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ABSTRACT

NARJES ALSHAKHOURY
MATHEMATICAL MODELING AND CONTROL OF MERS-COV EPIDEMICS
DECEMBER 2017

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a viral infectious
disease that can be transmitted to humans through interaction with infected animals or
humans. In this thesis, we will investigate the basic compartment models for infectious
diseases qualitatively and quantitatively. The equilibrium points and their stability will be
explored by using differential equations methods. Based on the available data on the
Middle East Respiratory Syndrome, this research study will clarify the model of MERS-
CoV analytically and numerically. Additionally, this proposed study will explore the
optimal control to reduce the spread of MERS-CoV disease as well as its threshold.

Mathematical software, such as MAPLE, will be used to investigate the model.
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CHAPTER |

INTRODUCTION

Recently, Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has
concerned the Arabian Peninsula. MERS-CoV is believed to be an infectious disease
transmitted to humans by contact with either infected animals or humans. As a first virus
that related to lineage C Betacoronavirus (8CoV) and the sixth Coronavirus (CoV), MERS-
CoV is a virus transmitted to humans [2]. In 2012, the first case of MERS-CoV was
recognized in the Kingdom of Saudi Arabia. The case symptoms included fever, short
breath, cough, and expectoration [29]. Before MERS-CoV had emerged, the outbreak of
the zoonotic coronavirus known as Sever Acute Respiratory Syndrome (SARS) spread in
26 countries, which exceeded 8000 cases in 2003 [30]. In fact, SARS was the first known
coronavirus infection at that time. Before that time, Coronavirus infections caused no more
than a moderate upper respiratory tract infection which was not considered as major public
health issue [5]. Early large nosocomial epidemic events are significant characteristic for
both SARS and MERS, nosocomial infectious diseases that have a reproduction number
declining to be less than 1 for 3 to 5 disease generations [3]. MERS-CoV related viruses
have been discovered in bats that have indirect contact with humans [26]. Considerable
indications assumed that the main source of MERS-CoV transmission is dromedary
camels [18,23, 9]. It is suggested that there might be a viral connection between bats,
camels and humans, whereas there is no specific evidence of the main sources of MERS-

CoV [27]. The result of the zoonotic transmission events that have generated MERS-CoV
1



with clusters of reported human to human transmission of the virus is that animal is a
preceding source of MERS-CoV [12]. In early 1992, the antibodies of MERS existed in
dromedaries, whereas the first case of MERS-CoV reported in humans was in 2012 [23].
Even though some evidence suggested that camels are one of the sources of MERS-CoV
transmissions, the precise sources of its outbreak are still unknown [9]. Even though
MERS-CoV was spread first in the Arabian Peninsula, the outbreak spread around the
world in many countries. An Italian adult man who traveled to Jordan was reported as a
first case of MERS-CoV in ltaly in May 2013 [21]. In 2014, many cases of MERS-CoV
were reported in Saudi Arabia and in United Arab Emirates. At that time, the cases of
MERS-CoV that were reported outside the Middle East had a history of visiting either
United Arab Emirates (UAE) or the Kingdom of Saudi Arabia (KSA) [1]. MERS-CoV
outbreaks are increasing since 2012. According to the World Health Organization (WHO),
globally, 2079 cases have been reported, with 722 cases experiencing death as of

September 6%, 2017.

The lack of understanding of the dynamics of MERS-CoV transmission would lead
to a fatal dramatic outbreak. Some factors, also, would assist in its spread, such as the
pilgrims to the holy places in KSA. Annually, about 2 to 3 million Muslim pilgrims coming
from approximately 180 countries travel to Mecca in KSA to perform the pilgrimage or Hajj,
which affects the Saudi Arabia’s health system [17]. The Hajj event might be a factor of
increasing the spread of MERS-CoV around the world. Until now, there is no antivirus for
MERS-CoV infection to prevent its spread. The only precaution taken to limit the spread
of the disease is isolation and hospitalization of the infected patients. The visitors coming

back from the Middle East area must be investigated and isolated if they are suspected of

2



having any contact with MERS-CoV cases, or having the disease symptoms as the

incubation period of the MER-CoV is 12 days [8].

With this uncertain dynamic of MERS-CoV transmission, mathematical model
and optimal control can assist epidemiologists to investigate the spread of the disease
and behavior so that they can discover the strategies to limit the spread. In 2013, a
stochastic model including nine compartments for MERS-CoV was approached by
Chowella et al. [4]. Their results indicate that the average reproduction number is 0.45 if
all the reported zoonotic cases are severe, while about 57% of secondary cases are
symptomatic. The major result in [4] was that the hospitalized cases should be more
considered by epidemiologists because hospitalized transmission is four times higher
than community transmission. On the other side, during the largest outbreak which
happened outside the Middle East in 2015 in the Republic of South Korea, [26] studied
the mathematical model of MERS-CoV. The study indicates a higher basic reproduction
number that equals to 4.422. Using SIR model and Bayesian method, [25] studied the
epidemic level of MERS and the reproduction values in western, central, and eastern
regions of Saudi Arabia between May 2013 and May 2015. In 2017, a stability method of
ordinary differential equation was used by Al-Asouad N. et al. in [20] to study the
analytical investigation of MERS-CoV mathematical model, resulting the endemic steady
state which is stable with isolation method for preventing the spread of MERS-CoV.
Also, [28] studied the mathematical dynamic transmission model for MERS-CoV in two
areas by analyzing the sensitivity indices of the reproduction number to reduce the
infected cases. However, these studies only focused on the mathematical models of

MERS, but did not investigate the optimal control of MERS-CoV. Indeed, an optimal
3



control objective function can be introduced to reduce and limit the factors of MERS-CoV

outbreak.

This paper contains five chapters. In Chapter I, we will investigate the properties
of the two basic compartment models for infectious diseases, which are Susceptible-
Infectious-Recovery (SIR) model and Susceptible-Exposed-Infectious-Recovery (SEIR)
model. In Chapter Ill, a model of MERS-CoV will be created and investigated using
methods of nonlinear differential equations. Also, it contains developed model of MERS-
CoV with evaluation its reproduction ratio using next-generation method. Numerical
solutions will be presented based on available data for MERS-CoV outbreak in Chapter
IV. Mathematical software, such as MAPLE will be used to explore the model. Numerical
control problem of reductions of the spread of MERS-CoV disease will be also
presented. An optimal control problem of minimization of infected individuals at the
terminal time T is stated and solved numerically. In the last chapter, the result of our

study will be discussed and the conclusion will be made.



CHAPTER II
MATHEMATICAL COMPARTMENT MODELS FOR INFECTIOUS DISEASES:

(SIR) AND (SEIR) MODELS

The main consideration in epidemiology is studying the spread of diseases.
Epidemiology deals with tracing and analyzing the factors that cause the spread of
diseases over time, and seeks out finding possible control. Besides epidemiology,
mathematical modeling is a contributory aspect of the study of infectious diseases.
Mathematical modeling assists in understanding and predicting the behavior of infectious
diseases. Mathematical epidemiology models have been studied for long time. The first
compartment model for epidemic infectious diseases was derived by Kermarck and
McKendrick [14]. In epidemic models, the population usually is divided into classes or
compartments. In order to study the dynamics of the infectious diseases, the basic SIR
epidemic model is used to divide the population into three various classes, which are
susceptible S, infected I, and recovered R individuals. In this model, the movement of
individuals from one compartment to another is determined by their capability to fight the
diseases and the individuals’ interactions with infected people [22]. The basic SIR model
represents a system with three non-linear 1 order differential equations. Addition of an

exposed compartment to SIR model leads to another model called SEIR model.

In this chapter, investigation of the properties of the basic SIR and SEIR models

will be explored. The SIR model will be first represented with a diagram, and an



explanation of its compartments and its parameters that show the connection between
the compartments. Then, its equilibria and its basic reproduction ratio will be explored.

Also,

the stability of its equilibria will be discovered according to the theory of stability. In the
numerical solution for the SIR model, the trajectory of the model and the Jacobian matrix
after linearizing the system of the SIR model will be explored. With selected initial value,
the behavior of the spread of the infectious disease will be discovered. The same
process will be followed for the SIR model, and by adding Exposed individuals

compartment make it SEIR model.

2.1 Susceptible-Infectious-Recovery (SIR) Model

In SIR model, the population size is divided into three different states or
compartments, which are Susceptible S(t), Infectious I(t), and Recovered

individuals R(t). The assumptions of our SIR model are stated below:

e The population size is N, which contains all three compartments as
mentioned before; therefore N = S(t) + I(t) + R(t)

e The population size is fixed

¢ In this model, the demographics (the natural birth and death of
individuals) will be considered; The rate of birth equals the death rate and
they are denoted by u; the birth rate enters the susceptible class as uN

e The rate of death is independent of the disease

o The rate of the interactions between susceptible class and infectious

classis 8



¢ Individuals who transferred from the infectious class to the recovery class
are represented by a
The flowchart below explains the movement from each class and the rate of their

interactions.

