectious 

class is 𝛽 
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• Individuals who transferred from the infectious class to the recovery class 

are represented by 𝛼 

The flowchart below explains the movement from each class and the rate of their 

interactions.  

                

                           

 

Figure 2.1 SIR compartment model  

 

The diagram above can be represented by the system of nonlinear differential equations. 

Indeed, in SIR model, it is difficult to find the precise solutions of 𝑆(𝑡) and 

𝐼(𝑡) analytically, while this model assists to describe the behavior of their interactions 

[16]. The formulas in (2.1) show the system of SIR model: 

{
 
 

 
 
𝑑𝑆(𝑡)

𝑑𝑡
= 𝜇𝑁 − 𝜇𝑆(𝑡) −

1

𝑁
𝛽𝑆(𝑡)𝐼(𝑡)

  
𝑑𝐼(𝑡)

𝑑𝑡
=
1

𝑁
𝛽𝑆(𝑡)𝐼(𝑡) − 𝛼𝐼(𝑡) − 𝜇𝐼(𝑡) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛼𝐼(𝑡) − 𝜇𝑅(𝑡)

     

 

Because of our assumption that the population is constant and 𝑁 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡), 

the system can be reduced to the two nonlinear differential equations. Moreover, by 

Susceptible

(S)

infected

(I)

recovered

(R)

𝜇𝑁 

𝛽𝐼

𝑁
  𝛼  

𝜇 𝜇 𝜇 

(2.1) 
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considering that 𝑠 =
𝑆

𝑁
, 𝑖 =

𝐼

𝑁
, and, 𝑟 =

𝑅

𝑁
 the SIR model would be written as new system 

(2.2) after substituting and dividing all the equations by 𝑁. For convenience, returning to 

original variables we have: 

                     

𝑑𝑆(𝑡)

𝑑𝑡
= 𝜇 − 𝜇𝑆(𝑡) − 𝛽𝑆(𝑡)𝐼(𝑡) = 𝑓(𝑆(𝑡), 𝐼(𝑡), 𝑡) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽𝑆(𝑡)𝐼(𝑡) − (𝛼 + 𝜇)𝐼(𝑡) = 𝑔(𝑆(𝑡), 𝐼(𝑡), 𝑡) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛼𝐼(𝑡) − 𝜇𝑅(𝑡) = ℎ(𝐼(𝑡), 𝑅(𝑡), 𝑡) 

In the system (2.2), when the infectious compartment increases, the epidemic would 

occur [10]. Therefore, when 
ⅆ𝐼(𝑡)

ⅆ𝑡
> 0, then 𝛽𝑆(𝑡)𝐼(𝑡) > (𝛼 + 𝜇)𝐼(𝑡). That leads to 

𝛽𝑆(𝑡)𝐼(𝑡)

(𝛼 + 𝜇)
> 𝐼(𝑡) 

If the number of susceptible approximately equals to 1, the upcoming quantity would be 

approved after substituting 𝑆(𝑡) ≈ 1.  

𝛽

(𝛼 + 𝜇)
> 1 

The left-hand side of (2.4) is known as the basic reproduction ratio (𝑅0).  

Definition. The basic reproduction ratio is the number of secondary infections that are 

caused by a single infectious case so that the disease would spread continuously. 

(2.2) 

(2.3) 

(2.4) 
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The definition of the ratio 𝑅0 is considered by [11,13], and it is found as well for SIR 

model.  

In the next section, we will explore the equilibrium points of SIR model to investigate 

more about its behavior. To find its equilibria, the linearization of the system must be 

conducted.  

In order to linearize the system (2.2), the equations below need to be solved: 

𝑓(𝑆(𝑡), 𝐼(𝑡), 𝑡) = 0      ,       𝑔(𝑆(𝑡), 𝐼(𝑡), 𝑡) = 0      ,        ℎ(𝐼(𝑡), 𝑅(𝑡), 𝑡) = 0  

Thus, 

                 {

 𝜇 − 𝜇𝑆(𝑡) − 𝛽𝑆(𝑡)𝐼(𝑡) = 0

𝛽𝑆(𝑡)𝐼(𝑡) − (𝛼 + 𝜇)𝐼(𝑡) = 0

 𝛼𝐼(𝑡) − 𝜇𝑅(𝑡) = 0

           (2.5) 

From (b), the equation 𝛽𝑆(𝑡)𝐼(𝑡) = (𝛼 + 𝜇)𝐼(𝑡) can be substituted in the first equation 

above to have 

  𝜇(1 − 𝑆(𝑡)) − (𝛼 + 𝜇)𝐼(𝑡) = 0 

The left-hand side of this equation must be zero when 𝑆(𝑡) = 1, and 𝐼(𝑡) = 0, by 

substituting the last equation in (2.5), 𝑅(𝑡) = 0. Thus, the first equilibrium point is 

(𝑆∗, 𝐼∗, 𝑅∗) = (1,0,0). In addition to this equilibrium point for SIR model illustrated by (2.2), 

the second equilibrium point would be found by solving the equation the second 

equation in (2.5). After dividing the equation by 𝐼(𝑡) on both sides, we will have: 

 𝛽𝑆(𝑡) = (𝛼 + 𝜇), which will lead to 𝑆∗ =
𝛼+𝜇

𝛽
. After substituting this value in the first 

equation in (2.5) we will have:  
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 𝜇 − 𝜇 (
𝛼+𝜇

𝛽
) − 𝛽𝐼(𝑡) (

𝛼+𝜇

𝛽
) = 0. By solving for 𝐼(𝑡), 𝐼∗ would be equal to  

𝜇

𝛼+𝜇
−
𝜇

𝛽
 . Also, 

𝑅∗ would be found by substituting the value of 𝐼∗ into last equation in (2.5). 

 Thus, 𝑅∗ =
𝛼

𝜇
(

𝜇

𝛼+𝜇
−
𝜇

𝛽
) =  𝛼 (

1

𝛼+𝜇
−

1

𝛽
). The second equilibrium point for our system, 

therefore, would be equal to  (
𝛼+𝜇

𝛽
,

𝜇

𝛼+𝜇
−
𝜇

𝛽
, 𝛼 (

1

𝛼+𝜇
−

1

𝛽
)).   

Definition. Endemic equilibrium (EE) occur when 𝐼∗ > 0 so the disease keeps spreading 

in the population while the Disease-Free equilibrium (DFE) occurs when 𝐼∗ = 0.  

It is also possible for EE equilibrium to be written in terms of 𝑅0 , which is 

(
1

𝑅0
,
(𝑅0 − 1)𝜇

𝛽
,
𝛼(𝑅0 − 1)

𝛽
) 

Definition. The (𝑘×𝑘) matrix of partial derivatives of nonlinear system of 𝑘 first order 

equations is called Jacobian (𝑱) of the system.  

The Jacobian for SIR model (2.2) is evaluated as: 

𝐽(𝑆, 𝐼, 𝑅) =

[
 
 
 
 
 
 
𝜕𝑓

𝜕𝑆

𝜕𝑓

𝜕𝐼

𝜕𝑓

𝜕𝑅
𝜕𝑔

𝜕𝑆

𝜕𝑔

𝜕𝐼

𝜕𝑔

𝜕𝑅
𝜕ℎ

𝜕𝑆

𝜕ℎ

𝜕𝐼

𝜕ℎ

𝜕𝑅]
 
 
 
 
 
 

= [

−𝛽𝐼(𝑡) − 𝜇 −𝛽𝑆(𝑡) 0

𝛽𝐼(𝑡) 𝛽𝑆(𝑡) − (𝛼 + 𝜇) 0
0 𝛼 −𝜇

] 

         

To investigate more about the behavior of epidemic models near equilibrium points, it is 

helpful to evaluate the eigenvalues of Jacobian matrix at the equilibrium points of the 

system of nonlinear equations. 
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Theorem. (Stability Theorem) If 𝐽 is a (𝑘×𝑘) matrix, the Jacobian matrix for a nonlinear 

system of 𝑘 first-order equations, then the eigenvalues (𝜆𝑖, 𝑖 = 1…𝑘) of 𝐽 at the 

equilibrium points have five different possible behaviors depending on its value. The 

table below denotes these cases: 

Table 1. Possible Behaviors Depending on The Values of Eigenvalues 

𝝀𝒊 value  equilibria  

Real part for all eigenvalues is negative  Stable 

At least one eigenvalue has negative real part 

value and at least one eigenvalue has positive 

real part eigenvalue 

Saddle 

Real part for all eigenvalues is positive Unstable 

 At least a complex conjugate pair eigenvalues  Stable or unstable (Spiral)  

 

All eigenvalues are real Stable or unstable (Node) 

A pair of complex eigenvalues with real part 

equals to zero 

 Linear center 

 

For more information about this theorem, see [19, 22]. To find the characteristic equation 

for the Jacobian matrix at equilibrium points, det(𝐽 − 𝜆𝐼) = 0 must be solved. Before 

finding the characteristic equation, we will evaluate the Jacobian matrix at DFE= (1,0,0). 

