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ABSTRACT 

 

DANA BLACKBURN 

 

CURVES:  THE HISTORY AND DEVELOPMENT OF SOLUTIONS AND 

APPLICATIONS OF HIGHER-ORDER POLYNOMIALS 

 

DECEMBER 2014 

 

The purpose of this thesis is to explore algebraic curves, from definition and 

origination to development and technological / scientific application.   

A broad and oft-underappreciated topic, I will begin by exploring algebraic curves 

based on their degrees.  Each chapter of my paper will be dedicated to an algebraic 

degree, beginning with 1
st
 degree and concluding with 5

th
 degree polynomials.  In each 

chapter, we will look at the history and timeline of mathematical methods associated with 

that particular degree, along with a biography of major players in its discovery and 

subsequent achievements.  

The treatment of each degree will finalize with a look at technological and 

scientific achievements that can be, at least in part, attributed to the mathematics behind 

it.  We will even observe that the rate of change of our technological growth almost 

seems to model the numeric growth of our topic; i.e., what began as a slow, almost 

constant rate of change (degree 1) with ancient societies has accelerated through the 

centuries (and indeed, millennia) to an exponential rate (degree 3).   My work will 
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conclude with a look at what potentially lies before us if our technology continues to 

grow at this rate.
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CHAPTER I 

 

THE DEGREE OF A CURVE 

 

Introduction 

 

The following overview was heavily inspired by the work entitled, “Elliptic Tales: 

Curves, Counting, and Number Theory”, Avner Ash and Robert Gross. 

Curves can be defined by their degree, and algebraic curves can be defined by the 

degree of their polynomial equations.  The degree of a curve (and that of its generating 

polynomial) is a useful tool in arranging and describing algebraic and geometric objects.  

These objects can be arranged by their respective degrees into a natural hierarchical order 

from the simple to the complex.    

The concept of a curve has been long studied by various ancient civilizations, 

arguably most successfully by the ancient Greeks.  They mastered construction 

techniques involving lines, planes, and circles, using primarily a straightedge and a 

compass.  These tools, of course, limited them to curves of degrees 1 and 2.    

Greek mathematics did advance to the point of constructing higher degree and 

non-algebraic curves, such as spirals.  These techniques took them beyond what could be 

done with the straightedge and compass; instead, they discovered methods that included 

doubling the cube and trisecting angles (both of which are problems of degree 3).  
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Doubling the cube involves solving the equation x
3 

= 2, clearly a problem of degree 3.   

Angle trisection involves finding the intersection of a circle and hyperbola, which can be 

written as an equation of degree 3.  

The complexity of curves advances with the level of their respective degrees; e.g., 

a curve of degree 1 (a line) is less mathematically complex than a curve of degree 2 (a 

circle), which in turn, is less complex than a curve of degree 3 (a cubic).   Delving deeper 

into the latter, a cubic curve can be compared graphically to a sine wave.  However, 

differences in their properties give each of them distinct characteristics.  An algebraic 

curve of degree 3 has exactly 3 roots; that is, there are 3 real or complex independent 

values (counting multiplicity) which produce a dependent value equal to zero. A sine 

wave, however, has no limit to its number of roots.  It does, however, have an upper and 

lower limit to its range, along with an unbounded domain.  

This provides a nice segue to define the degree of a curve.  As mentioned earlier, 

an algebraic curve of degree 3 has exactly 3 roots.  These roots can be described as the 

intersections of the algebraic curve with the line y = 0 (a.k.a., the x-axis).  This line of 

intersection is called a “probing line”, a line which reveals the geometric degree.  

Therefore, we can now define the geometric degree of a curve to be the maximum 

number of these intersection points.  
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The aforementioned curves are described graphically in 2-dimensional space; 

however, introducing an additional variable can extend our study into objects of 3-space.  

Consider the following equation: 

x
2 

+ y
2
 + z

2
 = r

2 

The introduction of the z
2
 term transforms a 2-dimensional circle into a 3-dimensional 

sphere, all in one stroke!  So how do we graph this sphere?  Mathematically, we first 

define the solution set to be the set of all triples of the form: 

(x, y, z) = (a, b, ± √  𝑟2 −  𝑎2 − 𝑏2) 

 

To get a single solution, simply pick any two numbers for a and b, and let those be the 

values of x and y.  Then, substitute these into the equation to produce the value of z. 

While single equations are sufficient to describe a curve in 2- or 3-dimensional 

space, considering curves in higher dimensions becomes easier if we first parameterize 

the equations.  A parameter is simply an extra variable, often represented by t.  A system 

of equations in parametric form is one in which the original variables are set equal to 

functions of the parameters. Therefore, to describe a curve in the xy-plane, we could use 

the t-parameter in function notation to write x = f(t) and y = g(t). 

The concept of parametric equations can be clarified through a simple example.  

Consider the slope-intercept form of a linear equation:  y = mx + b.  This form is 

perfectly fine in describing most linear equations, with one exception:  the vertical line.  

Since this line has an undefined slope, it cannot be expressed in this form.  The equation 

of this line is of course x = c, where c is some constant.  However, if we parameterize 
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this line, it can be easily expressed algebraically in terms of x and y.  Here’s how: let a, b, 

c, and e be any real numbers.  Then in the xy-plane, the equation of the vertical line in the 

form x = e can be written as: 

x = e 
y = t 

 
In fact, assuming a non-zero a or c, any line can be parameterized in this form: 

x = at + b 
y = ct + e 

 
Another way to think about a parameter is to imagine a line or curve being 

described by a moving point.  At any moment in time t, the curve is at location P(t).  We 

can write the coordinates of P(t) = (x(t), y(t)).  A good analogy here is to visualize the 

moving point as a planet revolving around the sun.  Then, the set of all possible points 

occupied by the moving point is its “orbit”.   This example will lead us into the concept 

of spheric equations of degree 3, which we will explore in chapter 3.  

Let’s return to the discussion of the definition of degree. The opening paragraph 

stated that curves could be defined by their degree. We will see, however, that there are 

cases where this does not hold true, at least in the case of real numbers.  For example, let 

G be the graph of x
2
 + y

2
 + 1 = 0.  What real number solutions exist on this graph?  None!  

Because the square roots of real numbers cannot be negative, the solution set of G is 

empty (it would only be defined in the set of complex numbers). This example proves 

that we can have a polynomial of degree 2 that describes a geometric object of degree 

zero.   



5 
 

An important observation can be made here:  given a polynomial of degree “d”, 

any probing line will intersect it in at most “d” points.  This agrees with our earlier 

definition:  the geometric degree of a curve can be described as the maximum number of 

these intersection points.  

Now, let’s take a closer look at curves by exploring each one by its degree.   
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CHAPTER II 

 

CURVES: 1
ST

 AND 2
ND

 DEGREE -- LINEAR AND QUADRATIC 

 

History and Development of Solutions 

The concept of a curve has been long studied by various ancient civilizations.  

The search for curves’ solutions and their resulting significance has been a focus of 

mathematicians and philosophers alike, dating from time immemorial.   

Often Babylonians of about 400 BC are credited to be the first to solve quadratic 

equations.  They developed an algorithmic approach that led to the quadratic equation 

and essentially solved by completing the square (O’Connor & Robertson, 1996).  