Bl

Susceptible [ infected a recovered

(1) (R)

u H T

Figure 2.1 SIR compartment model

The diagram above can be represented by the system of nonlinear differential equations.
Indeed, in SIR model, it is difficult to find the precise solutions of S(t) and
I(t) analytically, while this model assists to describe the behavior of their interactions

[16]. The formulas in (2.1) show the system of SIR model:

ds) 1
BT uN — uS(t) — NﬁS(t)I(t)
dI(t) 1
| — = NﬂS(t)I(t) —al(t) — ul(t) (2.1)
d
L 2O - e

Because of our assumption that the population is constant and N = S(t) + I(t) + R(t),
the system can be reduced to the two nonlinear differential equations. Moreover, by

7



J = % and, r = %the SIR model would be written as new system

zln

considering that s =

(2.2) after substituting and dividing all the equations by N. For convenience, returning to

original variables we have:

dS(t)
g S H SO - SOIO) = £SO, 1), 1)
di(t)
3t = PSOIO) — (@ +wI®) = g5, 1), 1) (2.2)
dR(t)
7t = ® —pR(®) = h(I (), R(0), )

In the system (2.2), when the infectious compartment increases, the epidemic would

occur [10]. Therefore, when d;—(tt) > 0, then BS(t)I(t) > (a + w)I(t). That leads to

BSI(¢) 23
(a+w > 10 23

If the number of susceptible approximately equals to 1, the upcoming quantity would be

approved after substituting S(t) =~ 1.

B
CET) > 1 (2.4)

The left-hand side of (2.4) is known as the basic reproduction ratio (R).

Definition. The basic reproduction ratio is the number of secondary infections that are

caused by a single infectious case so that the disease would spread continuously.



The definition of the ratio R, is considered by [11,13], and it is found as well for SIR

model.

In the next section, we will explore the equilibrium points of SIR model to investigate
more about its behavior. To find its equilibria, the linearization of the system must be

conducted.

In order to linearize the system (2.2), the equations below need to be solved:

fES@,1®),0)=0 , gS®,I©,)=0 , hU®),R@),)=0

Thus,

p—uS) —pSIE) =0
BS@®I(E) — (@ +wI() =0 (2.5)
al(t) —uR(t) =0

From (b), the equation 8S(t)I(t) = (a + w)I(t) can be substituted in the first equation

above to have

A =S@) —(a+wI(t) =0

The left-hand side of this equation must be zero when S(t) = 1, and I(t) = 0, by
substituting the last equation in (2.5), R(t) = 0. Thus, the first equilibrium point is
(8*,I",R™) = (1,0,0). In addition to this equilibrium point for SIR model illustrated by (2.2),
the second equilibrium point would be found by solving the equation the second

equation in (2.5). After dividing the equation by I(t) on both sides, we will have:

BS(t) = (a + 1), which will lead to §* = “‘# After substituting this value in the first

equation in (2.5) we will have:



LU (%) — BI(t) (%) = 0. By solving for I(t), I* would be equal to aiw —% . Also,

R* would be found by substituting the value of I* into last equation in (2.5).

Thus, R* = g(i - E) = a (L - l). The second equilibrium point for our system,

pl\at+tuy B atu B
L 1
therefore, would be equal to < 5 arn B’a(aw ﬂ)>

Definition. Endemic equilibrium (EE) occur when [* > 0 so the disease keeps spreading

in the population while the Disease-Free equilibrium (DFE) occurs when I* = 0.

It is also possible for EE equilibrium to be written in terms of R, , which is

<i (Ro — Dy a(Ry — 1)>
R& B~ B

Definition. The (kxk) matrix of partial derivatives of nonlinear system of k first order

equations is called Jacobian (J) of the system.

The Jacobian for SIR model (2.2) is evaluated as:

[9f 9f Of]

S 09I OR
‘ag ag a‘ —pI(t) — u —BS(t) 0
](S,I,R)=|$ I a—R|= pI(t) pS@)—(a+u) O
0 a —U

|oh on ohl|

135 a1 aR!

To investigate more about the behavior of epidemic models near equilibrium points, it is
helpful to evaluate the eigenvalues of Jacobian matrix at the equilibrium points of the
system of nonlinear equations.

10



Theorem. (Stability Theorem) If J is a (kxk) matrix, the Jacobian matrix for a nonlinear
system of k first-order equations, then the eigenvalues (4;,i = 1...k) of ] at the
equilibrium points have five different possible behaviors depending on its value. The

table below denotes these cases:

Table 1. Possible Behaviors Depending on The Values of Eigenvalues

A; value equilibria

Real part for all eigenvalues is negative Stable

At least one eigenvalue has negative real part Saddle
value and at least one eigenvalue has positive

real part eigenvalue

Real part for all eigenvalues is positive Unstable

At least a complex conjugate pair eigenvalues Stable or unstable (Spiral)

All eigenvalues are real Stable or unstable (Node)

A pair of complex eigenvalues with real part Linear center

equals to zero

For more information about this theorem, see [19, 22]. To find the characteristic equation
for the Jacobian matrix at equilibrium points, det(f — AI) = 0 must be solved. Before

finding the characteristic equation, we will evaluate the Jacobian matrix at DFE= (1,0,0).

—u —B 0
](1,0,0) =[0 ﬁ - (a + Au) 0
0 a —u

11



Thus, the characteristic equation of Jacobian matrix at DFE point (1,0,0) is shown below:

—u—A —B 0
det(j — AI) = 0 B—(a+u—2 0 =0
0 a —u—A

(—u=*B-(a+w) - =0
The eigenvalues are
Mz =—W d3=p—(a+p
Because u > 0, there are two cases for equilibrium behavior:

e IfB —(a+pu)<0,then DFE is a stable node
o |IfB—(a+u)>0,then DFE is a saddle point
The case I" = 0 is discussed above resulting the DFE. In addition to DFE, let us discuss

the other cases.
Case 1: whenI* >0

As mentioned in the definition of EE, the infections would occur in this case. Therefore,

2> 0, which leads to BS(£)I(t) — (a + wI(t) > 0.
Then,

[BS() = (a + W]I(t) >0 (2.6)

12



After writing the EE point in term of R,, we have (S*,I*,R*) = (Ri,(R";)“,%(Ro — 1)>.
0

In this case, we will have

(Ro — D >

5 0

Because % > 0, Ry > 1. This makes a stable EE and unstable DFE.

Case 2: when[* <0

(R

In this case, %1)” < 0, and this happens when R, < 1. Moreover, in this case, we

obtain unstable EE and stable DFE.

These cases will be next shown numerically.

2.2 Numerical Explanation of SIR Model using MAPLE

Using computer software and programs for simulating models make the
explorations easier. In this section, | will investigate the SIR model numerically by setting

initial values for SIR model.

MAPLE software can also assist in finding the Jacobian matrix for SIR model. The output

of Jacobian matrix of (a, b, ¢) equations mentioned above is shown as:

13



—u—BIn -BS 0
J=| PBIn BS—oa-pn 0
0 o -1

Figure 2.2. The output of Jacobian matrix of SIR model
Also, the output of equilibrium points is the same as what is found analytically above,
which is:

_o(Brorp) o pBrarp) o atp,
Blat+p) Blat+tw) ~~ B

sol ={n=0,R=0,8S=1},{R=

Figure 2.3. The output of equilibrium points of SIR model

These outputs in MAPLE allow us to evaluate the numerical solutions for our system
easily. Moreover, the eigenvalues and the eigenvectors can also be evaluated by
MAPLE. (See Appendix-A (a) for the inputs). After substituting these two values on the
Jacobian matrix, we obtain the Jacobian evaluated at DFE equilibria and its eigenvalues

are:

—H —B 0
0 B-a—-p O
0 o -1

eigenvaluel == —p, —p, p—o—p

Figure 2.4. The output of the Jacobian matrix at DFE and its eigenvalues

14



While Jacobian at EE point is:

p(-B+a+p)

-u+—————— —oa—-p 0
o+
—B+a+

_n(B ) 0 0
o+

0 o -1

Figure 2.5. The output of the Jacobian matrix at EE

Let us explore the case R, < 1 for SIR model. Figure (2.6) below shows the trajectory for
susceptible and infectious individuals with 4 = 0.6, 8 = 0.5, = 0.3 by using MAPLE,

(see Appendix-A, Figure (2.6)).

g e e,

CISmRvi sf? T T

Figure 2.6. The plot of the trajectory for susceptible and infectious individuals

of SIR model using MAPLE

15



In Figure (2.6) above, it is obvious that the behavior of DFE is stable hode because the

equilibrium points in this case are real negative values.

Figures (2.7) below show the 3D plotting for SIR model. (See Appendix-A, (Figure 2.7).

Figure 2.7. The 3D plot of SIR model

Case 2: when R, > 1, the behavior of DFE is a saddle equilibria while EE is stable spiral
equilibria. Let set u = 0.3, § =0.7, a = 0.2, the trajectory of susceptible and infectious

classes is shown in Figure (2.8). (See Appendix-A, (Figure 2.8)).

Figure 2.8. The trajectory of susceptible and infectious classes

of SIR model when Ry > 1
16



To see how the number of infected individuals increase or decrease for each case, the
plot of the solution of the system must be conducted. The plots below show the two

cases in selected time.