𝐽(1,0,0) = [

−𝜇 −𝛽 0
0 𝛽 − (𝛼 + 𝜇) 0
0 𝛼 −𝜇

]  
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Thus, the characteristic equation of Jacobian matrix at DFE point (1,0,0) is shown below:  

 

det(𝐽 − 𝜆𝐼) = |

−𝜇 − 𝜆 −𝛽 0

0 𝛽 − (𝛼 + 𝜇) − 𝜆 0
0 𝛼 −𝜇 − 𝜆

| = 0 

(−𝜇 − 𝜆)2 (𝛽 − (𝛼 + 𝜇) − 𝜆) = 0 

The eigenvalues are 

𝜆1,2 = −𝜇,  𝜆3 = 𝛽 − (𝛼 + 𝜇) 

Because 𝜇 > 0, there are two cases for equilibrium behavior: 

• If 𝛽 − (𝛼 + 𝜇) < 0, then DFE is a stable node 

• If 𝛽 − (𝛼 + 𝜇) > 0, then DFE is a saddle point 

The case 𝐼∗ = 0 is discussed above resulting the DFE. In addition to DFE, let us discuss 

the other cases. 

Case 1: when 𝐼∗ > 0    

As mentioned in the definition of EE, the infections would occur in this case. Therefore, 

ⅆ𝐼

ⅆ𝑡
> 0, which leads to 𝛽𝑆(𝑡)𝐼(𝑡) − (𝛼 + 𝜇)𝐼(𝑡) > 0.  

Then, 

[𝛽𝑆(𝑡) − (𝛼 + 𝜇)]𝐼(𝑡) > 0            (2.6) 
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After writing the EE point in term of 𝑅0, we have  (𝑆∗, 𝐼∗, 𝑅∗) = (
1

𝑅0
,
(𝑅0−1)𝜇

𝛽
,
𝛼

𝛽
(𝑅0 − 1)). 

In this case, we will have 

(𝑅0 − 1)𝜇

𝛽
> 0 

Because 
𝜇

𝛽
> 0, 𝑅0 > 1. This makes a stable EE and unstable DFE. 

Case 2: when 𝐼∗ < 0 

In this case, 
(𝑅0−1)𝜇

𝛽
< 0, and this happens when 𝑅0 < 1. Moreover, in this case, we 

obtain unstable EE and stable DFE.  

These cases will be next shown numerically.  

 

2.2 Numerical Explanation of SIR Model using MAPLE 

 

 Using computer software and programs for simulating models make the 

explorations easier. In this section, I will investigate the SIR model numerically by setting 

initial values for SIR model.  

MAPLE software can also assist in finding the Jacobian matrix for SIR model. The output 

of Jacobian matrix of (a, b, c) equations mentioned above is shown as: 
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Figure 2.2. The output of Jacobian matrix of SIR model 

 

 Also, the output of equilibrium points is the same as what is found analytically above, 

which is: 

 

Figure 2.3. The output of equilibrium points of SIR model 

 

These outputs in MAPLE allow us to evaluate the numerical solutions for our system 

easily. Moreover, the eigenvalues and the eigenvectors can also be evaluated by 

MAPLE. (See Appendix-A (a) for the inputs). After substituting these two values on the 

Jacobian matrix, we obtain the Jacobian evaluated at DFE equilibria and its eigenvalues 

are: 

 

 

 

Figure 2.4. The output of the Jacobian matrix at DFE and its eigenvalues 
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While Jacobian at EE point is: 

 

Figure 2.5. The output of the Jacobian matrix at EE 

 

Let us explore the case 𝑅0 < 1 for SIR model. Figure (2.6) below shows the trajectory for 

susceptible and infectious individuals with 𝜇 = 0.6, 𝛽 = 0.5, 𝛼 = 0.3 by using MAPLE, 

(see Appendix-A, Figure (2.6)). 

 

Figure 2.6. The plot of the trajectory for susceptible and infectious individuals  

of SIR model using MAPLE  
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In Figure (2.6) above, it is obvious that the behavior of DFE is stable node because the 

equilibrium points in this case are real negative values. 

Figures (2.7) below show the 3D plotting for SIR model. (See Appendix-A, (Figure 2.7). 

 

Figure 2.7. The 3D plot of SIR model 

Case 2: when 𝑅0 > 1, the behavior of DFE is a saddle equilibria while EE is stable spiral 

equilibria. Let set 𝜇 = 0.3, 𝛽 = 0.7, 𝛼 = 0.2, the trajectory of susceptible and infectious 

classes is shown in Figure (2.8). (See Appendix-A, (Figure 2.8)). 

 

Figure 2.8. The trajectory of susceptible and infectious classes  

of SIR model when 𝑹𝟎 > 𝟏 
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To see how the number of infected individuals increase or decrease for each case, the 

plot of the solution of the system must be conducted. The plots below show the two 

cases in selected time. 

 

                 

                        Figure 2.9                              Figure 2.10 

Figure 2.9. The plot of susceptible and infected individuals of SIR model 

 when 𝑹𝟎 < 𝟏   

Figure 2.10. The plot of susceptible, infected, and recovered classes of SIR model 

when 𝑹𝟎 > 𝟏 

 

These plots illustrate that the number of infected individuals would decrease until the 

infection dies out when 𝑅0 < 1, while the spread of infection would increase, causing an 

epidemic when 𝑅0 > 1.  

 

 

I(t),S(t),R(t)  
S(t),I(t) 

𝑅0 < 1 𝑅0 > 1 
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2.3 Susceptible-Exposed-Infectious-Recovery (SEIR) Model 

 

In the SEIR model, the population with size 𝑁 is divided into four compartments which 

are susceptible 𝑆, exposed 𝐸, infected 𝐼, and recovered 𝑅.Thus, the population 𝑁 can be 

written as 𝑁 = 𝑆 + 𝐸 + 𝐼 + 𝑅. Let us suppose that 

• The contacts between susceptible and infected individuals cause the 

transmission of the pathogen during a period (t) with a rate 𝛽 individuals/unit 

time. Then, the exchange rate for individuals from being in the susceptible 

category to the exposed category is obtained by rate 𝛽𝐼.  

•  The parameter 𝛼 illustrates the rate of movement of people from the exposed 

class to the infected class. 

• The parameter 𝛾 illustrates the rate of moving from being in the infected class to 

recovered class. 

• The demographics (natural birth and death) are considered in this model, and 

𝜇 represents death and birth.  

• The population size is constant. 
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The flowchart below illustrates the interaction between each class in the SEIR model.  

 

Figure 2.11. SEIR compartments model 

 

This diagram is the illustration of a first order non-linear differential equations system 

(2.7): 

{
 
 
 
 

 
 
 
 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝜇𝑁 −

𝛽

𝑁
𝑆(𝑡)𝐼(𝑡) − 𝜇𝑆(𝑡)

 
𝑑𝐸(𝑡)

𝑑𝑡
=
𝛽

𝑁
𝑆(𝑡)𝐼(𝑡) − 𝛼𝐸(𝑡) − 𝜇𝐸(𝑡)

 
𝑑𝐼(𝑡)

𝑑𝑡
= 𝛼𝐸(𝑡) − 𝛾𝐼(𝑡) − 𝜇𝐼(𝑡)

𝑑𝑅(𝑡)

𝑑𝑡
=  𝛾𝐼(𝑡) − 𝜇𝑅(𝑡)

 

                             

In the SEIR system shown in (2.7), 
ⅆ𝑅(𝑡)

ⅆ𝑡
 can be reduced as well as in the SIR model 

because it depends only on 𝐼(𝑡). Also, 
ⅆ𝑅(𝑡)

ⅆ𝑡
= −(

ⅆ𝑆(𝑡)

ⅆ𝑡
+
ⅆ𝐸(𝑡)

ⅆ𝑡
+
ⅆ𝐼(𝑡)

ⅆ𝑡
) because 

Susceptible

(S)

Exposed

(E)

infected

(I)

recovered

(R)

Birth 

𝛽𝐼 𝛼 𝛾 

𝜇 𝜇 𝜇 𝜇 

(2.7) 
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 𝑁 = 𝑆 + 𝐸 + 𝐼 + 𝑅 and 𝑁 is constant as it is mentioned in our assumption above. 