However, work on the mathematical properties of line and closed figures (degrees 1 and 

2) had been done much earlier.   

While many civilizations developed sophisticated mathematical techniques in this 

field, advancements in this area were done arguably most successfully by the ancient 

Greeks.  They mastered construction techniques involving lines, planes, and circles, using 

primarily a straightedge and a compass.  These tools, of course, limited them to curves of 

degrees 1 and 2.   The ancient Greeks were masters of solving and utilizing curves of 

degrees 1 and 2; in fact, Euclid’s geometrical approach to finding length is the method 

currently used to find the root of a quadratic equation (O’Connor & Robertson, 1996).    

In addition to Euclid (300 b.c.) other great mathematicians from the Greek culture 
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include Thales (600 b.c.), Pythagoras (550 b.c.), Archimedes (250 b.c.), Eratosthenes 

(230 b.c.), Ptolemy (150 a.d.) and Diophantus (250 a.d.) (Davis, 1993).   

Pythagoras of Samos is credited with the famous theorem  

a
2
 + b

2
 = c

2
 

which relates the hypotenuse length c of a right triangle to the lengths a, b of the other 

sides.  Pythagoras’ famous theorem has certainly earned universal notoriety and 

accolades for its elegant and far-reaching applications, and the background of Pythagoras 

himself is as interesting as his famous theorem.  An image of Pythagoras can be seen in 

Figure 2.   

Early on in his life, Pythagoras is thought to have travelled to Egypt and 

Mesopotamia, acquiring scientific and mathematical knowledge.  Later, he founded a 

secretive society called the “Pythagorean School” in Crotone, on the southern coast of 

modern Italy – part of Magna Graecia in the time a Pythagoras.  The followers of 

Pythagoras supposedly shunned individuality, and believed that the discovery and 

stewardship of knowledge should be a communal endeavor: it was their custom to credit 

all discoveries to their leader.  It is believed that the Pythagorean school was ultimately 

destroyed in a political upheaval.  Pythagoras himself fled Crotone, but was pursued and 

killed in Metapontum (Farouki, 2008).   
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Figure 2. Pythagoras 

 

As of yet, no written document from the Pythagoreans has ever been found; what 

we know of their ideas and accomplishments came from others.  However, historical 

research tells us they were most likely the first intellectual society.  Members of the 

Pythagorean School pursued mathematics and philosophy simply for the benefit of 

society and its moral advancement.  Pythagoras himself supposedly coined the terms 

philosophy for “love of wisdom”, and mathematics for “that which is learned” to describe 

the goals of his school. Their motto, “all is number”, expresses their faith in the unity of 

nature’s latent mathematical structure, with its diverse manifestations in musical 

harmony, the planetary motions, and other natural phenomena (Farouki, 2008).     

As an interesting side note, in medieval times, the quadrivium, or “four paths” 

(arithmetic, geometry, music and astronomy) complemented the trivium, or “three paths” 
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(grammar, dialectic, and rhetoric) to form the seven liberal arts.  These four studies 

compose the secondary part of the curriculum outlined by Plato in The Republic, and are 

described in the seventh book of that work. The quadrivium is implicit in 

early Pythagorean writings .  As Proclus wrote: 

“The Pythagoreans considered all mathematical science to be divided into four 

parts: one half they marked off as concerned with quantity, the other half with magnitude; 

and each of these they posited as twofold. A quantity can be considered in regard to its 

character by itself or in its relation to another quantity, magnitudes as either stationary or 

in motion. Arithmetic, then, studies quantities as such, music the relations between 

quantities, geometry magnitude at rest, spherics [astronomy] magnitude inherently 

moving” (www.princeton.edu).   

In other words, arithmetic was the study of pure number, with geometry of 

number in space, music of number in time, and astronomy as number in space and time 

(Farouki, 2008).     

After discovery of the inherent properties of all right (90 degree) triangles, and 

hence creation of the Theorem, the Pythagoreans became interested in finding examples 

of natural numbers that satisfied its conditions.   Certainly they were familiar with the 

simplest triple (3, 4, 5) employed by the Egyptians in the construction of the pyramids.  

However, they took their research a step further and developed a procedure to construct 

such triples, by inserting odd numbers m in the expressions  
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a = 
1

2
 (m

2 
– 1),                b = m,               c = 

1

2
 (m

2 
+ 1).  

This was subsequently generalized in Euclid’s Elements, where it is shown that, for 

integers u and v, the formulae 

a = u
2 

– v
2
,                b = 2uv,               c = u

2 
+ v

2
 

yield all Pythagorean triples (Farouki, 2008).     

What makes the Pythagorean Theorem so integral and applicable, as well as 

timeless, is that it lies at the foundation of distance measurement, given by the formula 

d = √(𝑥2 −  𝑥1)2 + (𝑦2 − 𝑦1)2 

between two points (𝑥1,𝑦1) and (𝑥2,𝑦2).  Later, with the advent of calculus, it became 

possible to precisely define not only a straight-line distance between two points, but also 

the distance along a curved path, i.e., to rectify (compute the arc length of) curves.   

Per Farouki in “Pythagorean-Hodograph Curves”, applying the Pythagorean 

theorem to an infinitesimal segment dε of a differentiable parametric curve r(ε) = (x(ε), 

y(ε)) allows us to express its arc length as  

ds = √𝑥′2(𝜀 ) + 𝑦′2(𝜀 )  dε 

and the total arch length S of a finite segment ε ∈ [𝑎, 𝑏] is thus given by the integral  

S = ∫ √𝑥′2(𝜀 ) +  𝑦′2(𝜀 ) d𝜀
𝑏

𝑎
.       
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To obtain a closed-form reduction of the integral (thereby making it computable), the 

integrand must admit an indefinite integral – or “anti-derivative” – expressible in terms of 

known analytic functions, i.e., we must be able to identify a function s(𝜀) such that  

𝑑

𝑑𝜀
 s(𝜀) = √𝑥′2(𝜀 ) +  𝑦′2(𝜀 )   (Farouki, 2008). 

Greeks preferred to conduct mathematical work in purely geometrical terms.  For 

example, Archimedes set about to calculate an area enclosed by a curve, such as a circle.  

He achieved this using a method called “exhaustion” (Davis, 1993), which approximates 

the whole area using sums of area of triangles.  This works by letting the triangles 

“exhaust” the region by finer and finer approximations (Davis, 1993).  He developed a 

similar method for calculating volumes.  His method of exhaustion essentially became 

integral calculus, nineteen hundred years later (Davis, 1993).     

Around the last third of the 5
th

 century B.C., Greek mathematics advanced to 

degrees 3 and beyond (Dieudonne, 1985).  These techniques took them beyond what 

could be done with the straightedge and compass; instead, they discovered methods that 

included doubling the cube and trisecting angles (both of which are problems of degree 3, 

and will be discussed in a later chapter). 

The Importance of the Quadratic Discriminant 

 Given a quadratic function in the general form f(x) = ax
2
 + bx + c, one can easily 

find the roots of the function (points of intersection with the x-axis) by applying  the 
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quadratic formula.  This formula is derived from the general form of a quadratic by 

completing the square (Table 2). 

Table 1. 

Deriving the Quadratic Formula.  