Ry <1 Ry >1
; I(t),5(t),R(t
sms ; S(t),l(t) * ( ) ( ) ( )
Figure 2.9 Figure 2.10

Figure 2.9. The plot of susceptible and infected individuals of SIR model
when Ry < 1

Figure 2.10. The plot of susceptible, infected, and recovered classes of SIR model

when Ry > 1

These plots illustrate that the number of infected individuals would decrease until the

infection dies out when R, < 1, while the spread of infection would increase, causing an

epidemic when Ry > 1.

17



2.3 Susceptible-Exposed-Infectious-Recovery (SEIR) Model

In the SEIR model, the population with size N is divided into four compartments which
are susceptible S, exposed E, infected I, and recovered R.Thus, the population N can be

writtenas N = S+ E + [ + R. Let us suppose that

e The contacts between susceptible and infected individuals cause the
transmission of the pathogen during a period (t) with a rate g individuals/unit
time. Then, the exchange rate for individuals from being in the susceptible
category to the exposed category is obtained by rate SI.

e The parameter « illustrates the rate of movement of people from the exposed
class to the infected class.

o The parameter y illustrates the rate of moving from being in the infected class to
recovered class.

¢ The demographics (natural birth and death) are considered in this model, and
u represents death and birth.

e The population size is constant.

18



The flowchart below illustrates the interaction between each class in the SEIR model.

Birth

Susceptible :BI Exposed a infected Y recovered
(E) ) (R)

Figure 2.11. SEIR compartments model

This diagram is the illustration of a first order non-linear differential equations system

2.7):

(dS(t) B
— = BN = SOI(®) — us(t)

dE(t) P
dt N
dI(t)
— = aE®) —yI(t) — I (6)
dR(t)

\ dt

S®I(t) — aE(t) — uE(t) (2.7)

= yI(t) — pR(t)

In the SEIR system shown in (2.7), d';—(tt) can be reduced as well as in the SIR model

dr(t) _ _ as(t) . dE(t) n dai(t)
dat ( dt dt dt

19
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N=S+E+1+RandN is constant as it is mentioned in our assumption above.
Therefore, instead of discussing the system (2.7), | will discuss the reduced system

below:

( d—i(tt) = puN — %5(01(0 —uS(t) = f(S(t), E(®),I(D), t)
digt) = %5 (OI®) — ak(®) — pE®) = g(S©), E(©),1(6), 1) (2.8)
d;—(tt) = aE(t) —yI(t) =l (t) = h(S(6), E(1), 1(8), 1)

After linearizing (2.8), the Diseases Free Equilibria can be found by substituting I* = 0 in

the linearized system (2.9) below. Thus, ‘Z—i = aE*(t) = 0, obtained when E* = 0. Also,

by substituting (I* = 0) into uN — %S(t)l(t) — uS(t) =0, S* must be equal to the size of

the population N. Therefore, DFE= (N, 0,0).

uN —Es@)1(8) — us(t) = 0
%S(t)l(t) — qE(t) — uE(t) = 0 (2.9)
afbE(t) —yI(t) —ul(t) =0

For more illustration, the second equation in (2.9) can be rewritten as:
uN — (%I(t) +1)S@) =0
And from last equation we have
E(r) =10 (2.10)

After substituting (2.10) in the second equation in the system (2.9), we will have
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B

1
SSOI® -~ @+W0 +1) 1) =0

After factor I(t), the previous equation can be written as

(FSO-@+w@+w)I® =0 (211)
To solve this equation either I(t) = 0 or

:N(a'i'll)(y'l'ﬂ) (2.12)

S(t) p

For I(t) = 0 we will have the DFE that it is found earlier, which is (N, 0,0). In addition, the
endemic equilibria will be found by substituting (2.12) in the first equation in the system

(2.9) to find the value of I(t). Thus,

_NBla+ (¥ +u)1(t) _Nule+ W+ _

NB«a Ba 0

By multiplying and dividing the previous equation by af and by simplifying the above

equation, we will have:

uNap — pla+w(y +wi(t) —Nula+w)(y +p) =0

By solving for I(t), we have:

uNap — Nu(a + )y +u) = pla + )y + i)

Then,
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1) = pNap — Nu(a + @) (y + 1)
Bla+w(y +w

_HN@B - (a+m +1) (2.13)

="+ 0o +0

E(t), also, can be found by substituting (2.13) into (2.10)

pN(af — (a + )y +w)
af(a+w

E(t) =

Thus, the endemic equilibrium point for SEIR model is

(5% B 1) = <N(a +WG+w uN(@B —(@+w+mw)  pN(af - (a+ml +u))>

ap ' af(a + w) ' Bla+ Wy +w

This is the same result that | found using MAPLE software:

Figure 2.12. The output of EE for SEIR model

(See Appendix-B, (b)).

The Jacobian for SEIR model (2.8) is evaluated as:
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[0f of Of]

as oE ol {—%1@)—;1 —%S(t) 0 1|
JsED =29 %9 99\ Tp 8
o oS OE ol | N® @+ Nﬂ@|
% % % |_ 0 a —(y+u)J
Los OE ol

The Jacobian of the SEIR model at DFE is shown below:

—u -B 0
JIN,0,0) =0 —(a+p) B
0 a —(r+u

To find its eigenvalues, det(J(y0,0) — /) = 0 must be solved.

—u—A -B 0
det(J — Al = 0 —(a+p)—4 B =0
0 a -+mw -4

After the expanding the determinant, we obtain

WD ((@+w+ D+ +2)—ap) =0

—(a+2u+y)iJ((a+u)—(y+u))2+4aﬁ
2

M =—p Ayz=

According to the stability theorem, the trajectory of the system will have stable behavior

when

(@ -+ )+ tap < (a+ 20 +7)
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Let us find the eigenvalue at the endemic equilibria for SEIR model later in this chapter

with numerical solution.

Next, the basic reproduction ratio of the SEIR model will be found by two different ways.

2.4 The Basic Reproduction Ratio Ry for SEIR Model

R, is useful to investigate the spread of the disease and helps to predict if the disease
will increase and become an endemic disease or if it will decrease. The basic
reproduction ratio R, also known as the threshold parameter, for the SEIR model, can

be found if the infectious disease is increasing. In the SEIR model the infections would

happen when dZ—(tt) > 0. To explore this, the right-hand side of equation (2.11), that it is

written previously, must be more than zero,

(ES(t)—l(a+ Yy + ))I(t)>0
N —(a+ W+

let S(t) = N, and solve this quantity to have:

1
BI(t) > E(“ + Wy + wI(t)

ﬁ—a>1
(a+mw@y+w

Ba

Thus, Ry = (a+w)(y+u1)

Another way to calculate R, is the next-generation method. See [24, p.32] for more

illustration.
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The next-generation method

In next-generation method, we need to consider both the ways of creating new infections
and the ways of moving between states. In SEIR model, “exposed” and “Infectious” are
two different disease states. In the exposed and infectious states, by looking at (2.8), it is
obvious that there is one way to create new infections, which is the interaction between
susceptible and infectious individuals, while there are many ways to move between
infectious and exposed classes. By using the next-generation method, there are two
matrices F and V, where
of;
and

avi

daxj

fi : the rate of having new infections

(v; =vi —v;") 1 v/ is the rate of moving individuals out compartment i and v} is the rate

of moving individuals into the compartment.

In SEIR model (2.8),

leo %50]:[0 ,6’]

o Vo] Tl o
V= [(H—Jraa) (V‘?'#)]

The next-generation method shows that R, is the largest eigenvalue of matrix G = FV 1.
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After evaluating V~ and multiplying it by F matrix,

Ba B
C=lu+tar+n +w
0 0
In this matrix G, Ry = wﬁﬁ’ which is the largest eigenvalue of next-generation

matrix. In fact, the result here is the same as what was found earlier.

2.5 Numerical Solution of SEIR

As | mentioned before, software such as MAPLE assists to find the Jacobian

matrix more easily. For the SEIR model without reducing %, the output of the Jacobian
matrix using MAPLE is shown below.
B ‘Ir 0 _BS 4|
N N :
J= B I —0L — |0 E 0 i
N ' N .
o - — L o |
i ] —ul

Figure 2.13. The output of Jacobian matrix of SEIR model

This shows the same result as | found eatrlier.

Let us suppose the initial values for SEIR model and analyze the plots of both cases

Ry <1,and Ry, > 1.
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Case: (Ry <1)

;NN

10
.E\
a2 0

Figure 2.14. The 3D plot of SEIR model with selected initial values when Ry < 1

Figure (2.14) above shows the 3d plot of SEIR model (2.8) with selected initial values

when (R, < 1).