Therefore, instead of discussing the system (2.7), I will discuss the reduced system 

below: 

{
 
 

 
 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝜇𝑁 −

𝛽

𝑁
𝑆(𝑡)𝐼(𝑡) − 𝜇𝑆(𝑡) = 𝑓(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑡)

𝑑𝐸(𝑡)

𝑑𝑡
=
𝛽

𝑁
𝑆(𝑡)𝐼(𝑡) − 𝛼𝐸(𝑡) − 𝜇𝐸(𝑡) = 𝑔(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑡)

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛼𝐸(𝑡) − 𝛾𝐼(𝑡) − 𝜇𝐼(𝑡) = ℎ(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑡)

 

      

After linearizing (2.8), the Diseases Free Equilibria can be found by substituting 𝐼∗ = 0 in 

the linearized system (2.9) below. Thus, 
ⅆ𝐼∗

ⅆ𝑡
= 𝛼𝐸∗(𝑡) = 0, obtained when 𝐸∗ = 0. Also, 

by substituting (𝐼∗ = 0)  into  𝜇𝑁 −
𝛽

𝑁
𝑆(𝑡)𝐼(𝑡) − 𝜇𝑆(𝑡) = 0, 𝑆∗ must be equal to the size of 

the population 𝑁. Therefore, DFE= (𝑁, 0,0). 

{
 

  𝜇𝑁 −
𝛽

𝑁
𝑆(𝑡)𝐼(𝑡) − 𝜇𝑆(𝑡) = 0  

 
𝛽

𝑁
𝑆(𝑡)𝐼(𝑡) − 𝛼𝐸(𝑡) − 𝜇𝐸(𝑡) = 0

𝛼𝐸(𝑡) − 𝛾𝐼(𝑡) − 𝜇𝐼(𝑡) = 0   

           (2.9)                                 

For more illustration, the second equation in (2.9) can be rewritten as: 

𝜇𝑁 − (
𝛽

𝑁
𝐼(𝑡) + 𝜇) 𝑆(𝑡) = 0             

And from last equation we have 

𝐸(𝑡) =
(𝛾+𝜇) 𝐼(𝑡)

𝛼
          (2.10) 

After substituting (2.10) in the second equation in the system (2.9), we will have 

(2.8) 
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𝛽

𝑁
𝑆(𝑡)𝐼(𝑡) −

1

𝛼
(𝛼 + 𝜇)(𝛾 + 𝜇) 𝐼(𝑡) = 0 

After factor 𝐼(𝑡), the previous equation can be written as  

(
𝛽

𝑁
𝑆(𝑡) −

1

𝛼
(𝛼 + 𝜇)(𝛾 + 𝜇) ) 𝐼(𝑡) = 0     (2.11) 

To solve this equation either 𝐼(𝑡) = 0 or 

𝑆(𝑡) =
𝑁(𝛼 + 𝜇)(𝛾 + 𝜇)

𝛼𝛽
 

For 𝐼(𝑡) = 0 we will have the DFE that it is found earlier, which is (𝑁, 0,0). In addition, the 

endemic equilibria will be found by substituting (2.12) in the first equation in the system 

(2.9) to find the value of 𝐼(𝑡). Thus,  

𝜇𝑁 −
𝑁𝛽(𝛼 + 𝜇)(𝛾 + 𝜇)

𝑁𝛽𝛼
𝐼(𝑡) −

𝑁𝜇(𝛼 + 𝜇)(𝛾 + 𝜇)

𝛽𝛼
= 0 

By multiplying and dividing the previous equation by 𝛼𝛽 and by simplifying the above 

equation, we will have: 

𝜇𝑁𝛼𝛽 − 𝛽(𝛼 + 𝜇)(𝛾 + 𝜇)𝐼(𝑡) − 𝑁𝜇(𝛼 + 𝜇)(𝛾 + 𝜇) = 0 

 

By solving for 𝐼(𝑡), we have: 

𝜇𝑁𝛼𝛽 − 𝑁𝜇(𝛼 + 𝜇)(𝛾 + 𝜇) = 𝛽(𝛼 + 𝜇)(𝛾 + 𝜇)𝐼(𝑡) 

Then, 

(2.12) 
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𝐼(𝑡) =
𝜇𝑁𝛼𝛽 − 𝑁𝜇(𝛼 + 𝜇)(𝛾 + 𝜇)

𝛽(𝛼 + 𝜇)(𝛾 + 𝜇)
 

         

𝐼(𝑡) =
𝜇𝑁(𝛼𝛽 − (𝛼 + 𝜇)(𝛾 + 𝜇))

𝛽(𝛼 + 𝜇)(𝛾 + 𝜇)
 

            

𝐸(𝑡), also, can be found by substituting (2.13) into (2.10) 

𝐸(𝑡) =
𝜇𝑁(𝛼𝛽 − (𝛼 + 𝜇)(𝛾 + 𝜇))

𝛼𝛽(𝛼 + 𝜇)
 

Thus, the endemic equilibrium point for SEIR model is 

(𝑆∗, 𝐸∗, 𝐼∗) = (
𝑁(𝛼 + 𝜇)(𝛾 + 𝜇)

𝛼𝛽
,
𝜇𝑁(𝛼𝛽 − (𝛼 + 𝜇)(𝛾 + 𝜇))

𝛼𝛽(𝛼 + 𝜇)
,

𝜇𝑁(𝛼𝛽 − (𝛼 + 𝜇)(𝛾 + 𝜇))

𝛽(𝛼 + 𝜇)(𝛾 + 𝜇)
 ) 

This is the same result that I found using MAPLE software: 

 

Figure 2.12. The output of EE for SEIR model 

(See Appendix-B, (b)). 

The Jacobian for SEIR model (2.8) is evaluated as: 

(2.13) 
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𝐽(𝑆, 𝐸, 𝐼) =

[
 
 
 
 
 
𝜕𝑓

𝜕𝑆

𝜕𝑓

𝜕𝐸

𝜕𝑓

𝜕𝐼
𝜕𝑔

𝜕𝑆

𝜕𝑔

𝜕𝐸

𝜕𝑔

𝜕𝐼
𝜕ℎ

𝜕𝑆

𝜕ℎ

𝜕𝐸

𝜕ℎ

𝜕𝐼 ]
 
 
 
 
 

=

[
 
 
 
 −
𝛽

𝑁
𝐼(𝑡) − 𝜇 −

𝛽

𝑁
𝑆(𝑡) 0

𝛽

𝑁
𝐼(𝑡) −(𝛼 + 𝜇)

𝛽

𝑁
𝑆(𝑡)

0 𝛼 −(𝛾 + 𝜇)]
 
 
 
 

 

The Jacobian of the SEIR model at DFE is shown below: 

𝐽(𝑁, 0,0) = [

−𝜇 −𝛽 0
0 −(𝛼 + 𝜇) 𝛽
0 𝛼 −(𝛾 + 𝜇)

] 

To find its eigenvalues, det(𝐽(𝑁,0,0) − 𝜆𝐼) = 0 must be solved. 

det(𝐽 − 𝜆𝐼) = |

−𝜇 − 𝜆 −𝛽 0

0 −(𝛼 + 𝜇) − 𝜆 𝛽

0 𝛼 −(𝛾 + 𝜇) − 𝜆
| = 0 

After the expanding the determinant, we obtain 

  

(𝜇 + 𝜆) (( (𝛼 + 𝜇) + 𝜆)((𝛾 + 𝜇) + 𝜆) − 𝛼𝛽) = 0 

𝜆1 = −𝜇    , 𝜆2,3 =
−(𝛼 + 2𝜇 + 𝛾) ± √((𝛼 + 𝜇) − (𝛾 + 𝜇))

2
+ 4𝛼𝛽

2
 

According to the stability theorem, the trajectory of the system will have stable behavior 

when  

√((𝛼 + 𝜇) − (𝛾 + 𝜇))
2
+ 4𝛼𝛽 < (𝛼 + 2𝜇 + 𝛾) 
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Let us find the eigenvalue at the endemic equilibria for SEIR model later in this chapter 

with numerical solution. 

Next, the basic reproduction ratio of the SEIR model will be found by two different ways. 