Start with the general form quadratic, set equal to 

zero. 
ax

2
 + bx + c = 0 

Set equation equal to the constant c, and divide 

by a. x
2 + 

𝑏𝑥

𝑎
 = - 

𝑐 

𝑎
 

Complete the square by adding [( 
1

2
 )( 

𝑏

𝑐
 )]

2 
to 

both sides. 
x

2 + 
𝑏𝑥

𝑎
 + 

𝑏2

4𝑎2 = - 
𝑐 

𝑎
 + 

𝑏2

4𝑎2 

Rewrite the perfect square trinomial as a 

binomial squared.  Rewrite right-side terms with 

common denominator.  
(x + 

𝑏

2𝑎
)

2 
 =  - 

4𝑎𝑐 

4𝑎2  + 
𝑏2

4𝑎2 

Take the square root of both sides.  √(x + 
𝑏

2𝑎
)

2

 = ±√𝑏
2

− 4𝑎𝑐

4𝑎
2  

Simplify.  x + 
𝑏

2𝑎
 = ± 

√
𝑏

2− 4𝑎𝑐
2𝑎

 

Subtract 
𝑏

2𝑎
 from both sides. x =   −𝑏 ± √𝑏2− 4𝑎𝑐

2𝑎
 

 

Deriving the quadratic formula reveals one of its most useful features – the 

discriminant.  The discriminant is the radicand of the quadratic formula, b
2
 – 4ac, and is 

denoted by Δ. 

Arguably the most useful function of the discriminant is its ability to reveal the 

number of real roots of a quadratic equation.  It is called the discriminant because, using 
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its value, one can discriminate (tell the differences) between the various solution types.  

The characteristics of the discriminant are outlined in Theorem 1, the proof of which can 

be easily found in a number of elementary algebra textbooks.  

Theorem 1: Quadratic Discriminant.  Evaluating the quadratic discriminant b
2
 – 

4ac with the real coefficients of the quadratic will result in one of three outcomes: 

i. If b
2
 – 4ac > 0, we can take the square root of this positive amount, 

and  the result will be two unique, real roots (multiplicity 1) 

ii. If b
2
 – 4ac = 0, we will be adding and subtracting zero, meaning 

there is only one real root (multiplicity 2). 

iii. If b
2
 – 4ac < 0, the square root will be of a negative number, which 

is not defined over the set of real numbers.  However, the roots do 

exist as a complex conjugate.  

The proof of this theorem can be found in a number of elementary algebra textbooks. 

Applications 

Linear functions – those of degree 1 – form the basis of quadratics, and quadratic 

functions – those of degree 2 – are the foundation of many objects and technologies that 

have changed our lives.  The inherent properties of the parabola – the shape formed from 

graphing quadratic functions - lend themselves to a wide variety of applications.  These 

applications extend from the mundane, such as headlights and snow skis, to the highly 
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technical, such as satellite dishes that allow global communications and seemingly instant 

data transfer.  Applications of quadratics even extend into cosmology; one of Einstein’s 

equations, the metric form of a quadratic, is used to model the structure of spacetime 

(superstringtheory.com). 

Parabolic Skis 

Let’s begin our discussion on the applications of quadratics with a recreational 

object enjoyed by many – the snow ski.  In the last decade of the 20
th

 century, our basic 

snow ski began to take on a new shape.  Traditional straight-edged skis were being 

supplanted by those with a sleeker, curvier design – one that was wider at the ends and 

narrower in the middle.  Enthusiasts began to wonder, was this new design simply 

esthetic, created solely as a marketing ploy?  Or, was there real value to be gained from a 

redefined shape?   

The answer was the latter:  these new skis with their parabolic shape greatly 

outperformed their straight-edged predecessors.  The straight-edged skis had to be 

maneuvered by putting enough force on the ski to create an arc.  This force had to be 

used along with rotation in order to “set” the edge of the ski and carve a turn.  Needless to 

say, the level of physical strength and stamina required to maneuver these skis excluded 

many children and older adults from taking part in the sport (www.parabolicskis.com).    

The parabolic shape – wide at the ends and narrow in the “waist” of the ski – is 

created with what is called a “sidecut” (Figure 3).  This sidecut allows the skier to turn by 

http://www.parabolicskis.com/
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simply shifting his or her weight toward the edge of the ski; the weight then engaged the 

sidecut, which would carry the ski through the turn (www.parabolicskis.com).   

 

Figure 3. Traditional vs. Parabolic Skis. Courtesy of       

www.parabolicskis.com. 

The result of this parabolic sidecut was a quicker response to minimal pressure by the 

skier, allowing for easier turns and a more fluid ride.   

Satellite Dishes 

Many young people today cannot imagine a world in which wireless 

communication doesn’t exist.  These children’s lives revolve around the use of their 

wireless device.  Ask any parent or school teacher and most will agree that the majority 

of kids are so attached to their wireless devices, they would rather make any sacrifice 

necessary (lose grades, lose privileges, accept alternate punishment, etc.) in order to keep 

it with them at all times (and as a former public high school teacher, I can attest to this 

firsthand).   However, most of these young people aren’t aware that the very existence of 

this technology is made possible by the simple parabola.   

http://www.parabolicskis.com/
http://www.parabolicskis.com/
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How is a parabola responsible for technology which has become so entrenched in 

our collective lives?  The answer – it is the basis of the satellite dish.  Satellite dishes are 

the terrestrial tools which allow signals to be sent to and received from satellites; this in 

turn allows for seemingly instant communication.  A parabola enables the dish to 

accomplish this due to one of its most fundamental – and beautiful – properties.   At a 

specific point above the parabola – a point called the “focus” – every single line that 

enters the parabola parallel to its axis will be reflected to intersect at that precise point – 

regardless where within the parabola the line hits.  Here is how it works. 

The parabola is made up of points which are all equidistant from a fixed point, the 

“focus”, and a fixed line, the “directrix”.  Construct a curve on a coordinate plane such 

that the focus is the point F (0,p) and the directrix is the horizontal line y = -p.  Any given 

point (x,y) will only be on the line if the distance from (x,y) to the focus is equal to the 

distance from (x,y) to the directrix (Weston, 1995).  Equating the squares of these 

distances (to avoid dealing with square roots), we get the equation: 

(x – 0)
2
 + (y – p)

2
 = (y + p)

2
. 

Expanding and simplifying gives us:  

y = 
𝑥2

4𝑝
 

as the equation of the parabola (Weston, 1995). 
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Imagine there is a satellite directly above us, so we tilt our parabolic dish to point 

at it. The satellite is far enough away that we can assume all of the signals are coming in 

vertically, parallel to the dish’s axis.  Suppose that a particular signal strikes the dish at 

the point P with x-coordinate a.  Therefore, the coordinate of P is (a, 
𝑎2

4𝑝
) (Weston, 

1995).  Extend a vertical line through P to meet the directrix at a point Q (a, -p).  The 

midpoint S of the line segment FQ has coordinates (
𝑎

2
, 0), clearly residing on the x-axis 

(Figure 4)(Weston, 1995). 

Figure 4. Focus and Directrix of a Parabolic Satellite Dish. Courtesy of 

www.parabolicskis.com. 