To understand more about the dynamics of this system with these initial values,
the phase portraits will explain more about the spread of the infectious disease when the

threshold is less than one. Figure (2.15) below indicates that the infections individuals

u=0.2 p=0.2
a=0.4 y=0.1
N=10
Initial values
S(0) =10
E(0)=9
100)=7

will die out until there is no more endemic, while the number of the susceptible

individuals will be equal to the number of the populations.
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1

S(t) V. R(t)

10 105 11 115 :‘2 125 13 135
X

I(t)

‘ I(t) & R(t)

121

10

10

(t) & I(t)

Figure 2.15. Different plots of S, I, and E classes of SEIR model when Ry < 1
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Case: (Ry > 1)

The 3d plot of SEIR model (2.8) is shown in figure (2.3).

u=02 pg=04
a=0.8 y=0.1
N =10
Initial values
S(0) =20
E(0) =5
1(0) =7

Figure 2.16. The 3D plot of SEIR model when Ry > 1

Figure (2.17) below shows the plot for each susceptible, infected, and exposed individual

during one month with the same initial and parameter value above.
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Figure 2.17. Different plots of S, I, E classes of SEIR model when Ry > 1

In this chapter, the basic models of epidemics are represented. Both SIR and
SEIR models are investigated to see how the epidemics spread during a period of time.
There are similar results for both models, which state that the spread of the disease is
mostly dependent on the interaction between susceptible and infected individuals.
However, the spread of infectious individuals in the SEIR model is slower than the
spread in the SIR model. It is mostly about the exposed compartment on SEIR model. If

the contact between susceptible and infected people increase, the spread will be
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increased as well. Therefore, it is found that to control epidemics, we must impose
preventive measures that would decrease the rate of interaction between infectious and
susceptible individuals. Also, we found the criteria of the stability for each model using

the Jacobian matrix and the theorem of stability.

31



CHAPTER Il
MERS-CoV MODEL INVESTIGATION

DESCRIPTION OF THE MODEL

By adding more compartments to SEIR model, we created the SEIHR model to
investigate the spread of MERS-CoV infectious disease. Based in MERS models that
were studied in [4, 20, 26], | use a similar model to explore the MERS infection in
humans. The proposed model studied in this chapter has five compartments indicated

below:

S the susceptible individuals

E the exposed individuals who have the pathogen but haven’t be infected yet
| the infected individuals

H the hospitalized individuals

R the removed or recovery individuals

The assumption of this model is illustrated below:

e We assume that the population size is constant and N = S(t) + E(t) + I(t) +
H(t) + R(t).

e The natural death and birth rates are also considered in our model.

e MERS-CoV has a latency period evaluated to be 2-14 days [15], which allows us
to use the exposed individuals in our model. Thus, we consider the latency or
exposed individuals in our model.
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¢ We assume that the virus of MERS transfers to humans by either contacting with
exposed, infected, or hospitalized individuals.

¢ The parameters below indicate the interaction between compartments that are
included in our model:

B, the rate of the interaction between susceptible and exposed individuals
B, the rate of the interaction between susceptible and infectious individuals

B; the rate of the interaction between susceptible and hospitalized individuals

a the rate of the movement from being exposed to be in infectious calss
¢ the rate of the movement form being infected to be in hospitalized class
d, the death rate from infected individuals

d, the death rate from hospitalized individuals

r; the recovery rate from infected individuals

r, the recovery rate from hospitalized individuals

Based on the assumptions above, the proposed model of MERS-CoV is

indicated in (3.1) as a nonlinear differential equations system.
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“Zﬁ” _ N — (ﬁlE(t)+321(§V)+ﬁ3H<t))5(t) —uS(O)
dE) _ (B1E(O+B1(D+BzHE)S(D)

" . — (@ +WE®)
di(t)

4 = aE(t) — (e +dy + 1 +wI(t) (3.1)

L2 =el(©) = (do 47, + WHE)

SO = 1 1(t) + 1, H(®) — iR (D)

To linearize system (3.1), we solved system (3.2) to find the equilibria for the model.

oN — (&E(t)%l(;)+ﬁsH<t>>5“) —uS@t) =0
(BiEO)+B21()+B3H())S(E) (a+wWE@®)=0

QE(®) = (4 dy + 7+ @IE) = 0 (3.2)

el(t)—(d,+r,+wH() =0
rI(t) +r,H(t) —uR(t) =0

It is easier to find the disease-free equilibria first, which there is no more infections
(I = 0). Consequently, there will be no more exposed, hospitalized, and recovered
individuals (E* = H* = R* = 0). By substituting these values in the first equation in (3.2),

we will have

ON — uS(t) = 0. Thus, S* = %N . Thus, the disease-free equilibrium is

DFE = (S*,E*,I*',H*, R") = (%N,O, 0,0,0). To find the endemic equilibrium point we need

to solve the linearized system (3.2).

Before finding the endemic equilibria, | would consider the first four equations in (3.2)
because from the first system (3.1), we can reduce the last equation that depends on
only infected and hospitalized individuals.

I would also eliminate N from the system by substituting

S(t) = NS, E(t) = NE, I(t) = NI, and H(t) = NH
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Then, by dividing both sides by N, we have the system (3.3) shown below.

0 — (BLE + Byl + BsH + 1)S = 0

(BLE + B2l + B3H)S — (a+wE =0

afE —(e+di+r+w)I=0 (3.3)
el—(dy+r,+uwH=0

From third equation in system (3.3), we have

aE

I'= (e+dq+7+p0) (3'4)
From last equation in system (3.3), we have
| = Wetrati)H (3.5)

&

The left-hand side of (3.4) and (3.5) are equal. Hence,

eaE (3.6)

- (e+d +ri+p)(dy+ra+1)

Also, by adding the first and the second equations in system (3.3), and solving for E, we

have,

_ 6-us
E= (3.7)

By substituting (3.4), (3.5), and (3.6) into equation the second equation in (3.3),

pra n Psea
(e+di+r+w (+di+r+w(d, +r+uw

[(By + )S —(a+w]E=0

(a+p)

To solve this equation, either E = 0,0r S =
\ Baa \ B3ea
17 (e+dq+r1+p0) ' (e+d1+r1+w)(do+r+p)

Thus, the susceptible value of the endemic equilibria is evaluated below:
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(a+w(e+dy+r +p(dy +r+ 0

st =
prle+dy+r +w(dy + 1+ 1) + fral(dy + 1+ p) + Brea

By substituting S* into (3.7),

0 ple+dy+mr+w(dy +r+p)

*

T@tw)  [Bletd trtpdy trp i)+ Bald, tr,+ 0 + fecal
And by substituting E* into (3.4) and (3.5), we have

_ a 0
T (etdi [(a+u)

*

ple+dy+m+w(dy +r+p) !
[Bi(e +dy + 1 +w)(dy + 15 + 1) + fraldy + 1, + 1) + freal

_ ca 0
C(etdi i +Hw(dy ) [(a+u)

*

_ ple+dy+m +w(dy + 1+ p) !
[Bi(e+dy + 1 +w)(dy + 15 + 1) + raldy + 1, + 1) + P3eal

LetD =p(e+dy+r+w)(dy + 1+ ) + Bra(dy, + 15 + u) + B
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Then, the endemic equilibria for MERS-CoV is

(a+w(e+dy+r+wd +7m,+u0)
D )

(S*,E*,I*,H*) — (

0 ple+dy +r +p)(dy + 15+ p)
(a+w D '

af au(d, +r, + )
(e+dy+r+w(a+p D ’

eab sau
(@a+p)(e+dy+r+p)(dy +1+p) D

3.1 The Jacobian Matrix for MERS-CoV:

To find the stability of MERS-CoV, the Jacobian matrix must be evaluated as well
as its equilibrium points. The Jacobian matrix for the MERS-CoV model at any

equilibrium point (S*,E*, I*, H") is presented below:

J(s*, E5, 1, HY)

—(BLE + B2l + BsH + 1) —p1S” — B2S° —B3S™
_| BET+BI" + BHT BS*— (a+ ) B2S” B3S*
0 a —(e+d+r+p 0
l 0 0 € —(dy+r, +,u)J
' b fre pae
—u B = _p = —B. =
Yu ‘u ‘u
J 0 pB i (a+w B i B i
(00,0 tu 2 u Su
0 a —(e+d+r+p 0
L 0 0 € —(dy, + 1, + )
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A B i B i B i
H 1# 2# 3,u
0 0 0
det(J — AI) = 0 ——(a+u—1 — —
'Bl,u H ﬂzﬂ ﬁ3u
0 a —(e+di+r+pw)—4 0
0 0 £ —dy+r,+p)—2
=0

0
—(u+/1)[(%—(a+u)—/1>((£+d1+r1+u)+/1)((d2+r2+u)+)l)

B.0a Bs0ace

+

(dy+m+w)+2)+

1=0

Instead of solving this equation, the numerical solution using data of MERS-CoV will be
evaluated in this chapter after finding the reproduction ratio of our system using the next-
generation method. Simulating our model on MAPLE software and evaluating the

eigenvalues around our equilibrium point would ease the outcome of its stability.