 

2.4 The Basic Reproduction Ratio 𝑹𝟎 for SEIR Model 

 

𝑅0 is useful to investigate the spread of the disease and helps to predict if the disease 

will increase and become an endemic disease or if it will decrease. The basic 

reproduction ratio 𝑅0, also known as the threshold parameter, for the SEIR model, can 

be found if the infectious disease is increasing. In the SEIR model the infections would 

happen when 
ⅆ𝐸(𝑡)

ⅆ𝑡
> 0. To explore this, the right-hand side of equation (2.11), that it is 

written previously, must be more than zero,  

(
𝛽

𝑁
𝑆(𝑡) −

1

𝛼
(𝛼 + 𝜇)(𝛾 + 𝜇) ) 𝐼(𝑡) > 0 

let 𝑆(𝑡) ≈ 𝑁, and solve this quantity to have: 

𝛽𝐼(𝑡) >
1

𝛼
(𝛼 + 𝜇)(𝛾 + 𝜇)𝐼(𝑡) 

𝛽𝛼

(𝛼 + 𝜇)(𝛾 + 𝜇)
> 1 

 Thus, 𝑅0 =
𝛽𝛼

(𝛼+𝜇)(𝛾+𝜇)
 

Another way to calculate 𝑅0 is the next-generation method. See [24, p.32] for more 

illustration. 
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The next-generation method 

 

In next-generation method, we need to consider both the ways of creating new infections 

and the ways of moving between states. In SEIR model, “exposed” and “Infectious” are 

two different disease states. In the exposed and infectious states, by looking at (2.8), it is 

obvious that there is one way to create new infections, which is the interaction between 

susceptible and infectious individuals, while there are many ways to move between 

infectious and exposed classes. By using the next-generation method, there are two 

matrices 𝐹 and 𝑉, where  

𝐹 =
𝜕𝑓𝑖
𝜕𝑥𝑗

     

and 

𝑉 =
𝜕𝑣𝑖
𝜕𝑥𝑗

 

𝑓𝑖 : the rate of having new infections  

(𝑣𝑖 = 𝑣𝑖
− − 𝑣𝑖

+) : 𝑣𝑖
− is the rate of moving individuals out compartment 𝑖 and 𝑣𝑖

+ is the rate 

of moving individuals into the compartment. 

In SEIR model (2.8),  

𝐹 = [0
𝛽

𝑁
𝑆0

0 0

] = [
0 𝛽
0 0

]  

𝑉 = [
(𝜇 + 𝛼) 0
−𝛼 (𝛾 + 𝜇)

] 

The next-generation method shows that 𝑅0 is the largest eigenvalue of matrix 𝐺 = 𝐹𝑉−1.  
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After evaluating 𝑉−1 and multiplying it by 𝐹 matrix,  

  

𝐺 = [

𝛽𝛼

(𝜇 + 𝛼)(𝛾 + 𝜇)

𝛽

(𝛾 + 𝜇)
0 0

] 

In this matrix 𝐺, 𝑅0 =
𝛽𝛼

(𝜇+𝛼)(𝛾+𝜇)
, which is the largest eigenvalue of next-generation 

matrix. In fact, the result here is the same as what was found earlier.  

2.5 Numerical Solution of SEIR 

 

As I mentioned before, software such as MAPLE assists to find the Jacobian 

matrix more easily. For the SEIR model without reducing 
ⅆ𝑅

ⅆ𝑡
,  the output of the Jacobian 

matrix using MAPLE is shown below.  

 

Figure 2.13. The output of Jacobian matrix of SEIR model 

 

This shows the same result as I found earlier.  

Let us suppose the initial values for SEIR model and analyze the plots of both cases 

𝑅0 < 1, and 𝑅0 > 1. 
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Case: (𝑅0 < 1) 

 

Figure 2.14. The 3D plot of SEIR model with selected initial values when 𝑹𝟎 < 𝟏 

 

Figure (2.14) above shows the 3d plot of SEIR model (2.8) with selected initial values 

when (𝑅0 < 1). 

To understand more about the dynamics of this system with these initial values, 

the phase portraits will explain more about the spread of the infectious disease when the 

threshold is less than one. Figure (2.15) below indicates that the infections individuals 

will die out until there is no more endemic, while the number of the susceptible 

individuals will be equal to the number of the populations.  

     𝝁 = 𝟎. 𝟐      𝜷 = 𝟎. 𝟐  
  𝜶 = 𝟎. 𝟒        𝜸 = 𝟎. 𝟏 

                      𝑵 = 𝟏𝟎 

Initial values  
𝑆(0) = 10  
𝐸(0) = 9 

𝐼(0) = 7 



28 
 

 

Figure 2.15. Different plots of S, I, and E classes of SEIR model when 𝑹𝟎 < 𝟏 

 

 

 

 

 

 

 

 

S(t) & I(t) 

I(t) & R(t) 

S(t) V. R(t) 
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Case: (𝑅0 > 1) 

The 3d plot of SEIR model (2.8) is shown in figure (2.3). 

 

Figure 2.16. The 3D plot of SEIR model when 𝑹𝟎 > 𝟏 

 

Figure (2.17) below shows the plot for each susceptible, infected, and exposed individual 

during one month with the same initial and parameter value above. 

     𝝁 = 𝟎. 𝟐      𝜷 = 𝟎. 𝟒  
  𝜶 = 𝟎. 𝟖        𝜸 = 𝟎. 𝟏 

                      𝑵 = 𝟏𝟎 

Initial values  
𝑆(0) = 20 

𝐸(0) = 5 

𝐼(0) = 7 
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Figure 2.17. Different plots of S, I, E classes of SEIR model when 𝑹𝟎 > 𝟏 

 

 

In this chapter, the basic models of epidemics are represented. Both SIR and 

SEIR models are investigated to see how the epidemics spread during a period of time. 

There are similar results for both models, which state that the spread of the disease is 

mostly dependent on the interaction between susceptible and infected individuals. 

However, the spread of infectious individuals in the SEIR model is slower than the 

spread in the SIR model. It is mostly about the exposed compartment on SEIR model. If 

the contact between susceptible and infected people increase, the spread will be 

I(t),S(t),E(t) 
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increased as well. Therefore, it is found that to control epidemics, we must impose 

preventive measures that would decrease the rate of interaction between infectious and 

susceptible individuals. Also, we found the criteria of the stability for each model using 

the Jacobian matrix and the theorem of stability. 
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CHAPTER III 

MERS-CoV MODEL INVESTIGATION  

DESCRIPTION OF THE MODEL 

 

By adding more compartments to SEIR model, we created the SEIHR model to 

investigate the spread of MERS-CoV infectious disease. Based in MERS models that 

were studied in [4, 20, 26], I use a similar model to explore the MERS infection in 

humans. The proposed model studied in this chapter has five compartments indicated 

below: 

S   the susceptible individuals 

E   the exposed individuals who have the pathogen but haven’t be infected yet 

I    the infected individuals 

H   the hospitalized individuals 

R   the removed or recovery individuals  

The assumption of this model is illustrated below: 

• We assume that the population size is constant and N = S(t) + E(t) + I(t) +

H(t) + R(t). 

• The natural death and birth rates are also considered in our model. 

• MERS-CoV has a latency period evaluated to be 2-14 days [15], which allows us 

to use the exposed individuals in our model. Thus, we consider the latency or 

exposed individuals in our model. 
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• We assume that the virus of MERS transfers to humans by either contacting with 

exposed, infected, or hospitalized individuals. 

• The parameters below indicate the interaction between compartments that are 

included in our model: 

β1    the rate of the interaction between susceptible and exposed individuals 

             β2    the rate of the interaction between susceptible and infectious individuals 

β3   the rate of the interaction between susceptible and hospitalized individuals 

α   the rate of the movement from being exposed to be in infectious calss   

            ε   the rate of the movement form being infected to be in hospitalized class 

               𝑑1   the death rate from infected individuals 

               𝑑2   the death rate from hospitalized individuals 

               𝑟1   the recovery rate from infected individuals 

              𝑟2   the recovery rate from hospitalized individuals 

            Based on the assumptions above, the proposed model of MERS-CoV is 

indicated in (3.1) as a nonlinear differential equations system. 
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{
 
 
 

 
 
   

ⅆ𝑆(𝑡)

ⅆ𝑡
= 𝜃𝑁 −

(𝛽1𝐸(𝑡)+𝛽2𝐼(𝑡)+𝛽3𝐻(𝑡))𝑆(𝑡)

𝑁
− 𝜇𝑆(𝑡)

       
ⅆ𝐸(𝑡)

ⅆ𝑡
=

(𝛽1𝐸(𝑡)+𝛽2𝐼(𝑡)+𝛽3𝐻(𝑡))𝑆(𝑡)

𝑁
− (𝛼 + 𝜇)𝐸(𝑡)

      
ⅆ𝐼(𝑡)

ⅆ𝑡
= 𝛼𝐸(𝑡) − (𝜀 + 𝑑1 + 𝑟1 + 𝜇)𝐼(𝑡)

  
ⅆ𝐻(𝑡)

ⅆ𝑡
= 𝜀𝐼(𝑡) − (𝑑2 + 𝑟2 + 𝜇)𝐻(𝑡)

ⅆ𝑅(𝑡)

ⅆ𝑡
= 𝑟1𝐼(𝑡) + 𝑟2𝐻(𝑡) − 𝜇𝑅(𝑡)

        (3.1) 

To  linearize system (3.1), we solved system (3.2) to find the equilibria for the model. 