 

http://www.parabolicskis.com/
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A line tangent to the parabola at point P will intersect the x-axis a point S, the 

midpoint of FQ.  Since |𝐹𝑃| = |𝑃𝑄|, triangles FPS and QPS are congruent; therefore, 

angles FPS and QPS are equal.  Angle QPS and the angle of incidence are vertical angles, 

meaning they are also equal.  The vertical signal travelling along the line PQ will, 

therefore, reflect off the dish at point P and pass directly through the focus F  (Weston, 

1995).  This will be the same for all vertical signals that hit the satellite dish:  regardless 

of location on the dish, every signal that strikes it will reflect and pass through the focus.  

Thus, the satellite manufacturer will position the receiver at that focal point to pick up 

those signals, and communication has been established.  
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CHAPTER III 

 

CURVES:  3
rd

 DEGREE – THE CUBIC 

 

Introduction 

 

The discovery of solutions to cubic equations (and indeed, any equation of degree 

≥ 3) marked a major jump in the advancement of mathematics, for several reasons.  

Firstly, it was the most notable advancement since the time of the ancient Greeks.  

Secondly, it was the first mathematical formula unknown to the ancients. Thirdly, and 

most importantly, it led to the study of the theory of equations, culminating in the 

nineteenth century in the proof of the insolvability of the quintic (Villanueva, 2013). The 

latter will be discussed in the conclusion of this paper.  

An elliptic curve is considered the simplest curve after lines and conics (Verrill, 

2004).   While their name implies a relationship to ellipses (a type of conic), there all 

semblances end; their form is much more complex.  That being said, the elliptic curve 

can be handled and understood much more easily than a quartic (or higher order 

polynomial); this is in part due to a unique characteristic of this curve:  the elliptic can be 

viewed as a group.   

Graphically, the solutions to an elliptic curve lie on a torus - a surface the shape of 

a doughnut. The particular type of curve is given by the Weierstrass form of the equation 
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y
2
  = x

3
 + ax + b 

where the discriminant is nonzero (Silverman, 2006).   

Theorem 2: Cubic Discriminant. Given the Weierstrass equation y
2
  = x

3
 + ax + b,   

the discriminant derived will be of  the form  

Δ = 4a
3
 + 27b

2
 

Given the function f(t) = t
3
 + pt + q. If p ≥ 0, the function is continually increasing 

so it has only one real root.  In this case, the following inequality is true:   𝐿𝑒𝑡 ∆ = > 0.  

However, if  p < 0, then the function has two critical values (one maximum and one 

minimum), found by setting f ’(t) = 0 at t = ±√
−𝑝

3
.  The function has three real roots if 

and only if the y − coordinates of these points have opposite signs; meaning, if and only 

if 

F(√
−𝑝

3
) F(−√

−𝑝

3
) < 0 

This corresponds directly to 
𝑞2

4
 + 

𝑝2

27
 < 0.   

In summary, given Δ = 4a
3
 + 27b

2  
; this is called the discriminant of the cubic. 

•  If 𝛥 > 0, then there exists only one real root. 
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• If 𝛥 < 0, then there exist three real roots. 

• If ∆ = 0, the equation can have one or two real roots (if it has two real 

roots, one of them is repeated.  You can find the repeated root by 

setting the derivative equal to zero and using the quadratic formula or 

factoring if able (McClendon, 2011). 

If we define our cubic curve over a field K, such that the product of K × K is a 

plane over the field K, with the set of points (x,y) forming a subset of the plane, the curve 

can then be more accurately described as 

C = {(x,y) : y
2
  = x

3
 + ax + b} ⊂ K

2 
} 

 The basic equation can be rewritten as a product of linear factors in the form: 

C = x
3
 + ax + b = (𝑥 −  𝜆

1
)( 𝑥 −  𝜆

2
)( 𝑥 −  𝜆

3
),  𝜆

i 

where  𝜆i  is an element of K for all i. 

The resulting roots reveal characteristics of the function as such: 

i. C is a smooth curve, if the three roots 𝜆
i 
are all unique. 

ii. C is a nodal curve, if two of the 𝜆
i 
coincide (multiplicity two) and one is 

unique.  

iii. C is cuspidal curve, if the three roots 𝜆
i 
are all identical (Szendroi, 2005). 
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A cubic curve can be derived from an ellipse if we take the integral of its arc 

length and parameterize it with a change in variables.  Taking the integral of a standard 

ellipse 
𝑠2

𝑎2 + 
𝑡2

𝑏2 = 1 gives us its arc length from the point (0,b) to some point (s, t), as 

such:    

∫ ( 
1− 𝑒2𝑢2

1− 𝑢2  )
𝑠

0

½ 

(Szendroi, 2005) 

Where u = 
𝑠

𝑎
, and e

2
 = 1 - 

𝑏2

𝑎2.  If we let v represent the integrand, then the following 

quartic equation holds true and expresses the relationship between variables. 

u
2
v

2
 – e

2
u

2
 – v

2
 + 1 = 0 

This quartic can then be transformed into a cubic equation by introducing a new set of 

variables (x, y) as an invertible rational map, which then can be algebraically transformed 

into the standard cubic equation (Szendroi, 2005).  

If e = 0, the ellipse is transformed into a nodal cubic curve.  However, if e ≠ 0, 

then the ellipse is transformed into a smooth cubic curve.  Integrals of this type are called 

elliptic integrals, and the resulting cubic curve called an elliptic curve.  

One of the defining characteristics of smooth elliptic curves is their adherence to 

abelian group law.  This characteristic exists due to the smooth elliptic curve’s 
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construction, and the fact that its degree is precisely three.   Take two points P = (xp, yp) 

and Q = (xq, yq) on an elliptic curve C, such that  

C = {(x,y) ∈ ℝ ∶ y2
  = x

3
 + ax + b}

 
 

Connecting the points with line PQ creates a linear equation in the form y = mz + n. 

Substituting this line into the above cubic equation will create a cubic equation for the x-

coordinates of the intersecting points (Szendroi, 2005).  Two of these coordinates are xp 

and xq; therefore, a third intersection point must exist, which we will call R (xr, yr).   

Allowing for special cases (such as when P = Q, in which case R = ∞ will be the extra 

point), the assertion can be made that for every pair of points P, Q on C ∪ {∞} with an 

existing third point R.   As a result, all pairs of points P, Q adhere to the group law’s 

properties of associativity, commutativity, invertibility, and laws of identity.  

History and Development of Solutions 

Solutions to cubics in the form of curves can be traced back through the 

millennia.  Notable people in this area of achievement include Omar Khayyam (1048-

1123), who used intersections of conics to give the geometric constructions of cubic 

roots, as well as Leonardo de Pisa (Fibonacci) (1180-1245), who developed an 

approximation formula for certain forms of the cubic (Villanueva, 2013).   
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The Babylonians were able to evaluate cubic expressions; in fact, Babylonian 

mathematics went far beyond just arithmetical calculations. The Babylonians were famed 

as constructors of tables, which could be used to solve equations. For example, they 

constructed tables for the expression n
3
 + n

2
 ; hence, with the aid of these tables, certain 

cubic equations could be solved (figure 5).  

For example, consider the equation  

ax3 + bx2 = c. 