3.2 The Reproduction Ratio (R,) of MERS-Cov Model

The next-generation method is used here to find the reproduction ratio or the
threshold for our model of MERS-CoV. The illustrations of finding (R,) is presented for
MERS-CoV model system (3.1). In this model, the exposed, Infected and hospitalized
compartments make-up the infectious disease. Thus, we will consider the three

differential equations shown below:
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dE(t)
= (BLE(D) + B21(8) + B H(D)S(E) = ( + E(D)

di(t)
dH(t)
= = g](t) — (dz +r, + ,U)H(t)

Let f;,i = 1,2,3 are the compartments that have a rate of having new infections from
each equation respectively. And v; = v; — v{", v; is the rate of moving individuals out of

the compartment and v;' is the rate of moving individuals into the compartment.

Hence,
fi = (BLEQ@) + B21(8) + BsH())S (1)
f2=0
f3=0
Let
01 0/ Of]
0E 0I 0H
PR [ P
&% ELLHED T9E I 9H
0fs 9fs Ofs
L OFE 0l O0H-
By + BoI" + BsH*)S*  (BLE™ + B2 + BsH™)S™  (BLE™ + BoI" + B3)S”
= 0 0 0
0 0 0

By substituting the free-disease endemic equilibrium in the previous matrix, we will have
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F =F
(L 000 |0 o0 o0
0 0 0
Now, let
v = (a + WE”
v,=(+d+r +WI"—aE”
vy =(dy + 1y + WH" —el”*
Hence,
rdv, 0v;  0vq]
0E 0l 0H (a+ 1) 0 0
dv, 0v, O0v,
L ELLHDTSE a1 oH
P 0 —& dy+mry,+w
vy dvy Ovs
L0E 01 OHA

To find R, that we are looking for, we need to find the largest eigen value of FV 1,

det(V),VT and dj(V) are evaluated to find the inverse of V.

det(V) =(a+w)(e+dy +r +w)(dy, +7r, + 1)

(a+w —a 0
VT = 0 (e+dy+m +p —&
0 0 (dy+7ry+ 1)
adj(V)
(e+di+r+wldy+r+p) 0 0
= a(dy+r,+p) (a+w)d, +7m,+ ) 0
ae ela+ —(a+we+dy+r+uw
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Lo
%4 adj(V)

= det(V)
! 0 0
(a+uw)
_ a ! 0
- (a+w(e+dy+1+ w0 (e+d;+7 + 1)
ae £ 1
[(a+wW(e+di+r+wd,+r+uw) (e+di+r+wld,+r,+p) (dy+15+ 1)l

[ 1 1
— 0 0
0 0 61l (a+p |
Bi— Bo— Bs—|| a 1 |
F.v-1= U U | - 0 |
0 0 0 | (@+w(e+dy+r+w (e+dy+m+p)
0 0 0 ag £ 1
l(a+u)(£+d1+r1+u)(d2+r2+y) (e+di+r+wd, +r+p0) (d2+r2+y)J

[ B.b + B0 + Bsbae 0P + B3be B301 1
wa+w pla+we+di+r+p) pla+wetdi+rn+uld+r+p) pletdi+r+p) pletdi+r+wld+r+u) pldy+r+ 0
0 0 0

l 0 0 0 J

The largest eigenvalue for F - V1 represents the reproduction number for MERS-CoV

disease, which is shown below:

R - B0 B.0a N Bs0ae
CTua+ ) pwat+wtdi+r+p) plat+wetd+r+wdy + 1o+

R = P10(e+dy+r +u)(dy + 15 +p) + BrBa(d, + 1y + p) + f30ac
0 ula + (e +dy +r+w(dy + 15+ 1)

3.3 Developed Model of MERS-CoV

In this model, similar assumptions to our previous model (3.1) were used to
create the model. In this model, it is assumed that the infected cases have two different
categories, one of them had either direct or indirect contact with infected camels while
another case be infected by contacting other infected cases and I, and I, represent

these compartments respectively.
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dfi(tt) — N — (ﬁ1E(t)+leh(t)+€fv31c(t)+ﬁ4H(t))S(t) — uS(t)
dE(t) E(6)+B211(0)+B31c(t)+B4H(£)S(L)
= _ B B2ln [;3 B4H (1) —(a+y+WE®
dip(t)
== =aE@) = (en +dy + 11+ WO
iy (®) (3.8)
— = YE@®) = (ec +dy + 15 + ) (0)

dH
1O = Iy (0 + £l () = (ds + 73+ DH()

dR(t)
2 = Nin(0) + 121 (8) + 3H(E) — pR(t)

Numerical solution using MAPLE is used in the next chapter for system (3.1).

Before moving to the numerical simulations of MERS-CoV model, the
reproduction ratio of system (3.8) is found after reducing the model and eliminating N,

using similar method that was used to find R, for previous model (3.1).
Thus, by applying the next-generation method for (3.8), we have:
fr = (BLE(®) + B2In(t) + Bl (t) + B4 H())S (L)
f2=0, f3=0, f,=0

Let

Fes, & 0 1007

B+ Balp + B3lc + BoH)S™  (BiE™ + B + B3l + B HT)S™  (BLE™ + Balp + By + BoH)S™  (BiE™ + Boly + B3l + B4)S”

_ 0 0 0 0
0 0 0 0
0 0 0 0

By evaluating this matrix at free disease equilibrium, we have

42



0000~ 0 0 0 0=
e o 0 0 0 0
L o 0 0 0|
Now, let
vy =(a+y+wE”
172=(€h+d1+7‘1+,u)1;;—aE*
vy = (e, +dy + 1, + ) — yE”
vy = (dz + 13+ WH" — (enlp, + &clc)
Hence,
(a+y+uw 0 0 0
v _ - (en+dy+7m+ 1) 0 0 _v
(s% ELINHD) = Y 0 (ec+dy+my+ 1) 0 B
0 —&n —& (d3 +13+ )

MAPLE software was used to find the inverse of matrix V and then by multiplying the

result by matrix F, (see Appendix-C (3. a)). The output is shown below:

FxV1

[.819 B0 B30y _ Bi0(—akyen +yvkie) B0 Baiben B30 Babe. B40 |

uNk — uNkk, uNkk, uNkk,k, k4 uNk, uNkiks; uNk, uNkyks; uNk,
= 0 0 0 0
0 0 0 0
0 0 0 0

where, k = (a+y+u), ky=(p+di+r+w), ko = (6. +dy +15 + 1),

ks =(d;+1r;5+w
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The largest eigenvalue for F = V=1 is known as the reproduction ratio according to the

; _ Bab BaBa P36y BiO(—akyeptykiéc)
next-generation method. Thus, R, = vk vk, anki NkkGke

With more evidence and information about being infected by contacting infected camels,

this would be a helpful approached to optimal control MERS infectious disease.
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CHAPTER IV

NUMERICAL INVESTIGATION OF MERS-CoV MODEL AND

ITS CONTROL

For better understanding of the dynamics of our models, numerical simulations
using MAPLE of our MERS-CoV model are presented in this chapter. The stability of
system (3.1) around the disease-free equilibria is investigated first. Data of MERS-CoV
were collected from [31], and it is reported that the incubation period is 5 days and
infected move to be hospitalized for 4 days [32]. We estimated that infected individuals
must recover during one week and 6 days for hospitalization while the death for both
infected and hospitalized individuals would be during 14 days. Because MERS-CoV is
central in the Middle East, the data used are focused on patients reported in The
Kingdom of Saudi Arabia, where the most cases of MERS-CoV were confirmed. It is
found that 179 MERS-CoV cases were reported in Saudi Arabia from January 2, 2017

until August 12, 2017.
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Table 2. The Value of Parameters in MERS-CoV System (3.1)

N | Population size in KSA 32783206
6 | The birth rate during 2017 0.016
i | The death rate during 2017 0.03
B, | The rate of contacting exposed individuals 0.4
B> | The rate of contacting infected individuals 0.4
B5 | The rate of contacting hospitalized individuals 0.2

a | The rate of moving from being exposed to be infected 0.2

e | The rate of moving from being infected to be hospitalized | 0.25
r, | The rate of recovered from infected class 0.07
r, | The rate of recovered from hospitalized 0.14
d, | The death rate of infected class 0.07
d, | The death rate of hospitalized class 0.07

To investigate the stability of MERS-CoV using MAPLE software, the eigenvalues around

DFE point is found below:

[-.03,2.082970223, -.5166459217, -.3229909645 ]

Figure 4.1. The output of the eigenvalues at DFE for MERS model

(See appendix-C, (4.1)).

These values show that the MERS-CoV trajectory for our model makes a saddle or

unstable node around DFE, according to stability theory stated in chapter one.
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Using values on Table (2), the plot of infected individuals related to our differential

equation system (3.1) is shown below in Figure (4.2):

Figure 4.2. The plot of infected individuals of MERS

Figure (4.4) below shows the plots for susceptible, exposed, infected, and hospitalized

classes of MERS-CoV system (3.1). (See Appendix-C, (4.2)).