                                        𝜃𝑁 −
(𝛽1𝐸(𝑡)+𝛽2𝐼(𝑡)+𝛽3𝐻(𝑡))𝑆(𝑡)

𝑁
− 𝜇𝑆(𝑡) = 0

                                        
(𝛽1𝐸(𝑡)+𝛽2𝐼(𝑡)+𝛽3𝐻(𝑡))𝑆(𝑡)

𝑁
− (𝛼 + 𝜇)𝐸(𝑡) = 0

                         𝛼𝐸(𝑡) − (𝜀 + 𝑑1 + 𝑟1 + 𝜇)𝐼(𝑡) = 0

                 𝜀𝐼(𝑡) − (𝑑2 + 𝑟2 + 𝜇)𝐻(𝑡) = 0

             𝑟1𝐼(𝑡) + 𝑟2𝐻(𝑡) − 𝜇𝑅(𝑡) = 0

                  (3.2) 

It is easier to find the disease-free equilibria first, which there is no more infections 

 (𝐼∗ = 0). Consequently, there will be no more exposed, hospitalized, and recovered 

individuals (𝐸∗ = 𝐻∗ = 𝑅∗ = 0). By substituting these values in the first equation in (3.2), 

we will have 

 𝜃𝑁 − 𝜇𝑆(𝑡) = 0. Thus, 𝑆∗ =
𝜃𝑁

𝜇
 . Thus, the disease-free equilibrium is 

 𝐷𝐹𝐸 = (𝑆∗, 𝐸∗, 𝐼∗, 𝐻∗, 𝑅∗) = (
𝜃𝑁

𝜇
, 0, 0, 0, 0). To find the endemic equilibrium point we need 

to solve the linearized system (3.2).  

Before finding the endemic equilibria, I would consider the first four equations in (3.2) 

because from the first system (3.1), we can reduce the last equation that depends on 

only infected and hospitalized individuals.  

I would also eliminate 𝑁 from the system by substituting 

 𝑆(𝑡) = 𝑁𝑆, 𝐸(𝑡) = 𝑁𝐸, 𝐼(𝑡) = 𝑁𝐼, 𝑎𝑛𝑑  𝐻(𝑡) = 𝑁𝐻  



35 
 

Then, by dividing both sides by 𝑁, we have the system (3.3) shown below. 

 𝜃 − (𝛽1𝐸 + 𝛽2𝐼 + 𝛽3𝐻 + 𝜇)𝑆 = 0                         

(𝛽1𝐸 + 𝛽2𝐼 + 𝛽3𝐻)𝑆  − (𝛼 + 𝜇)𝐸 = 0                 

𝛼𝐸 − (𝜀 + 𝑑1 + 𝑟1 + 𝜇)𝐼 = 0                                   

        𝜀𝐼 − (𝑑2 + 𝑟2 + 𝜇)𝐻 = 0                                   
             

             (3.3) 

From third equation in system (3.3), we have 

𝐼 =
𝛼𝐸

(𝜀+ⅆ1+𝑟1+𝜇) 
                  (3.4) 

From last equation in system (3.3), we have 

𝐼 =
(ⅆ2+𝑟2+𝜇)𝐻

𝜀
                         (3.5) 

The left-hand side of (3.4) and (3.5) are equal. Hence,  

𝐻 =
𝜀𝛼𝐸

(𝜀+ⅆ1+𝑟1+𝜇)(ⅆ2+𝑟2+𝜇) 
        (3.6) 

Also, by adding the first and the second equations in system (3.3), and solving for 𝐸, we 

have, 

𝐸 =  
𝜃−𝜇𝑆

 (𝛼+𝜇)
                      (3.7) 

By substituting (3.4), (3.5), and (3.6) into equation the second equation in (3.3), 

[(𝛽1 +
𝛽2𝛼

(𝜀 + 𝑑1 + 𝑟1 + 𝜇) 
+

𝛽3𝜀𝛼

(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇) 
)𝑆  − (𝛼 + 𝜇)]𝐸 = 0 

To solve this equation, either 𝐸 = 0, 𝑜𝑟 𝑆 =
(𝛼+𝜇)

𝛽1+
𝛽2𝛼

(𝜀+𝑑1+𝑟1+𝜇) 
+

𝛽3𝜀𝛼

(𝜀+𝑑1+𝑟1+𝜇)(𝑑2+𝑟2+𝜇) 

 

Thus, the susceptible value of the endemic equilibria is evaluated below: 
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𝑆∗ =
(𝛼 + 𝜇)(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇)

𝛽1(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇) + 𝛽2𝛼(𝑑2 + 𝑟2 + 𝜇) + 𝛽3𝜀𝛼
 

By substituting 𝑆∗ into (3.7),  

𝐸∗ =
𝜃

(𝛼 + 𝜇) 
− 

𝜇(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇)

[𝛽1(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇) + 𝛽2𝛼(𝑑2 + 𝑟2 + 𝜇) + 𝛽3𝜀𝛼]
 

And by substituting 𝐸∗ into (3.4) and (3.5), we have  

𝐼∗ =
𝛼

(𝜀 + 𝑑1 + 𝑟1 + 𝜇) 
[

𝜃

(𝛼 + 𝜇) 

− 
𝜇(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇)

[𝛽1(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇) + 𝛽2𝛼(𝑑2 + 𝑟2 + 𝜇) + 𝛽3𝜀𝛼]
] 

𝐻∗ =
𝜀𝛼

(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇) 
[

𝜃

(𝛼 + 𝜇) 

− 
𝜇(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇)

[𝛽1(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇) + 𝛽2𝛼(𝑑2 + 𝑟2 + 𝜇) + 𝛽3𝜀𝛼]
] 

 

Let 𝐷 = 𝛽1(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇) + 𝛽2𝛼(𝑑2 + 𝑟2 + 𝜇) + 𝛽3𝜀𝛼  
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Then, the endemic equilibria for MERS-CoV is 

(𝑆∗, 𝐸∗, 𝐼∗, 𝐻∗) = ( 
(𝛼 + 𝜇)(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇)

𝐷
,

𝜃

(𝛼 + 𝜇) 
− 
𝜇(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇)

𝐷
,

𝛼𝜃

(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝛼 + 𝜇) 
− 
𝛼𝜇(𝑑2 + 𝑟2 + 𝜇)

𝐷
,

𝜀𝛼𝜃

(𝛼 + 𝜇)(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇) 
− 
𝜀𝛼𝜇

𝐷
) 

3.1 The Jacobian Matrix for MERS-CoV: 

 

To find the stability of MERS-CoV, the Jacobian matrix must be evaluated as well 

as its equilibrium points. The Jacobian matrix for the MERS-CoV model at any 

equilibrium point (𝑆∗, 𝐸∗, 𝐼∗, 𝐻∗) is presented below: 

𝐽(𝑆∗,   𝐸∗,   𝐼∗,   𝐻∗)

=

[
 
 
 
−(𝛽1𝐸 + 𝛽2𝐼 + 𝛽3𝐻 + 𝜇) −𝛽1𝑆

∗ − 𝛽2𝑆
∗ −𝛽3𝑆

∗

𝛽1𝐸
∗ + 𝛽2𝐼

∗ + 𝛽3𝐻
∗ 𝛽1𝑆

∗ − (𝛼 + 𝜇) 𝛽2𝑆
∗ 𝛽3𝑆

∗

0 𝛼 −(𝜀 + 𝑑1 + 𝑟1 + 𝜇) 0

0 0 𝜀 −(𝑑2 + 𝑟2 + 𝜇) ]
 
 
 
 

𝐽
(
𝜃
𝜇 
,   0,   0,   0)

=

[
 
 
 
 
 
 −𝜇 −𝛽1

𝜃

𝜇 
− 𝛽2

𝜃

𝜇 
−𝛽3

𝜃

𝜇 

0 𝛽1
𝜃

𝜇 
− (𝛼 + 𝜇) 𝛽2

𝜃

𝜇 
𝛽3
𝜃

𝜇 
0 𝛼 −(𝜀 + 𝑑1 + 𝑟1 + 𝜇) 0

0 0 𝜀 −(𝑑2 + 𝑟2 + 𝜇) ]
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det(𝐽 − 𝜆𝐼) =

|

|
−𝜇 − 𝜆 −𝛽1

𝜃

𝜇 
− 𝛽2

𝜃

𝜇 
−𝛽3

𝜃

𝜇 

0 𝛽1
𝜃

𝜇 
− (𝛼 + 𝜇) − 𝜆 𝛽2

𝜃

𝜇 
𝛽3
𝜃

𝜇 
0 𝛼 −(𝜀 + 𝑑1 + 𝑟1 + 𝜇) − 𝜆 0

0 0 𝜀 −(𝑑2 + 𝑟2 + 𝜇) − 𝜆 

|

|

= 0 

−(𝜇 + 𝜆) [( 
𝛽1𝜃

𝜇 
− (𝛼 + 𝜇) − 𝜆) ((𝜀 + 𝑑1 + 𝑟1 + 𝜇) + 𝜆)((𝑑2 + 𝑟2 + 𝜇) + 𝜆 )

+
𝛽2𝜃𝛼

𝜇 
((𝑑2 + 𝑟2 + 𝜇) + 𝜆) +

𝛽3𝜃𝛼𝜀

𝜇 
 ] = 0 

Instead of solving this equation, the numerical solution using data of MERS-CoV will be 

evaluated in this chapter after finding the reproduction ratio of our system using the next-

generation method. Simulating our model on MAPLE software and evaluating the 

eigenvalues around our equilibrium point would ease the outcome of its stability.  