 

Figure 5:  Babylonian Cuneiform Tablet. 
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Our notation here is modern, and completely different from the position-specific 

cuneiform they used (see Figure 5).   However, the Babylonians were able to solve 

numeric equations as such, using established rules along with numeric tables.   In our 

example, they would multiply the equation by a
2
 and divide it by b

3
 to get 

(ax/b)
3
 + (ax/b)

2
 = ca

2
/b

3
. 

Putting y = ax/b this gives the equation 

y
3
 + y

2
 = 

𝑐𝑎2

𝑏3  

which could now be solved by looking up the n
3
 + n

2
 table for the value 

of n satisfying n
3
 + n

2
 = 

𝑐𝑎2

𝑏3 . When a solution was found for y, then x was found 

by x =  
𝑏𝑦

𝑎
.  It is important to note that all this was done without algebraic notation and 

showed a remarkable depth of understanding. 

However, the discovery of solutions to cubic equations first occurred in the 

sixteenth century in Italy, by Scipione del Ferro (1465-1526), a lecturer in arithmetic and 

geometry at the University of Bologna from 1496 until 1526. He was the first to discover 

the solution to the cubic, which he wrote in a manuscript (unfortunately the manuscript 

did not survive over time; in fact, no manuscripts by del Ferro are known to survive to 

this day).  The problem was to find the roots by adding, subtracting, multiplying, dividing 

and taking roots of expressions in the coefficients. It is believed that del Ferro could only 
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solve cubic equation of the form x
3
 + mx = n; without knowledge of negative numbers, 

his solution could not be used to solve all cubics (O’Connor & Robertson, 1996).  At that 

time, the general solution to the cubic still awaited discovery.  

Later, on his deathbed, del Ferro passed the manuscript to one of his students, 

Antonio Fior.  Fior, now in possession of the sought-after solution, was not very good at 

keeping secrets.  Soon news of this ground-breaking discovery spread and reached the 

mathematician Niccolo Tartaglia.  His surname, Tartaglia, means “the stammerer”; he 

was dubbed this name after a sword cut to the tongue during a French siege of Brescia 

rendered his speech difficult (Petrov, n.d.).  Tartaglia was enticed by the rumors to pursue 

his own solution, which he accomplished.  He solved cubics in the form x
3
 + mx

2
 = n.   

Like Fior, Tartaglia was not good at keeping secrets, and was vocal about his 

accomplishment.  This prompted Fior to challenge Tartaglia to a public contest, which he 

accepted.  The conditions of the contest were that each gave the other 30 problems with 

40 or 50 days in which to solve them, the winner being the one to solve most but a small 

prize was also offered for each problem (O’Connor & Robertson, 1996).  Tartaglia’s was 

a convincing victory:  he managed to solve all Fior's problems in the space of 2 hours!  It 

turns out that all the problems Fior issued were of the form x
3
 + mx = n, which he 

believed Tartaglia would be unable to solve. Tartaglia then took his accomplishment a 

step further -- only 8 days before the problems were to be collected, Tartaglia discovered 

the general method of solution for all types of cubics (O’Connor & Robertson, 1996). 
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Tartaglia, although verbally impeded, was not shy about proclaiming his 

achievement.  Word of it travelled, and eventually came to the attention of Girolamo 

Cardano, an Italian doctor and mathematician living in Milan.  Cardano wanted to learn 

more about this purported solution and its author, so he invited Tartaglia for a visit.   

During this visit, Cardano very persuasively convinced Tartaglia to share the secret of his 

solution of the cubic equation.  While Tartaglia agreed, he stipulated one non-negotiable 

condition:  Cardano must swear to keep the solution secret until Tartaglia had published it 

himself.  Additionally, Tartaglia only agreed to reveal it in written form as code, 

elaborately worded into a poem.  This way, if Cardano passed on, no one else could 

acquire and understand it.   Tartaglia’s poem read as follows:  

When the cube and things together 

Are equal to some discreet number, 

Find two other numbers differing in this one. 

Then you will keep this as a habit 

That their product should always be equal 

Exactly to the cube of a third of the things. 

The remainder then as a general rule  

Of their cube roots subtracted  

Will be equal to your principal thing 

In the second of these acts, 

When the cube remains alone, 
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You will observe these other agreements: 

You will at once divide the number into two parts 

So that the one times the other produces clearly 

The cube of the third of the things exactly. 

Then of these two parts, as a habitual rule, 

You will take the cube roots added together,  

And this sum will be your thought. 

The third of these calculations of ours  

Is solved with the second if you take good care,  

As in their nature they are almost matched.  

These things I found, and not with sluggish steps,  

In the year one thousand five hundred, four and thirty.  

With foundations strong and sturdy  

In the city girdled by the sea.  (O’Connor & Robertson, 2005). 

 

Applications 

In the field of number theory, a problem which appears at first glance to be a 

simple Diophantine equation (i.e., an equation is one where the coefficients are whole 

numbers, and where the solution is also constrained to be a whole number), can lead into 

something much more complex -- an elliptic curve.   
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Elliptic curves have many applications in our modern day world, as well as many 

important areas of mathematics and its applications.  These areas include topology, 

number theory, complex analysis, physics, and cryptography (the latter of these, 

cryptography, is discussed later in detail).  It was work he did on elliptic curves that 

finally allowed Andrew Wiles to prove Fermat's Last Theorem (http://plus.maths.org). 

Let’s take a look at one use of elliptic curves which has serious and important 

applications in modern day technology – elliptic curve cryptography.  

Elliptic curves as algebraic/geometric entities have been studied extensively for 

the past 150 years, and one of the results of this research – elliptic curve cryptography – 

has had a profound impact on modern day technology.  Given the prevalence of digital 

technology, i.e., data and communication created in digital format for almost instant 

access from any location on any platform, the need for data security becomes paramount.  

Elliptic curve cryptography provides that high level of technological security.   

Many companies have entered the marketplace of data security by creating 

products that offer guaranteed data security; one such company is Certicom.  Founded in 

1985 and headquartered in Ontario, Canada, Certicom states that its encryption software 

“protects billions of dollars’ worth of content and millions of devices around the world. 

With over 350 patents and patents pending worldwide covering key aspects of Elliptic 

Curve Cryptography (ECC), Certicom provides the core technology for the National 

Security Agency (NSA) Suite B standard for secure government communications.  As the 
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world-leading expert in public key infrastructure implementations, device security, anti-

counterfeiting, product authentication, asset management, and fixed-mobile convergence, 

many industry-leaders --  IBM, Continental Airlines, Aristocrat Technologies, Cavium, 

General Dynamics, Motorola, Oracle, Research In Motion (RIM), Unisys, XM, Bally 

Technology, General Electric, Texas Instruments, Qualcomm, Mitre, L-3, Phillips, 

Samsung, Sony Ericsson, and Nortel -- have become Certicom customers.” 

(www.certicom.com/about) 

Elliptic Curve Cryptography 

This section discusses how companies like Certicom utilize elliptic curve 

cryptography to provide data security to their clients, and is based upon information 

gleaned from Certicom’s website.   The foundational logic of most cryptographic systems 

is based on algebraic group properties.  An algebraic group is a set whose elements 

adhere to the following properties:  associativity, commutativity, invertibility, and 

identity.  For elliptic curve groups, these operations are defined geometrically.  The field 

over which the elliptic curve resides is given strict properties; these properties define the 

field into a lattice.  Generally, elliptic curves reside on underlying fields Fp (where p is a 

prime) and F2m (a binary representation with 2
m
 elements).    