(t) & E(t) & I(t) & H(t)
26 :
15edf: e
Efef: |
L E(t) V. S(t) i
S00- |
UTen e w6 w6 A
(4.3) (4.4)

Figure 4.3. The plot of EV. S of MERS

Figure 4.4. Plots of S, E, I, and H individuals for system (3.1)
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The reproduction ratio for MERS-CoV model using vlues on Table (2) is represented

below:;

R_0:=1.599263860

Figure 4.5. The output of Ry for MERS model

The reproduction ratio is more than one, which makes concern of having epidemic in the
future. To control this, we need to optimally control our model by decreasing the rate of
contact between suscitple and exposed classes. By subsituting different values of
parameters, it is found that when p, is decreased to be 0.01, R, will be less than one so

that the infections will die out.

When B, is reduced to be equal to 0.01, the reproduction ratio is evaluated below:

R_0:=.4740740738

Figure 4.6. The output of Ry when g, = 0.01

The plot of infected and hospitalized indiviudals of model (3.1) after changing f; is

shown below in Figure (4.7).
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I(t) & H(t)

Figure 4.7. Plot of I, and H individuals of MERS model when Ry < 1

While the source of the spread of MERS-CoV is still studied and the vaccine has not
been developed yet, informing people to follow some instructions is a useful tool to
manage the spread of MERS-CoV. Washing hands regularly, avoiding contact with other
patients having MERS-CoV, and preventing the contact with camels are advantageous

to avoid having MERS virus.

It seems that the spread of MERS-CoV is labile during the time. Therefore,

introducing control problem to the model when R, > 1 can assist in preventing the
spread of the disease. MERS model can be controllable by introducing a function u(t) to
system (3.1), when u(t) implies the way of preventing the spread of disease by contact
the exposed, infected and hospitalized individuals. Our model after using the control

problem is represented as

49



(dS(®) _ o uO(BLE@®)+BI(D+BsHD))S(E)

” 6N S uS(t)
dE(t) _ u®)(B1LE®)+B1(O)+BzH(B))S(E)
T N (a + WE()
] d;—(tt) =aE(t) — (e+dy+1 +WI) (4.1)
2= el(©) = (dy 47, + WHE)
dR(t)
\ —= =nI(t) + n,H(t) — uR(t)

dt
Where, 0 < Upin < u(t) < Unax-

The objective function is I(T) — min. Our goal of this control problem is minimizing the
infected individuals at time T. Since our model is similar to Ebola model in the work of
Grigorieva and Khailov in [6,7], then we assumed that the type of optimal control model
would be similar. Therefore, we introduced control function u(t) into the system (3.1) and
assumed that optimal control is piece wise constant function with at most two
switchings. Instead of solving complex two point boundary value problem for the
maximum principle, this reduced our problem to a simpler one of finite dimensional

optimization.

Let upyin = 0.4 and u,,4, = 1 in our numerical control model, and the time
interval be 20 days. The best optimal control obtained numerically for model (3.1) using

original program written in MAPLE is shown in Figure (4.8).
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Figure 4.8. Plot of optimal control u(t) for MERS model

By using data on Table 2 and changing the intial values to flexible find the
optimal control, the plot of Inftected indiviuals of MERS model before and after adding

the control function u(t) for t €[0, 20] is shown in Figure(4.9). See (Appendix-C (control

model)).
b a0’
3 30
Inlected Infected
P ] 20
10 10
0 2 4 & 3 W0 12 UK B A ¢ 2 4 6 8 W 12 U 1% 18 A
Tame
Without control with control

Figure 4.9. Plot of I(t) for MERS model with and without the optimal solution
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We observed that to minimize the number of infected individual at the end of the
time interval, to have only 7 infected individuals at time T = 20 days, the best optimal

strategy is the following:

For the first 4 days of the planning period of 20 days, the optimal control can take
its maximum value (hence, no precocious measures should be used, for example, in
order to not make population panic), then for the remaining 16 days, the optimal control
takes its minimal value that indicates that the maximal precocious measures must be
taken, such as quarantine, marketing and educational efforts and even closing of public

events .

For more effective control to prevent the spread of MERS, the methods used by
Grigorieva and Khailov in [6, 7] can be also used for MERS model. Three optimal control
functions can be introduced to control our model (3.1), and four optimal control functions
for MERS model (3.8). In future study, an analytical optimal control investigation will be

explored and investigated.
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CHAPTER V

CONCLUSION

In this paper, the basic SIR and SEIR models are represented in Chapter Il. The
knowledge of investigating these basic models for infectious disease assists in
understanding the dynamic of the spread of disease, which is a useful tool to apply this
study for any infectious disease by creating model that appropriate with understanding
the sources of its outbreak. Analytical and numerical solutions were investigated in this
paper for both SIR and SEIR model. The Jacobian matrix was evaluated as well as
threshold. It is found that if R, > 1, the disease will continue distributed and the spread
of the disease will be increased, while if Ry < 1, the disease will die out. To optimal
control these model, the contact between susceptible and infected or exposed
individuals must be minimized to prevent the spread of the disease. In Chapter lll, the
same methods used in chapter Il were applied to investigate the model of MERS that is
similar to [4, 20, 26]. Developed model was created by divided the infected individuals of
MERS to two categories, infected people who had contact with camels and infected
having contact with infected cases. The reproduction ratio was evaluated using next-
generation method. In Chapter IV, numerical investigation and numerical optimal control
of MERS were studied using MAPLE software after selected data for reported cases in
KSA during 2017. It is found that R, = 1.59, which show that MERS should be
considerable as a pandemic in the future. For our selected data, it is found that if 3,

decreased to be 0.01, then MERS outbreak will die out. A control function is

53



added to our system to minimize the rate of interaction between susceptible and
exposed, infected and hospitalized individuals so that the infected individuals will be
decreased consequently. By having more data and knowledge about MERS, the

analytical investigation of the optimal control will be a future study.
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Appendix-A

(a) Jacobian and eigenvalues for SIR

» restart with(linalg) :with{tensor) :with (plots):
> Ni=8+Intk:

¥ eqli=nu-muts-betatstIn:

» eql:=heta*§*In- (alphatm) ¥In:

¥ eqd:=alphatIn-mitR:

» hi=vector ([eql eq? eq3]):

» I:=jacobian(A, [, In,R]);

[4-ph B8 0]
|
= Bh pS-a-p 0
|
L R

¥ sol:=solve((eql=0,eq2=0 eq3=(} {S,In R});
uCprosy) pfreny) win

Baty) Bl §
> J Li=eval (jacobian(A, (8, In,R]) , [$=subs(sol[1],8) , In=subs (sol[1]  In} ,R=subs(sol[1] R)]);

I-'ﬂ 40
J1=[0 p-a-p 0
|

sol={R=0,=0,8=1),{R=-

[
0o 4
» J Di=gval (jacobian(A, [$,In,R]) , [S=subs(sol (2] ,8) , In=subs sol (2] ,In) Re=subs (sol[2] ,R)]);

B(pasp)
v dbld )
0+l

o -l

7 pey
wty
0 ¢
> eigvaluel eigenvalues(J 1);

bty
» eiqvalue:=eigenvalues(J 2);
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(Figure 2.6) The trajectory of S and | classes (R, < 1)

[> restart:with(plets) :with(DEtools):

[> eql:=diff (S (t),t)=mu-mu*s(t)-heta*s(t)*In(t):

[> eq2:=diff(In(t) ,t)=beta*s(t)*In(t)-(alphatmm)*In(t):

[> eq3d:=diff (R(t) ,t)=alpha*In(t)-mu*R(t):

[> beta:=0.5: alpha:=0.3: mu:=0.6:

[» ini:=8§(0)=10,In(0)=0:

[> sys:=[eql,eq2]:

> DEplot (sys, [S(t) ,In(t)],t=0..1,8=-1..2,In=-1..2,[[S(0)=2,In(0)=1]],linecolor=hlack) ;
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(Figure 2.8) the trajoctory of S and | classes (R, > 1)

> restart:with(plots) :with(DEtools):

> eql:=diff (§(t),t)=mu-mu*§(t)-beta*s (L) *In(t):

> eq:=diff (In(t),t)=beta*S(t)*In(t)- (alphatm)*In(t)

> eqd:=diff (R(f),t)=alpha*In(t)-mu*R(t):

> beta:=0.7: alpha:=0.2: m:=0.3:

> ini:=5(0)=10,In(0}=0:

> sys:=[eql,eq?]:

> DEplot (sys, [S(t) ,In(t})],t=0..1,[[5(0)=2,In(0)=2]], stepsize=0.05, 5=-5..5,In=-5..5 thickness=1,1linecolor=hlack|;
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(Figure 2.7)

> restart:with(plots) :with(DEtools):

> eql:=diff(5(t),t)=mm-mu*5(t) -beta*s(t) *In(t):

> eq2:=diff(In(t) ,t)=beta*$(t) *In(t)- (alphatmu) *In(t):

> eqd:=diff (R(t),t)=alpha*In(t)-mu*R(t):

> beta:=0.5: alpha:=0.3: mu:=0.6:

> ini:=5(0)=10,In(0)=0:

> sys:=[eql,eq?,eq3]:

> DEplot3d(sys,{5(t) ,In(t) ,R{t)},t=0..100,[[5(0)=2,In(0)=2,R(0)=3]],stepsize=0.05,5=0..5,In=0..5,R=0..5,thickness=3, linecolor=hlack) ;
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[> restart:with(plots) :with (DEtools):