 

3.2 The Reproduction Ratio  (𝑹𝟎) of MERS-Cov Model 

 

The next-generation method is used here to find the reproduction ratio or the 

threshold for our model of MERS-CoV. The illustrations of finding (𝑅0) is presented for 

MERS-CoV model system (3.1). In this model, the exposed, Infected and hospitalized 

compartments make-up the infectious disease. Thus, we will consider the three 

differential equations shown below:  
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𝑑𝐸(𝑡)

𝑑𝑡
= (𝛽1𝐸(𝑡) + 𝛽2𝐼(𝑡) + 𝛽3𝐻(𝑡))𝑆(𝑡) − (𝛼 + 𝜇)𝐸(𝑡)

      
𝑑𝐼(𝑡)

𝑑𝑡
= 𝛼𝐸(𝑡) − (𝜀 + 𝑑1 + 𝑟1 + 𝜇)𝐼(𝑡)

𝑑𝐻(𝑡)

𝑑𝑡
= 𝜀𝐼(𝑡) − (𝑑2 + 𝑟2 + 𝜇)𝐻(𝑡)

           

                

Let 𝑓𝑖, 𝑖 = 1,2,3 are the compartments that have a rate of having new infections from 

each equation respectively. And 𝑣𝑖 = 𝑣𝑖
− − 𝑣𝑖

+, 𝑣𝑖
− is the rate of moving individuals out of 

the compartment and 𝑣𝑖
+ is the rate of moving individuals into the compartment.  

Hence, 

𝑓1 = (𝛽1𝐸(𝑡) + 𝛽2𝐼(𝑡) + 𝛽3𝐻(𝑡))𝑆(𝑡)  

𝑓2 = 0 

𝑓3 = 0 

Let 

𝐹(𝑆∗,   𝐸∗, 𝐼∗, 𝐻∗) =

[
 
 
 
 
 
𝜕𝑓1
𝜕𝐸

𝜕𝑓1
𝜕𝐼
 
𝜕𝑓1
𝜕𝐻

𝜕𝑓2
𝜕𝐸

𝜕𝑓2
𝜕𝐼

𝜕𝑓2
𝜕𝐻

𝜕𝑓3
𝜕𝐸

𝜕𝑓3
𝜕I

𝜕𝑓3
𝜕𝐻 ]

 
 
 
 
 

= [
(𝛽1 + 𝛽2𝐼

∗ + 𝛽3𝐻
∗)𝑆∗ (𝛽1𝐸

∗ + 𝛽2 + 𝛽3𝐻
∗)𝑆∗ (𝛽1𝐸

∗ + 𝛽2𝐼
∗ + 𝛽3)𝑆

∗

0 0 0
0 0 0

]  

 

By substituting the free-disease endemic equilibrium in the previous matrix, we will have 
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𝐹
(
𝜃
 𝜇 
,   0,   0,   0)

= [
𝛽1
𝜃

𝜇 
𝛽2
𝜃

𝜇 
 𝛽3

𝜃

𝜇 
0 0 0
0 0 0

] = 𝐹 

Now, let  

𝑣1 = (𝛼 + 𝜇)𝐸
∗  

𝑣2 = (𝜀 + 𝑑1 + 𝑟1 + 𝜇)𝐼
∗ − 𝛼𝐸∗ 

𝑣3 = (𝑑2 + 𝑟2 + 𝜇)𝐻
∗ − 𝜀𝐼∗ 

Hence,  

𝑉(𝑆∗,   𝐸∗, 𝐼∗, 𝐻∗) =

[
 
 
 
 
 
𝜕𝑣1
𝜕𝐸

𝜕𝑣1
𝜕𝐼
 
𝜕𝑣1
𝜕𝐻

𝜕𝑣2
𝜕𝐸

𝜕𝑣2
𝜕𝐼

𝜕𝑣2
𝜕𝐻

𝜕𝑣3
𝜕𝐸

𝜕𝑣3
𝜕I

𝜕𝑣3
𝜕𝐻 ]

 
 
 
 
 

= [

(𝛼 + 𝜇) 0 0
−𝛼 (𝜀 + 𝑑1 + 𝑟1 + 𝜇) 0

0 −𝜀 (𝑑2 + 𝑟2 + 𝜇)
] = 𝑉 

To find 𝑅0 that we are looking for, we need to find the largest eigen value of 𝐹𝑉−1. 

det(𝑉) , 𝑉𝑇 𝑎𝑛𝑑 𝑑𝑗(𝑉) are evaluated to find the inverse of 𝑉. 

det(𝑉) = (𝛼 + 𝜇)(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇) 

𝑉𝑇 = [

(𝛼 + 𝜇) −𝛼 0
0 (𝜀 + 𝑑1 + 𝑟1 + 𝜇) −𝜀

0 0 (𝑑2 + 𝑟2 + 𝜇)
] 

𝑎𝑑𝑗(𝑉)

= [

(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇) 0 0

𝛼 (𝑑2 + 𝑟2 + 𝜇) (𝛼 + 𝜇)(𝑑2 + 𝑟2 + 𝜇) 0

𝛼𝜀 𝜀(𝛼 + 𝜇) −(𝛼 + 𝜇)(𝜀 + 𝑑1 + 𝑟1 + 𝜇)
] 
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𝑉−1 =
1

det (𝑉)
· 𝑎𝑑𝑗(𝑉)

=

[
 
 
 
 
 
 

1

(𝛼 + 𝜇)
0 0

𝛼

(𝛼 + 𝜇)(𝜀 + 𝑑1 + 𝑟1 + 𝜇)

1

(𝜀 + 𝑑1 + 𝑟1 + 𝜇)
0

𝛼𝜀

(𝛼 + 𝜇)(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇)

𝜀

(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇)

1

(𝑑2 + 𝑟2 + 𝜇)]
 
 
 
 
 
 

 

𝐹 · 𝑉−1 = [
𝛽1
𝜃

𝜇 
𝛽2
𝜃

𝜇 
 𝛽3

𝜃

𝜇 
0 0 0
0 0 0

]

[
 
 
 
 
 
 

1

(𝛼 + 𝜇)
0 0

𝛼

(𝛼 + 𝜇)(𝜀 + 𝑑1 + 𝑟1 + 𝜇)

1

(𝜀 + 𝑑1 + 𝑟1 + 𝜇)
0

𝛼𝜀

(𝛼 + 𝜇)(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇)

𝜀

(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇)

1

(𝑑2 + 𝑟2 + 𝜇)]
 
 
 
 
 
 

=

[
 
 
 
 

𝛽1𝜃

𝜇(𝛼 + 𝜇)
+

𝛽2𝜃𝛼

𝜇(𝛼 + 𝜇)(𝜀 + 𝑑1 + 𝑟1 + 𝜇)
+

𝛽3𝜃𝛼𝜀

𝜇(𝛼 + 𝜇)(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇)

𝜃𝛽2
𝜇(𝜀 + 𝑑1 + 𝑟1 + 𝜇)

+
𝛽3𝜃𝜀

𝜇(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇)
 

𝛽3𝜃1

𝜇(𝑑2 + 𝑟2 + 𝜇)

0 0 0

0 0 0 ]
 
 
 
 

 

The largest eigenvalue for  𝐹 · 𝑉−1 represents the reproduction number for MERS-CoV 

disease, which is shown below: 

𝑅0 =
𝛽1𝜃

𝜇(𝛼 + 𝜇)
+

𝛽2𝜃𝛼

𝜇(𝛼 + 𝜇)(𝜀 + 𝑑1 + 𝑟1 + 𝜇)
+

𝛽3𝜃𝛼𝜀

𝜇(𝛼 + 𝜇)(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇)
 

𝑅0 =
𝛽1𝜃(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇) + 𝛽2𝜃𝛼(𝑑2 + 𝑟2 + 𝜇) + 𝛽3𝜃𝛼𝜀

𝜇(𝛼 + 𝜇)(𝜀 + 𝑑1 + 𝑟1 + 𝜇)(𝑑2 + 𝑟2 + 𝜇)
 

3.3 Developed Model of MERS-CoV 

 