Given the Weierstrass Normal Form of an elliptic equation,  

y
2
  = x

3
 + ax + b  

http://www.certicom.com/about
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if the discriminant Δ ≠ 0, then the elliptic curve is smooth and can be used to form a 

group.   

Substituting different values for a and b will result in a different elliptic curve. 

For example, a = -4 and b = 0.67 gives the elliptic curve with equation y
2
 = x

3
 - 4x + 

0.67; the graph of this curve is shown below (Figure 6). 

 
Figure 6. Elliptic Curve. 

 
Elliptic curve groups are additive groups; that is, their basic function is addition. 

The addition of two points in an elliptic curve is defined geometrically. The negative of a 
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point P = (x
P
,y

P
) is its reflection in the x-axis: the point -P is (x

P
,-y

P
). Notice that for each 

point P on an elliptic curve, the point -P is also on the curve (www.certicom.com). 

Suppose that P and Q are two distinct points on an elliptic curve, and the P is not -

Q. To add the points P and Q, a line is drawn through the two points. This line will 

intersect the elliptic curve in exactly one more point, call -R. The point -R is reflected in 

the x-axis to the point R. The law for addition in an elliptic curve group is P + Q = R. For 

example:  

 

Figure 7. Adding Distinct Points P and Q 
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The line through P and -P is a vertical line which does not intersect the elliptic 

curve at a third point; thus the points P and -P cannot be added as previously. It is for this 

reason that the elliptic curve group includes the point at infinity 0. By definition, P + (-P) 

= 0. As a result of this equation, P + 0 = P in the elliptic curve group . 0 is called the 

additive identity of the elliptic curve group; all elliptic curves have an additive identity.  

 

  Figure 8. Adding the Points P and -P 

To add a point P to itself, a tangent line to the curve is drawn at the point P. If y
P
 

is not 0, then the tangent line intersects the elliptic curve at exactly one other point, -R. -R 
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is reflected in the x-axis to R. This operation is called doubling the point P; the law for 

doubling a point on an elliptic curve group is defined by P + P = 2P = R.  

 

                               

 

Figure 9. Doubling the Point P: multiplicity 2 

The tangent from P is always vertical if y
P
 = 0.  If a point P is such that y

P
 = 0, 

then the tangent line to the elliptic curve at P is vertical and does not intersect the elliptic 

curve at any other point.  By definition, 2P = 0 for such a point P.  If one wanted to find 
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3P in this situation, one can add 2P + P. This becomes P + 0 = P Thus 3P = P.  

    3P = P, 4P = 0, 5P = P, 6P = 0, 7P = P, etc. 

Although the previous geometric descriptions of elliptic curves provides an 

excellent method of illustrating elliptic curve arithmetic, it is not a practical way to 

implement arithmetic computations. Algebraic formulae are constructed to efficiently 

compute the geometric arithmetic. 

 

 Figure 10.  Elliptic Curve with Point P: Multiplicity 3 

Example of Basic ECC Implementation  

An essential property for cryptography is that a group has a finite number of 

points; thus, the elliptic curve’s underlying field will consist of elements that form a 

lattice.  This is due to the absolute necessity of speed and arithmetic precision in ensuring 
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a secure system.  This also explains why a field defined over the set of real numbers 

would be ineffective:  calculations there are slow and inaccurate due to round-off error.  

Recall that the field F
P
 contains the set of numbers from 0 to (p – 1), and 

computations end by taking the remainder on division by p. For example, in F23 the field 

is composed of integers from 0 to 22, and any operation within this field will result in an 

integer also between 0 and 22.  

An elliptic curve with the underlying field of F
P
 can formed by choosing the 

variables a and b within the field of F
P
. The elliptic curve includes all points (x,y) which 

satisfy the elliptic curve equation modulo p (where x and y are numbers in Fp).  

For example:  

y
2
 mod p = x

3
 + ax + b mod p 

has an underlying field of F
P
 if a and b are in F

P
. 

If x
3
 + ax + b contains no repeating factors (or, equivalently, if 4a

3
 + 27b

2
 mod p 

is not 0), then the elliptic curve can be used to form a group. An elliptic curve group over 

F
P
 consists of the points on the corresponding elliptic curve, together with a special point 

O called the point at infinity. There are finitely may points on such an elliptic curve.  

As a very small example, consider an elliptic curve over the field F23. With a = 1 

and b = 0, the elliptic curve equation is y
2
 = x

3
 + x. The point (9,5) satisfies this equation 

since:  
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y
2
 mod p = x

3
 + x mod p  

25 mod 23 = 729 + 9 mod 23  

25 mod 23 = 738 mod 23  

2 = 2  

The 23 points which satisfy this equation are:  

(0,0) (1,5) (1,18) (9,5) (9,18) (11,10) (11,13) (13,5) (13,18) (15,3) (15,20) (16,8) (16,15) 

(17,10) (17,13) (18,10) (18,13) (19,1) (19,22) (20,4) (20,19) (21,6) (21,17) 

These points may be graphed as 

 

Figure 11.  Elliptic Curve Equation: y
2
 = x

3 
+ x over F23 
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Note that there is two points for every x value. Even though the graph seems 

random, there is still symmetry about y = 11.5. Recall that elliptic curves over real 

numbers, there exists a negative point for each point which is reflected through the x-

axis. Over the field of F23, the negative components in the y-values are taken modulo 23, 

resulting in a positive number as a difference from 23. Here -P = (xP, (-yP Mod 23)). 

There are several major differences between elliptic curve groups over F
p
 and 

over real numbers. Elliptic curve groups over Fp have a finite number of points, which is 

an essential property for cryptography. Since these curves consist of a few discrete points 

(see the previous graph), it is not clear how to "connect the dots" to make their graph look 

like a curve. It is not clear how geometric relationships can be applied. As a result, the 

geometry used in elliptic curve groups over real numbers cannot be used for elliptic curve 

groups over Fp. However, the algebraic rules for the arithmetic can be adapted for elliptic 

curves over Fp. Unlike elliptic curves over real numbers, computations over the field of 

Fp involve no round off error - an essential property required for a cryptosystem. 

Elements of the field F2m are m-bit strings. The rules for arithmetic in F2m can be 

defined by either polynomial representation or by optimal normal basis representation. 

Since F2m operates on bit strings, computers can perform arithmetic in this field very 

efficiently. 

An elliptic curve with the underlying field F2m is formed by choosing the 

elements a and b within F2m (the only condition is that b is not 0). As a result of the field 
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F2m having a characteristic 2, the elliptic curve equation is slightly adjusted for binary 

representation:  

y
2
 + xy = x

3
 + ax

2
 + b 

The elliptic curve includes all points (x,y) which satisfy the elliptic curve equation 

over F2m (where x and y are elements of F2m ). An elliptic curve group over F2m consists 

of the points on the corresponding elliptic curve, together with a point at infinity, O. 

There are finitely many points on such an elliptic curve. 

As a very small example, consider the field F24, defined by using polynomial 

representation with the irreducible polynomial f(x) = x
4
 + x + 1.  