[> eql:=diff(S(t),t)=mu-mu*s(t) -beta*s(t)*In(t):

[> eq2:=diff(In(t),t)=heta*s(t) *In(t) - (alpha+mu) *In(t):

[> eqd:=diff (R(t),t)=alpha*In(t)-mu*R(t):

[» beta:=0.7: alpha:=0.8: mu:=0.3:

[» ini:=8(0)=10,In(0)=0:

[» sys:=[eql,eq2,eq3]:

> DEplot3d(sys, {S(t),In(t) ,R(t)},t=0..100,[[5(0)=2,In(0)=2,R(0)=3]], stepsize=0.05,5=0..5,In=0..5 R=0..5,thickness=3,1inecolor=black);
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Appendix-B

The Jacobian matrix and its equilibria

[) restart:with(linalq) :with(tensor) :with(plots):
[> eql:=nutl-mu*S- (beta/N) *5*In:

[ eq2:=(beta/N) #$*In- (alpha+mu) *Ex:

[> eq3:=alphatEx-gamnatIn-mtIn:

[> eqd:=gama*In-nutR:

» Re=vector([eql eq? eqd eql]):

» J:=jaccbian(, (S Ex,InR]);

o, M
7y ¥

|

| Bh i
Jol — - — 0
i N '
[0 a -4 0
|

Lo 0y

» sol;=solve({eql=0,eql=0,eq3=0 eqd], (5,Bx,In,R});
, 1 ] ) .
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i o un+ i . ! |
\ P (w0p Blaraptprtr) Blarraptprp) |
» J Li=eval (jacobian(A, [8,Ex,In,R]), [S=subs(sol (1] 8] Ex=sub(sol[1] Ex) ,In=subs (sol[1] ,In) ,R=subs (sol[1] R} ]} ;
4 0 4 0]

(0 -a-p B 0

sol={3=N =0, Ex=0,1=0},)3=

0o -p 0

0oy 4
* J 2i=eval (jacobian(A, (S Ex, In,R]) , [$=subs (sl [2],8) ,Ex=sub(sol (2] Ex) ,In=subs (sol (2] ,In) ,R=subs(sol (2] ,R] ]} ;
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Appendix-C

(3.a) evaluated R, for developed model

[ » with(linalg):
> F:=1inalg[matrix](4,4,[betal*(theta/ﬂ),beta2*(theta/ﬂ),betaB*(thet
a/N) ,betad4* (theta/N),0,0,0,0,0,0,0,0,0,0,0,01);

pre p2o Pp3o p4o
N N N N
F=| 0 0 0 0
0 0 0 0
i 0 0 0 0
> V:=linalg[matrix] (4,4,[k,0,0,0,-alpha,kl,0,0,gamma,0,k2,0,0,-epsil
on*h,-epsilon*c,k3]) ;

k 0 0 0
-a ki 0 0
¥ 0 k2 0
i 0 —-eh —-ec k3

> Vl:= inverse(V);

>
. 1 _
i 0 0 0
o 1
. ki ki o0
? L
kk2 0 e 0
e(—ak2h+vyklc) =h ec 1
L kkil k2 k3 klk3 Kk2k3 k3J

r > multiply(F,V1) ;
pl1é Pp20a P30y Pp4Oe(—ak2h+vyklc) (20 Ppd4o0zh P30 pdodec
[ Nk  NkkI Nkk2 Nkkl k2 k3 "Nkl NKkIK3 NK2 & NK2K3
el
NK3
[0,0,0,0]
[0,0,0,0]
[0,0,0,0]
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[>
[ >

[ >

(4.1) evaluated the eigenvalue of system (3.1) around DFE

restart:with(linalg) :with (tensor) :with (plot
s):

eqgl:=0.016-(0.4*Ex+.4*In+.2*H+.03) *S:
eqg2:=(0.4*Ex+.4*In+.2%H) *S—-(.2+.03) *Ex:
eqg3:=.2*Ex- (0.25+.07+.07+.03) *In:
eqg4:=0.25*In-(.07+.14+.03) *H:

A:=vector ([egql,eqg2,eq3,egd]) :

J:=jaccbian (A, [S,Ex,In, H]) ;

-4 Ex—4In—-2H-.03 -4 -485 =28
7 A4Ex+4In+2H 45-23 48 28
. 0 2 -.42 0
0 0 25 -.24

sol:=solve ({eqgl=0,eq2=0,eq3=0,eg4},{S,Ex,In
(H}) ;

sol:=={In=0,H=0,5=.5333333333, Ex=0}, {

S =.3334867664, Ex = .02606694351, In = .01241283024,
H=.01293003150}

J_1l:=eval (jacobian(a, [S,Ex,In, H]), [S=0. 16/0
.03 ,Ex=0,In=0,H=0]) ;

-.03 -2.133333333 -2.133333333 -1.066666667

0 1.903333333 2.133333333 1.066666667

0 2 -42 0

0 0 .25 -.24
J_2:=eval (jacobian (A, [S,Ex,In, H,R]), [S=subs
(sol[2],8) ,Ex=sub(sol[2] ,Ex) ,In=subs (sol[2]
,In) ,H=subs (sol[2] ,H) ,R=subs (sol[2] ,R)]) ;

J 1=

[—4 sub( {S=.3334867664, Ex = .02606694351,
In=.01241283024, H = .01293003150 }, Ex) — .03755113840 ,
-.1333947066 , -.1333947066 , -.06669735328 , 0]
[.4 sub( {§=.3334867664, Ex = .02606694351,
In=.01241283024, H=.01293003150}, Ex) + .007551138396 ,
-.0966052934 , .1333947066 , .06669735328 , 0]
[0,.2,-42,0,0]
[0,0,.25,-24,0]
evalf (Eigenvals(J_1,vecs)) ;

[-.03, 2.082970223, -.5166459217, -.3229909645 ]
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(4.2) the plot of MERS Model

L > restart:

[ » with(plots) :

[ > with(DEtools):

> alpha:=0.2:theta:=0.016:N:=32783206:betal:=0.4: beta2:=0.4:
beta3:=0.2: mu:=0.03: epsilon:=0.25: rl:=.07: r2:=.14: d1:=.07:

d2:=.07:

> N := S(t)+Ex(t)+In(t)+H(t)+R(t) ;

N=5(t)+Ex(t)+In(r)+H(t)+ R(r)

> eql:=diff(S(t),t)=theta*N-(1/N)* (betal*Ex(t)+beta2*In(t)+beta3*H(t

)) *S(t) -mu*s (t) ;

d
eql = S(1)==014 () + 016 Ex(1) + 016 In(1) + 016 H(r) + 016 R(1)

(4Ex(t)+ 4In(f)+ .2H(t))S(1)
B S(t) +Ex(t)+In(t) +H(t) +R(r)
> eq2:=diff (Ex(t) ,t)=(1/N) * (betal*Ex(t) +beta2*In (t)+beta3*H(t))*S(t)
- (alpha+mu) *Ex(t) ;

e :=£Ex[:)= (AEx()+ 4In(0) + 2HO)S() . Ex(s)
at S(1)+Ex(£) + In(#) + H() +R(¢)

> eq3:=diff (In(t) ,t)=alpha*Ex(t)- (epsilon+dl+rl+mu)*In(t) ;

d
eg3 = E In(t)=.2Ex(¢t)- .42 In(t)
> eqd:=diff (H(t),t)=epsilon*In(t)- (d2+r2+mu) *H(t) ;
8
eq4 :=EH(r)= 25In(t)- .24 H(t)

> egb:=diff (R(t) ,t)=rl*In(t)+xr2*H(t) -mu*R(t) ;

eqs :=£R[r) —.07In(t) + .14 H(t) - 03 R(¢)

[ > sys:=[eql,eq2,eq3, eqd] ;
a
SVS :=[;S(r)=—.014 S(t)+.016 Ex(¢)+ .016 In(t) + .016 H(¢) + .016 R( 1)
o

(AEx() + .4 In(¢) + .2 H(¢)) S(t)
T S(1) + Ex(¢) + In(r) + H(¢) + R(¢)”

QEx(:): (A Ex(f)+ 4 In(f) +.2 H(1)) S(1)
at S(t) + Ex(¢) + In(¢) + H(t) + R(¢)

-23 Ex{f),i[n{f}: 2 Ex(t)- .42 In(t),

%H{r): 251In(1)- 24 H(r}]

|: > ies:=5(0)=10927735,Ex(0)=1000,In(0)=170,H(0)=100,R(0)=60;

69



#ies:=8(0)=0,Ex(0)=0,In(0)=0,H(0)=0,R(0)=0;
L ics =5(0)= 10927735, Ex(0) = 1000, In(0) =170, H(0) = 100, R(0) =60
[ > sol:=dsolve({eql,eq2,eq3,eqd,eq5,ics},{S(t) ,Ex(t),In(t) ,H(t) ,R(t)}
, type=numeric,
startinit=true,output=listprocedure) ;
sol =[t=(proc(f) ... end), H(t) = (proc(t) ... end), Ex(¢)=(proc(f) ... end),
In(r)=(proc(s) ... end), R(¢)=(proc(s) ... end), S(t)=(proc(t) ... end)]
[ > assign(sol) ;
> S:=8(t);
Ex:=Ex(t);
In:=In(t);
H:=H(t) ;
R:=R(t) ;
S :=proc(f) ... end
Ex = proc() ... end
In = proc(t) ... end
H = proc(t) ... end