In this model, similar assumptions to our previous model (3.1) were used to 

create the model. In this model, it is assumed that the infected cases have two different 

categories, one of them had either direct or indirect contact with infected camels while 

another case be infected by contacting other infected cases and 𝐼𝑐 , and 𝐼ℎ represent 

these compartments respectively.   
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ⅆ𝑆(𝑡)

ⅆ𝑡
= 𝜃𝑁 −

(𝛽1𝐸(𝑡)+𝛽2𝐼ℎ(𝑡)+𝛽3𝐼𝑐(𝑡)+𝛽4𝐻(𝑡))𝑆(𝑡)

𝑁
− 𝜇𝑆(𝑡)

                                     
ⅆ𝐸(𝑡)

ⅆ𝑡
=

(𝛽1𝐸(𝑡)+𝛽2𝐼ℎ(𝑡)+𝛽3𝐼𝑐(𝑡)+𝛽4𝐻(𝑡))𝑆(𝑡)

𝑁
− (𝛼 + 𝛾 + 𝜇)𝐸(𝑡)

   
ⅆ𝐼ℎ(𝑡)

ⅆ𝑡
= 𝛼𝐸(𝑡) − (𝜀ℎ + 𝑑1 + 𝑟1 + 𝜇)𝐼ℎ(𝑡)

 
ⅆ𝐼𝑐(𝑡)

ⅆ𝑡
= 𝛾𝐸(𝑡) − (𝜀𝑐 + 𝑑2 + 𝑟2 + 𝜇)𝐼𝑐(𝑡)

             
ⅆ𝐻(𝑡)

ⅆ𝑡
= 𝜀ℎ𝐼ℎ(𝑡) + 𝜀𝑐𝐼𝑐(𝑡) − (𝑑3 + 𝑟3 + 𝜇)𝐻(𝑡)

      
ⅆ𝑅(𝑡)

ⅆ𝑡
= 𝑟1𝐼ℎ(𝑡) + 𝑟2𝐼𝑐(𝑡) + 𝑟3𝐻(𝑡) − 𝜇𝑅(𝑡)

            (3.8) 

Numerical solution using MAPLE is used in the next chapter for system (3.1). 

Before moving to the numerical simulations of MERS-CoV model, the 

reproduction ratio of system (3.8) is found after reducing the model and eliminating N, 

using similar method that was used to find 𝑅0 for previous model (3.1).  

Thus, by applying the next-generation method for (3.8), we have: 

𝑓1 = (𝛽1𝐸(𝑡) + 𝛽2𝐼ℎ(𝑡) + 𝛽3𝐼𝑐(𝑡) + 𝛽4𝐻(𝑡))𝑆(𝑡)  

𝑓2 = 0,      𝑓3 = 0,    𝑓4 = 0 

Let 

𝐹(𝑆∗,   𝐸∗,   𝐼ℎ∗ ,   𝐼𝑐∗, 𝐻∗)

= [

(𝛽1 + 𝛽2𝐼ℎ
∗ + 𝛽3𝐼𝑐

∗ + 𝛽4𝐻
∗)𝑆∗ (𝛽1𝐸

∗ + 𝛽2 + 𝛽3𝐼𝑐
∗ + 𝛽4𝐻

∗)𝑆∗ (𝛽1𝐸
∗ + 𝛽2𝐼ℎ

∗ + 𝛽3 + 𝛽4𝐻
∗)𝑆∗ (𝛽1𝐸

∗ + 𝛽2𝐼ℎ
∗ + 𝛽3𝐼𝑐

∗ + 𝛽4)𝑆
∗

0 0 0 0
0 0 0 0
0 0 0 0

] 

 

By evaluating this matrix at free disease equilibrium, we have 
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𝐹
(
𝜃
𝜇 
,   0,   0,   0,   0)

=

[
 
 
 
 𝛽1

𝜃

𝜇 
𝛽2
𝜃

𝜇 
 𝛽3

𝜃

𝜇 
 𝛽4

𝜃

𝜇 
0 0 0 0
0 0 0 0
0 0 0 0 ]

 
 
 
 

= 𝐹 

Now, let  

𝑣1 = (𝛼 + 𝛾 + 𝜇)𝐸
∗  

𝑣2 = (𝜀ℎ + 𝑑1 + 𝑟1 + 𝜇)𝐼ℎ
∗ − 𝛼𝐸∗ 

𝑣3 = (𝜀𝑐 + 𝑑2 + 𝑟2 + 𝜇)𝐼𝑐
∗ − 𝛾𝐸∗ 

𝑣4 = (𝑑3 + 𝑟3 + 𝜇)𝐻
∗ − (𝜀ℎ𝐼ℎ

∗ + 𝜀𝑐𝐼𝑐
∗) 

Hence,  

𝑉(𝑆∗,   𝐸∗, 𝐼∗, 𝐻∗) =

[
 
 
 
(𝛼 + 𝛾 + 𝜇) 0 0 0

−𝛼 (𝜀ℎ + 𝑑1 + 𝑟1 + 𝜇) 0 0

𝛾 0 (𝜀𝑐 + 𝑑2 + 𝑟2 + 𝜇) 0

0 −𝜀ℎ −𝜀𝑐 (𝑑3 + 𝑟3 + 𝜇)]
 
 
 

= 𝑉 

MAPLE software was used to find the inverse of matrix 𝑉 and then by multiplying the 

result by matrix 𝐹, (see Appendix-C (3. a)). The output is shown below: 

𝐹 ∗ 𝑉−1

=

[
 
 
 
 
𝛽1𝜃

𝜇𝑁𝑘 
+
𝛽2𝜃𝛼

𝜇𝑁𝑘𝑘1
−

𝛽3𝜃𝛾

𝜇𝑁𝑘𝑘2 
−
𝛽4𝜃(−𝛼𝑘2𝜀ℎ + 𝛾𝑘1𝜀𝑐)

𝜇𝑁𝑘𝑘1𝑘2𝑘3 

𝛽2𝜃

𝜇𝑁𝑘1
+

𝛽4𝜃𝜀ℎ
𝜇𝑁𝑘1𝑘3 

 
𝛽3𝜃

𝜇𝑁𝑘2 
+

𝛽4𝜃𝜀𝑐
𝜇𝑁𝑘2𝑘3 

𝛽4𝜃

𝜇𝑁𝑘3 
0 0 0 0
0 0 0 0
0 0 0 0 ]

 
 
 
 

 

where, 𝑘 = (𝛼 + 𝛾 + 𝜇), 𝑘1 = (𝜀ℎ + 𝑑1 + 𝑟1 + 𝜇), 𝑘2 = (𝜀𝑐 + 𝑑2 + 𝑟2 + 𝜇), 

  𝑘3 = (𝑑3 + 𝑟3 + 𝜇) 
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The largest eigenvalue for 𝐹 ∗ 𝑉−1 is known as the reproduction ratio according to the 

next-generation method. Thus, 𝑅0 =
𝛽1𝜃

 𝜇𝑁𝑘 
+

𝛽2𝜃𝛼

𝜇𝑁𝑘𝑘1
−

𝛽3𝜃𝛾

𝜇𝑁𝑘𝑘2 
−
𝛽4𝜃(−𝛼𝑘2𝜀ℎ+𝛾𝑘1𝜀𝑐)

𝜇𝑁𝑘𝑘1𝑘2𝑘3 
. 

With more evidence and information about being infected by contacting infected camels, 

this would be a helpful approached to optimal control MERS infectious disease.  
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CHAPTER IV 

NUMERICAL INVESTIGATION OF MERS-CoV MODEL AND  

ITS CONTROL 

For better understanding of the dynamics of our models, numerical simulations 

using MAPLE of our MERS-CoV model are presented in this chapter. The stability of 

system (3.1) around the disease-free equilibria is investigated first. Data of MERS-CoV 

were collected from [31], and it is reported that the incubation period is 5 days and 

infected move to be hospitalized for 4 days [32]. We estimated that infected individuals 

must recover during one week and 6 days for hospitalization while the death for both 

infected and hospitalized individuals would be during 14 days. Because MERS-CoV is 

central in the Middle East, the data used are focused on patients reported in The 

Kingdom of Saudi Arabia, where the most cases of MERS-CoV were confirmed. It is 

found that 179 MERS-CoV cases were reported in Saudi Arabia from January 2, 2017 

until August 12, 2017. 
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Table 2. The Value of Parameters in MERS-CoV System (3.1) 

𝑁 Population size in KSA 32783206 

𝜃 The birth rate during 2017 0.016 

𝜇 The death rate during 2017 0.03 

𝛽1 The rate of contacting exposed individuals 0.4 

𝛽2 The rate of contacting infected individuals 0.4 

𝛽3 The rate of contacting hospitalized individuals 0.2 

𝛼 The rate of moving from being exposed to be infected 0.2 

ε The rate of moving from being infected to be hospitalized  0.25 

𝑟1 The rate of recovered from infected class 0.07 

𝑟2 The rate of recovered from hospitalized 0.14 

𝑑1 The death rate of infected class 0.07 

𝑑2 The death rate of hospitalized class 0.07 

                                                          

To investigate the stability of MERS-CoV using MAPLE software, the eigenvalues around 

DFE point is found below: 

 

Figure 4.1. The output of the eigenvalues at DFE for MERS model 

 

(See appendix-C, (4.1)). 