The element g = (0010) is a generator for the field . The powers of g are: 

g
0
 = (0001) g

1
 = (0010) g

2
 = (0100) g

3
 = (1000) g

4
 = (0011) g

5
 = (0110) 

g
6
 = (1100) g

7
 = (1011) g

8
 = (0101) g

9
 = (1010) g

10
 = (0111) g

11
 = (1110) 

g
12

 = (1111) g
13

 = (1101) g
14

 = (1001) g
15

 = (0001) 

In a true cryptographic application, the parameter m must be large enough to 

preclude the efficient generation of such a table otherwise the cryptosystem can be 

broken. In today's practice, m = 160 is a suitable choice. The table allows the use of 

generator notation (g
e
) rather than bit string notation, as used in the following example. 

Also, using generator notation allows multiplication without reference to the irreducible 

polynomial  
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f(x) = x
4
 + x + 1. 

 

Figure 12.  Elliptic Curve y
2
 + xy = x

3
 + g

4
x

2
 + 1 over F

2
4 

At the foundation of every cryptosystem is a hard mathematical problem that is 

computationally infeasible to solve. The discrete logarithm problem is the basis for the 

security of many cryptosystems including the Elliptic Curve Cryptosystem. More 

specifically, the ECC relies upon the difficulty of the Elliptic Curve Discrete Logarithm 

Problem (ECDLP).  
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Elliptic Curve Groups and the Discrete Logarithm Problem 

Lying at the foundation of cutting-edge cryptography is the Discrete Logarithm 

Problem.  It is this logarithm that encrypts the data and safe-guards it from attack.  It is so 

effective that it is used in almost all cryptographic constructions, including key exchange, 

encryption, digital signatures, and hash functions (Silverman, 2006).  It relies on the 

natural group law on a non-singular elliptic curve which allows one to add points on 

the curve together. Given an elliptic curve E over a finite field F, a point on that curve, P, 

and another point you know to be an integer multiple of that point, Q, the “problem” is to 

find the integer n such that  nP=Q. 

The problem is computationally difficult unless the curve has collections of 

numbers of points in the field which make the DLP breakable. For example, if the 

number of points on E over F is the same as the number of elements of F, then the curve 

is vulnerable to attack. It is because of these issues that point-counting on elliptic curves 

is such a hot topic in elliptic curve cryptography (www.planetmath.org ). 

 

  

http://www.planetmath.org/
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CHAPTER IV 

CURVES:  4
rd

 DEGREE – THE QUARTIC 

Introduction 

For hundreds of years, mathematicians sought some generalization of the classical 

formulas that would give the roots of any polynomial.  Finally, P. Ruffini (1765 – 1822), 

in 1799, and Niels Henrik Abel (1802 – 1820), in 1824, proved that no such formula 

exists for the general quintic.  Evariste Galois (1811 – 1832) was able to determine 

precisely those polynomials whose roots can be found (and, in doing so, founded the 

theory of groups).  

History and Development of Solutions 

The solution to quartic equations (and indeed, any equation of degree   3) has 

long been a focus of mathematicians and philosophers, dating from the time of the 

ancient civilizations. One of the earliest pieces of work on this subject is by Omar 

Khayyam (1048 – 1123), an Islamic mathematician, astronomer, and poet who 

discovered a method of solving cubics by intersecting a parabola with a circle.  

The mathematician credited with first discovering a formula for finding the roots 

to a quartic equation was Lodovico Ferrari (1522 – 1565).  Ferrari was born in Bologna, 
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and at the age of fourteen, he was sent to Milan to work with Cardano, from whom he 

learned mathematics. Even at this early age, Ferrari proved to have natural ability in 

mathematics, and Cardano took him on as his assistant.  In answer to a question posed to 

Cardano, Ferrari discovered a method for finding the roots to a quartic polynomial which 

proved to be applicable to all cases.  “A new phase of mathematics began in Italy around 

1500,” and we first see the quartic equation discussed.  Though the quartic was discussed 

in books during this time, it was Lodovico Ferrari who was credited for being the first to 

solve the quartic.  In Ferrari’s solution of the case:   

𝑥4 + 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0, 

 we first complete the square to obtain  

𝑥4 + 2𝑝𝑥2 + 𝑝2 = 𝑝𝑥2 − 𝑞𝑥 − 𝑟 + 𝑝2. 

For any y we have 

(𝑥2 + 𝑝 + 𝑦)2 
 

= 𝑝𝑥2 − 𝑞𝑥 − 𝑟 + 𝑝2 + 2𝑦(𝑥2 + 𝑝) + 𝑦2 
 

             = (𝑝 + 2𝑦)𝑥2 − 𝑞𝑥 + (𝑝2 − 𝑟 + 2𝑝𝑦 + 𝑦2).  

 (1) 

  

With more arithmetic and in rewriting the equation as 

(𝑞2 − 4𝑝3 + 4𝑝𝑟) + (−16𝑝2 + 8𝑟)𝑦 − 20𝑝𝑦2 − 8𝑦3 = 0 
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to see that it is cubic in y.  We know how to solve cubics and in solving for y and using 

this value, the right hand side of (1) is a perfect square and in taking the square root of 

both sides, we obtain a quadratic in x.  This quadratic is solved and thus we have the 

required solution to the quartic equation. 

About the same time frame, Rene Descartes (1656 – 1650) discovered a similar 

method for solving quartic equations.  From those initial discoveries, several 

distinguished mathematicians have created their own unique formulas for solving quartic 

equation, including Euler, LaGrange, Bernoulli, and Klein.   

Ferrari’s Discovery 

Though the quartic was discussed in books during this time, it was Lodovico 

Ferrari who was credited for being the first to solve the quartic.  The following story 

highlights what Ferrari is recognized to have achieved.    

During Ferrari’s tenure as Cardano’s assistant, Cardano was given a word 

problem by another mathematician. “Cardano was unable to solve it. He then passed it 

onto Ferrari who managed to solve it. It is almost a quartic equation 

(ax
4
 + bx

3
 + cx

2
 + dx + e = 0) except for the fact that it does not have a ‘bx

3
’ term in it. 

This makes it a depressed quartic” (O’Connor and Robertson, 2011).    
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Descartes’ Discovery 

Rene Descartes discovered a method for solving a quartic at around the same time 

as Ferrari.  His solution of the quartic was to factor a reduced quartic polynomial as a 

product of quadratic polynomials with real coefficients.  It would then become possible to 

find the quartic’s roots by applying the quadratic formula to its quadratic factors. 

Descartes depresses the quartic by removing the x
3
 term.  He then tries to find t, u, 

and v such that  

(𝑥4 + 𝑝𝑥2 + 𝑞𝑥 + 𝑟) = 0 = (𝑥2 − 𝑡𝑥 + 𝑢)(𝑥2 + 𝑡𝑥 + 𝑢) 

By comparing coefficients, he gets:  

 1)  𝑢 + 𝑣 − 𝑡2 = 𝑝  2)  𝑡(𝑢 − 𝑣) = 𝑞 and 3)  𝑢𝑣 = 𝑟10 

If we rewrite the first and second equations in terms of u and v, we will get 

𝑢 + 𝑣 = 𝑡2 + 𝑝 and 𝑢 − 𝑣 =
𝑞

𝑡
 

Solving by Gaussian elimination, we can simplify to get expressions for 2u and 2v, such 

that  

2𝑢 = (𝑡2 + 𝑝 +
𝑞

𝑡
) and 2𝑣 = (𝑡2 + 𝑝 −

𝑞

𝑡
) 
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Therefore, based on equation 3, (2u)(2v) = 4r: 

(𝑡2 + 𝑝 +
𝑞

𝑡
)(𝑡2 + 𝑝 −

𝑞

𝑡
) 

When we simplify, we get a cubic equation in the variable t
2
.  Therefore, we are down to 

two quadratic equations which can easily be simplified.  