! R = proc(t) ... end
[ > plot('In'(t),t=0..60,thickness=3, labels=['Time', 'Infected']);

Infected

i 0 10 20 ) 40 50 60
[ > plot(['S(t)', 'Ex(t)',t=0..60],scaling=constrained, color=BLACK, thic
kness=3,labels=['S',6 'Ex']);
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1.5e+06
Ex1e+06

o 2e+06 4e+06 sse-oe Be+06 1e+07

[ > plot(['S(t)','Ex(t)', 'In(t)', 'H(t)"'],t=0..60,axes=box,labels=["t",
'XY'],thickness=3,6 color=[green, blue,red, black]) ;

> plot(['S(t)','Ex(t)','In(t)"', 'H(t)",'R(t)"'],t=0..60,axes=box, label
s=['t','XY'],thickness=3,color=[green,blue, red,black,yellow]) ;

1e+07

o 10 20 Page 390 40 6o 0o
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1e+07

an an an

> plot(['In(t) ", 'H(E)'],t=0" .60,
labels=['t','JAJB'],thickness=3,color=[red,blue]) ;

o’ 10 20 3 0
[>» Pl:=plot(['In(t)'],t=0..60, style=point):
[> P2:=plot(['H(t)'],t=0..60, sl:yl;lh-;.ina}:

age




>

[>

> plots[display] ({P1,P2});

800000 —.. B
6000001
400000-
200000
0 ___.;,F—,-';"'.gh, — e B

[ > R _0:=(betal*theta* (epsilon+dl+rl+mu)* (d2+r2+mu) +beta2+*theta*alpha*

(d2+r2+mu) +beta3*theta*alpha*epsilon) / (mu* (alpha+mu) * (epsilon+dl+r
1+mu) * (d2+r2+mu) ) ;

R_0:=1.599263860
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[ >

(Control MERS)

restart:
with(plots):
with (DEtools) :
umin:=0.4;
umax:=1;
u2min:=0;
u2max:=1000;

umin = 4

umax = 1

uZmin =0

w2max = 1000

alpha:=0.2:theta:=0.016:N:=32783206:betal:=0.4: beta2:=0.4:
beta3:=0.2: mu:=0.03: epsilon:=0.25: rl:=.07: r2:=.14: dl1:=.07:
d2:=.07:
N := S(t)+Ex(t)+In(t)+H(t)+R(t);

N :=S(t)+Ex(t)+In(r)+H(t)+R(r)
eql:=diff (S(t),t)=theta*N-(1/N)*u(t)* (betal*Ex(t)+beta2*In(t)+beta
3*H(t)) *S(t)-mu*sS(t);

a
eql :-ES(I)=-.OI4S(1)+ 016 Ex(¢) +.016 In(1) + .016 H(7) + .016 R(r)

u(t) (4 Ex(¢)+ .4 In(r)+.2 H(1)) S(1)
T S(1) +Ex(1) + In(¢) + H(¢) + R(¢)
eq2:=diff (Ex(t) ,t)=(1/N)*u(t)* (betal*Ex (t)+beta2*In (t)+beta3*H (t))
*S (t) - (alpha+mu) *Ex (t) ;
o u(r) (A Ex(t)+ 4In(¢)+.2H(r))S(1)
92 = o B = g )+ Ex(t)+ In(1) + (1) +R(r) = M)
eq3:=diff(In(t) ,t)=alpha*Ex(t)-(epsilon+dl+rl+mu)*In(t);

eq3 :-%ln(t): 2Ex(1)=-.421In(1)
eqd:=diff (H(t),t)=epsilon*In(t) - (d2+r2+mu) *H(t) ;
eqd :-gHU):.ZS In(t)- .24 H(1)
eqg5:=diff (R(t) ,t)=rl*In(t)+r2*H(t)-mu*R(t);
eq5 1'§R(l)= 07 In(t) + .14 H(t) = .03 R(7)
sys:=[eql,eq2,eq3,eqd] ;

a
SVs :-[55(1):-.014 S(r)+.016 Ex(¢)+.016 In(¢) +.016 H(7) +.016 R(¢)
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u(t) (4 Ex(t)+.41In(r)+ .2 H(t))S(1)

T S()+Ex(t) +In(¢) + H(t) + R(¢)

u(r) (4 Ex(r)+.41In(z)+ .2 H(t))S(1)
S(t)+ Ex(¢)+ In(7)+ H(#) + R(1)

a a
BIEX(’)= - .23 Ex(1), et[n(t)=.2 Ex(t)—-.421In(1),

a
= H(t)=.25In(7)-.24 H(r)]

:> ics:=8(0)=100,Ex(0)=50,In(0)=45,H(0)=10,R(0)=10;
#ics:=5(0)=0,Ex(0)=5,In(0)=0,H(0)=1,R(0)=0;
L ics =S(0) =100, Ex(0)=50,In(0)=45,H(0)=10,R(0)=10
[ > sol:=dsolve({eql,eq2,eq3,eqd,eq5,ics}, {S(t) ,Ex(t),In(t) H(t) ,R(t)}
, type=numeric,
startinit=true,output=listprocedure) ;
sol :=[t=(proc(t) ... end), R(¢)=(proc(t) ... end), H(t)=(proc(s) ... end),

L S(t)=(proc(s) ... end), Ex(7)=(proc(r) ... end), In(f)=(proc(s) ... end)]
[ > assign(sol) ;

> 8:=8(t);
Ex:=Ex(t);
In:=In(t);
H:=H(t);
R:=R(t);
S:=proc(r) ... end
Ex = proc(r) ... end
In = proc(t) ... end
H = proc(f) ... end
L R = proc(r) ... end
[>

[ > v:=proc(taul, tau2)
unapply (piecewise (t<taul ,umax, t<tau2,umin,umax) ,t) ;
end:

>
> plot(v(1,3) (t) ,t=0..10,numpoints=100) ;
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0.9

0.8

07

0.6+

0.5

0.4+

[>
[ > J:=proc(T,taul, tau2)
global u;
u:=v(taul, tau2):
print(taul, tau2,S(T) ,Ex(T),In(T), H(T) ,R(T)):
print(taul, tau2,S(5) ,Ex(5),In(5), H(5),R(5)); RETURN(In(T))
|  end:
[ > J(20,3,8);
3, 8, 19.85579902325121, 12.53052345005799, 7.5022498 14494355, 11.35476572123126,
64.68192669127045
3,8, 51.58119732899810, 42.86005189969034, 26.97148069083125, 26.63502224448333,
33.67561886490530
s 7.5022498 14494355
>
[ > T:=20;

[ > Jmin:=10:
Taul:=-infinity:
Tau2:=-infinity:
N:=30;

h:=evalhf (T/N);

for i from 0 to N do

taul:=i*h;
for j from 0 to N do
tau2:=j*h;
if (taul < tau2) then
Jtemp:=J (T, taul, tau2) ;
if (Jmin > Jtemp) then
Jmin:=Jtemp;
Taul:=taul;
Tau2:=tau2;
fi:
£X:
od
od:
> 'Jmin'=Jmin;
'Taul '=Taul;
'Tau2'=Tau2;

76



> plot(v(Taul,Tau2) (t) ,t=0..T, thickness=3,labels=['Time’,
'OptimalContreol’'] );

OptimalControl 0.7 -

06

::& u:=v(Taul, Tau2) ;
> plot('In'(t),t=0..T,thickness=3, labels=['Time', 'Infected']);
u =t —» piecewise( f < 4.666666667, 1, t < 20.00000000, .4, 1)

10
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[ > plot(['S(t) ', 'In(t)',t=0..100],scaling=constrained, color=BLACK, thi
ckness=3,labels=['S','In"']);

>
> plot(['S(t) ', 'Ex(t)'],t=0..50,axes=box,labels=['t', 'XY'], thickness
=3 ,color=[green,blue]) ;
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100

0 10 20 30 40 50

[> plot(['In(t)',"H(E)'],t=0..T,
labels=['t','JAJB'],thickness=3,color=[red,blue]);

0 2 4 6 8 110 12 14 16 18 20

|E > Pl:=plot(['In(t)'],t=0..T, style=point):
[ > P2:=plot(['H(t)']),t=0..T, style=line):
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[ >
> plots[display] ({P1,P2}) ;

10

0 2 4 6 8 11'0 12 14 16 18 20

[ > R_0:=(betal*theta* (epsilon+dl+rl+mu)* (d2+r2+mu) +beta2*theta*alpha*
(d2+r2+mu) +beta3*theta*alpha*epsilon)/ (mu* (alpha+mu) * (epsilon+dl+r
1+mu) * (d2+r2+mu) ) ;

! R_0:=1.599263860
[>
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