These values show that the MERS-CoV trajectory for our model makes a saddle or 

unstable node around DFE, according to stability theory stated in chapter one.  
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Using values on Table (2), the plot of infected individuals related to our differential 

equation system (3.1) is shown below in Figure (4.2): 

 

Figure 4.2. The plot of infected individuals of MERS  

 

Figure (4.4) below shows the plots for susceptible, exposed, infected, and hospitalized 

classes of MERS-CoV system (3.1). (See Appendix-C, (4.2)). 

  

                                   (4.3)      (4.4) 

Figure 4.3. The plot of E V. S of MERS   

Figure 4.4. Plots of S, E, I, and H individuals for system (3.1) 

 

E(t) V. S(t) 

S(t) & E(t) & I(t) & H(t)  
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 The reproduction ratio for MERS-CoV model using vlues on Table (2) is represented 

below: 

 

Figure 4.5. The output of 𝑹𝟎 for MERS model 

 

The reproduction ratio is more than one, which makes concern of having epidemic in the 

future. To control this, we need to optimally control our model by decreasing the rate of 

contact between suscitple and exposed classes. By subsituting different values of 

parameters, it is found that when  𝛽1 is decreased to be 0.01, 𝑅0 will be less than one so 

that the infections will die out. 

When 𝛽1 is reduced to be equal to 0.01, the reproduction ratio is evaluated below: 

 

Figure 4.6. The output of 𝑹𝟎 when 𝜷𝟏 = 𝟎. 𝟎𝟏 

 

The plot of infected and hospitalized indiviudals of model (3.1) after changing 𝛽1 is 

shown below in Figure (4.7). 
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Figure 4.7. Plot of I, and H individuals of MERS model when 𝑹𝟎 < 𝟏 

 

While the source of the spread of MERS-CoV is still studied and the vaccine has not 

been developed yet, informing people to follow some instructions is a useful tool to 

manage the spread of MERS-CoV. Washing hands regularly, avoiding contact with other 

patients having MERS-CoV, and preventing the contact with camels are advantageous 

to avoid having MERS virus.  

It seems that the spread of MERS-CoV is labile during the time. Therefore, 

introducing control problem to the model when 𝑅0 > 1 can assist in preventing the 

spread of the disease. MERS model can be controllable by introducing a function 𝑢(𝑡) to 

system (3.1), when 𝑢(𝑡) implies the way of preventing the spread of disease by contact 

the exposed, infected and hospitalized individuals. Our model after using the control 

problem is represented as 

 

I(t) & H(t) 
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{
 
 
 
 

 
 
 
 

ⅆ𝑆(𝑡)

ⅆ𝑡
= 𝜃𝑁 −

𝑢(𝑡)(𝛽1𝐸(𝑡)+𝛽2𝐼(𝑡)+𝛽3𝐻(𝑡))𝑆(𝑡)

𝑁
− 𝜇𝑆(𝑡)

  
ⅆ𝐸(𝑡)

ⅆ𝑡
=

𝑢(𝑡)(𝛽1𝐸(𝑡)+𝛽2𝐼(𝑡)+𝛽3𝐻(𝑡))𝑆(𝑡)

𝑁
− (𝛼 + 𝜇)𝐸(𝑡)

 
ⅆ𝐼(𝑡)

ⅆ𝑡
= 𝛼𝐸(𝑡) − (𝜀 + 𝑑1 + 𝑟1 + 𝜇)𝐼(𝑡)

ⅆ𝐻(𝑡)

ⅆ𝑡
= 𝜀𝐼(𝑡) − (𝑑2 + 𝑟2 + 𝜇)𝐻(𝑡)

ⅆ𝑅(𝑡)

ⅆ𝑡
= 𝑟1𝐼(𝑡) + 𝑟2𝐻(𝑡) − 𝜇𝑅(𝑡)

           (4.1)         

Where, 0 < 𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥. 

The objective function is 𝐼(𝑇) → 𝑚𝑖𝑛. Our goal of this control problem is minimizing the 

infected individuals at time 𝑇. Since our model is similar to Ebola model in the work of 

Grigorieva and Khailov in [6,7], then we assumed that the type of optimal control model 

would be similar. Therefore, we introduced control function 𝑢(𝑡) into the system (3.1) and 

assumed that optimal control is  piece wise constant function with  at most two 

switchings. Instead of solving complex two point boundary  value problem for the 

maximum principle, this reduced our problem to a simpler one of finite dimensional 

optimization.  

 Let  𝑢𝑚𝑖𝑛 = 0.4 and 𝑢𝑚𝑎𝑥 = 1 in our numerical control model, and the time 

interval  be  20 days. The best optimal control obtained numerically for model (3.1) using 

original program written in MAPLE is shown  in Figure (4.8).  
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Figure 4.8. Plot of optimal control 𝒖(𝒕) for MERS model 

 By using data on Table 2 and changing the intial values to flexible find the 

optimal control, the plot of Inftected indiviuals of MERS model  before and after adding 

the control function 𝑢(𝑡) for ]20,0[t  is shown in Figure(4.9). See (Appendix-C (control 

model)). 

 

 

            Without control        with control 

 

Figure 4.9. Plot of 𝑰(𝒕) for MERS model with and without the optimal solution   

min to max to min max to min to max 
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We observed that to minimize the number of infected individual at the end of the 

time interval, to have only 7 infected individuals at time 𝑇 = 20 days, the best optimal 

strategy is the following:  

For the first 4 days of the planning period of 20 days, the optimal control can take 

its maximum value (hence, no precocious measures should be used, for example, in 

order to not make population panic), then for the remaining 16 days, the optimal control 

takes its minimal value that indicates that the maximal precocious measures must be 

taken, such as quarantine, marketing and educational efforts and even closing of public 

events .   

 For more effective control to prevent the spread of MERS, the methods used by 

Grigorieva and Khailov in [6, 7] can be also used for MERS model. Three optimal control 

functions can be introduced to control our model (3.1), and four optimal control functions 

for MERS model (3.8). In future study, an analytical optimal control investigation will be 

explored and investigated.  
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CHAPTER V 

CONCLUSION 

 

In this paper, the basic SIR and SEIR models are represented in Chapter II. The 

knowledge of investigating these basic models for infectious disease assists in 

understanding the dynamic of the spread of disease, which is a useful tool to apply this 

study for any infectious disease by creating model that appropriate with understanding 

the sources of its outbreak. Analytical and numerical solutions were investigated in this 

paper for both SIR and SEIR model. The Jacobian matrix was evaluated as well as 

threshold. It is found that if 𝑅0 > 1, the disease will continue distributed and the spread 

of the disease will be increased, while if 𝑅0 < 1, the disease will die out. To optimal 

control these model, the contact between susceptible and infected or exposed 

individuals must be minimized to prevent the spread of the disease. In Chapter III, the 

same methods used in chapter II were applied to investigate the model of MERS that is 

similar to [4, 20, 26]. Developed model was created by divided the infected individuals of 

MERS to two categories, infected people who had contact with camels and infected 

having contact with infected cases. The reproduction ratio was evaluated using next-

generation method. In Chapter IV, numerical investigation and numerical optimal control 

of MERS were studied using MAPLE software after selected data for reported cases in 

KSA during 2017. It is found that 𝑅0 ≈ 1.59, which show that MERS should be 

considerable as a pandemic in the future. For our selected data, it is found that if 𝛽1 

decreased to be 0.01, then MERS outbreak will die out. A control function is 
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added to our system to minimize the rate of interaction between susceptible and 

exposed, infected and hospitalized individuals so that the infected individuals will be 

decreased consequently. By having more data and knowledge about MERS, the 

analytical investigation of the optimal control will be a future study.  
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Appendix-A 

(a) Jacobian and eigenvalues for SIR 
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(Figure 2.6) The trajectory of S and I classes (𝑅0 < 1) 
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(Figure 2.8) the trajoctory of S and I classes (𝑅0 > 1) 
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(Figure 2.7) 

 

 

 

 

 

 

 

 

 



65 
 

 

 

 

 

 

 

 

 

 

 

 



66 
 

Appendix-B 

The Jacobian matrix and its equilibria 
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Appendix-C 

(3.a) evaluated 𝑅0 for developed model 
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 (4.1) evaluated the eigenvalue of system (3.1) around DFE 
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(4.2) the plot of MERS Model 
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(Control MERS) 
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