Euler’s Discovery 

 Leonhard Euler was arguably one of the greatest mathematicians of all time.  

Publishing over 900 works in various areas, his contributions has a decisive influence 

over the development of mathematics, one which is still being felt to this day.  

In the field of quartic solutions, Euler’s accomplishment took Descartes’ method a 

step further.  Euler refined his method to obtain a formula for quartic solutions in terms 

of the solutions of the associated resolvent cubic equation. In essence, Euler’s quartic 

solution proved that each of the roots of a reduced quartic can be represented as the sum 

of three square roots, where the radicands of these square roots are the solutions of the 

resolvent cubic (Nickalls, 2009). 

Klein’s Discovery 

 Felix Klein is most well-known for his work in non-Euclidean geometry, group 

theory and function theory.  Non-Euclidean geometry allows two parallels through any 

external point where we see curved surfaces and thus hyperbolic and elliptic geometries.  

He was born April 4, 1849 and “delighted in pointing out that each of the day (5
2
), month 
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(2
2
), and year (43

2
) was the square of a prime” (O’Connor and Robertson, 2003).  He was 

intending to become a physicist, and after graduation, studied mathematics and physics at 

the University of Bonn.  In his college years at Bonn, he worked under Plücker and upon 

Plücker’s death, continued his major work on the foundations of line geometry.  His 

career was in teaching mathematics and he taught a variety of courses.  One of his first 

mathematical discoveries was investigations of W-curves which are curves invariant 

under a group of transformations.  By 1871, he had made several major discoveries in 

geometry.  Klein published several papers “in which he showed that it was possible to 

consider Euclidean geometry and non-Euclidean geometry as special cases a projective 

surface with a specific conic section adjoined” (O’Connor and Robertson, 2003).    This 

led to the corollary that non-Euclidean geometry was consistent if and only if Euclidean 

geometry was consistent.  Klein considered his work in function theory to be his most 

prominent contribution to mathematics.  Klein studied that properties of a space are 

invariant under a given group of transformations and “showed how the essential 

properties of a given geometry could be represented by the group of transformations that 

preserve those properties” (O’Connor and Robertson, 2003).    He did much work in 

developing mathematician Bernhard Riemann’s ideas and obtained an explicit 

representation of a Riemann surface showing its equation to be 𝑥3𝑦 + 𝑦3𝑧 + 𝑧3𝑥 = 0 as 

a curve in projective space.  Klein then “considered equations of degree greater than 4 

and was particularly interested in using transcendental methods to solve the general 

equation of the fifth degree” (O’Connor and Robertson, 2003).   
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Klein’s quartic is formed by taking regular heptagons where three meet at each 

corner.  This creates a tiling of the hyperbolic plane and is saddle-shaped at every point.  

By curling up a portion of this figure, we get a 3-holed torus and it takes exactly 24 

heptagons and thus Klein’s quartic.  It is symmetrical with 168 symmetries (336 

including reflections).  In his original 1879 paper, Klein “drew a surface tiled by 24 

heptagons, together with directions for how to create a 3-holed torus by attaching the 

sides of this surface to each other” (Figure 13). (Baez, 2013) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.  Two-Dimensional Klein Quartic. 

 

 

Summary of Solution Development 

 

In summary, any polynomial equation of degree ≤ 4 is solvable with the given 

conditions:  the polynomial must have real number coefficients, and the solution must lie 

within the field of complex numbers.    The method of solution would be determined by 

the polynomial; i.e., if direct solution is impractical, then an alternate method can be 
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utilized.  Examples of alternate methods include the Rational Root Theorem, Descartes’ 

Rule of Signs, or the Newton Approximation Method (Villanueva, 2013). 

Applications 

 

Like its cubic cousin, the quartic polynomial has many applications and uses in 

our modern day world.  In the field of science, many discoveries can be described by 

quartic polynomials.  For example, the flow of a fluid through a tube can be modelled as 

a quartic function.  The rate of flow of the fluid through the tube varies with the radius of 

the tube to the 4th degree. So if you triple the radius of a tube, 81 times more fluid can 

pass through the tube during an equivalent period of time (34 = 81).  This formula, 

known as Poiseuille’s Law, states that the laminar flow of a fluid (liquid or gas) along a 

pipe is given by 

V = 
𝜋𝑝𝑟4

8𝑛𝑙
 

where V = the flow rate; p = the pressure gradient between the two ends of the pipe; r = 

the radius of the pipe; 1 = the length of the pipe; 7 = the viscosity of the fluid (Pfitzner, 

1976). 

Other scientific discoveries can be modelled by quartic polynomials; one is from 

an area that is near and dear to me:  astronomy.  In fact, there are many discoveries in the 

field of astronomy which can be described by quartics; the one that I shall focus on is 

planetary orbit. In a paper presented at the International Mathematical Forum in 2008, 
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Takuma Kimura of Hirosaki University revealed how the curve that Johannes Kepler 

assigned to the orbit of Mars was not a rational curve, but was instead modelled perfectly 

by a quartic elliptic curve.   

Per Kimura, plane algebraic curves have provided various models of the orbits of 

planets. Curves such as hypotrochoids (roulette-type curves) provide a good 

representation of the orbits of inner solar system planets. Curves such as these are 

rational curves.  Many researchers believe that Johannes Kepler supposed an ”ovoid” also 

explained Mars’s orbit before discovering that an ellipse modeled the true orbit of Mars. 

Kepler was assigned to study the orbit of Mars by Tycho Brahe (1546-1601), 

when Kepler joined him in Prague around 1600.  The orbit of Mars was of particular 

interest to study, for four reasons:  it is an outer planet (and therefore seldom viewed 

close to the Sun); the noncircular nature of its path is the greatest of the outer planets; it is 

the nearest to the Earth of the outer planets (so changes in position appear larger); and it 

is the nearest to the Sun of the outer planets (and therefore it makes more frequent 

circuits, producing more observations) (O’Connor and Robertson, 2006). 
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CHAPTER V 

 

CONCLUSION 

 

The Quintic – 5
th

 Degree Polynomials 

Unlike the aforementioned linear, quadratic, cubic, or quartic equations, there 

exists no general formula for the solution of quintic equations (or indeed, any equation of 

degree ≥ 5).  This, however, does not imply that no solutions exist to quintic equations.  

The Fundamental Theorem of Algebra tells us that every polynomial of degree n will 

have exactly n roots, if we count both real and complex roots, and each distinct root 

counted according to its multiplicity (Farouki, 2008).   

Limitations 

There exist very few published results on the theory of solutions to quintic 

equations.  Further research into the solution and applications of quintics would be an 

appropriate extension of this thesis.  
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